Nonlinear Modeling of the Internet Delay Structure

Xiao Wang, Yang Chen, Beixing Deng and Xing Li
Tsinghua University

1. Motivation

• Why model the Internet delay structure?
 - Large-scale distributed systems applications:
 - overlay multicast
 - server selection
 - distributed query optimization
 - file-sharing via BitTorrent
 - compact routing

• Typical models – Euclidean
 - Existing systems: GNP, NPS, Vivaldi
 - A serious problem: Triangle Inequality Violation (TIV)

2. Solution: Kernel Methods (KM)

• What are Kernel Methods?
 - A class of algorithms for pattern analysis (e.g., Support Vector Machine (SVM)).

• General task: to find and study general types of relations in general types of data.

• Types of relations: clusters, rankings, principal components, correlations, classifications

• Types of data: sequences, text documents, sets of points, vectors, images, etc.

• Kernel
 - What is kernel?
 - instead of using a mapping \(\phi: X \to \mathcal{F} \) to represent \(x \in X \) by \(\phi(x) \in \mathcal{F} \)
 - using \(K: X \times X \to \mathbb{R} \) to represent Internet delay matrix by \(K(x_i, x_j) \)
 - Interpretation: a mapping exerted on Internet delay matrix
 - Isotrope stationary kernel: \(K(x, y) = K_S([x - y]) \)
 - Euclidean norms:\(\|x - y\| \)
 - The mapping: \(K_S(\cdot) \)
 - Typical kernels:
 - Polynomial kernel, Gaussian kernel, exponential kernel, etc.

3. Methodology

• How to choose kernels?
 - We define:
 - Measured Internet delay matrix: \(D_{Ma} \)
 - Kernel: \(K_S(\cdot) \)
 - Mapped matrix in feature space: \(D_S \), thus \(D_S = K_S(D_{Ma}) \)
 - Current assumption: If there are less TIVs in \(D_S \), each kernel \(K_S(\cdot) \) is a good kernel, since Euclidean models can be embedded in \(D_S \).

• Example: a Euclidean based Network Coordinate system

 Suppose: \(K_S(\cdot) = (\cdot)^2 \)

 \[D_{Ma} = \begin{bmatrix} a_1 & a_2 & a_3 \\ a_2 & a_3 & a_1 \\ a_3 & a_1 & a_2 \end{bmatrix} = \begin{bmatrix} 0 & 9 & 36 \\ 9 & 0 & 16 \\ 36 & 16 & 0 \end{bmatrix} \]

 Here \(a_1 > a_2 + a_2 \) TIV

 \[D_S = \begin{bmatrix} b_1 & b_2 & b_3 \\ b_2 & b_3 & b_1 \\ b_3 & b_1 & b_2 \end{bmatrix} = \begin{bmatrix} 0 & 3 & 6 \\ 3 & 0 & 4 \\ 6 & 4 & 0 \end{bmatrix} \]

 Here \(b_1 < b_2 + b_3 \) no TIV

• 2-D coordinates of 1, 2, 3:
 - 1: (0,0)
 - 2: (-1.375, 2.666)
 - 3: (4.0)

Can be embedded!

4. Framework Design

5. Evaluation

• Data sets:
 - PlanetLab: 226 nodes
 - Meridian: 2500 nodes

• Metrics:
 - TIV ratios: the number of triples of nodes violating triangle inequality to the proportion of all triples
 - TIV severity of edge AC: \(\sum_{B \in S} d(A,C) > d(A,B) + d(B,C) \)
 - S: the set of all nodes

6. Further Works

• Delay prediction performance:
 - Current results: not steady among different data sets;
 - Future work: tune adaptive parameters

• How to search for good kernels:
 - Current kernel: polynomial kernel
 - Current methodology:
 - less TIVs in mapped matrix, better kernel.
 - But no guarantee: “if there is no TIV, Euclidean space can be embed”
 - Future work: need further exploration

• Benefits: only Euclidean models?
 - Hyperbolic: spherical add kernels on them
 - Dot-product: add kernels and guarantee non-negativity
 - Future work: need further exploration

Acknowledgement: This work is supported by the National Basic Research Program of China (No.2007CB310806) and the National Science Foundation of China (No.60473087, No.60705032, No.60850003),