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ABSTRACT
In a Website Fingerprinting (WF) attack, a local, passive eaves-
dropper utilizes network �ow information to identify which web
pages a user is browsing. Previous researchers have extensively
demonstrated the feasibility and e�ectiveness of WF, but only un-
der the strong Single Page Assumption: the network �ow extracted
by the adversary always belongs to a single page. In other words,
the WF classi�er will never be asked to classify a network �ow
corresponding to more than one page, or part of a page. The Single
Page Assumption is unrealistic because people often browse with
multiple tabs. When this happens, the network �ow induced by
multiple tabs will overlap, and current WF attacks fail to classify
correctly.

Our work demonstrates the feasibility of WF with the relaxed
Single Page Assumption: we can attack a client who visits more
than one pages simultaneously. We propose a multi-tab website �n-
gerprinting attack that can accurately classify multi-tab web pages
if they are requested and sequentially loaded over a short period
of time. In particular, we develop a new BalanceCascade-XGBoost
scheme for an attacker to identify the start point of the second
page such that the attacker can accurately classify and identify
these multi-tab pages. By developing a new classi�er, we only use
a small chunk of packets, i.e., packets between the �rst page’s start
time to the second page’s start time, to �ngerprint website. Our
experiments demonstrate that in the multi-tab scenario, WF attacks
are still practically e�ective. We have an average TPR of 92.58% on
SSH, and we can also averagely identify the page with a TPR of
64.94% on Tor. Specially, compared with previous WF classi�ers,
our attack achieves a signi�cantly higher true positive rate using a
restricted chunk of packets.

CCS CONCEPTS
• Security and privacy → Domain-speci�c security and pri-
vacy architectures; •Networks→Networkprivacy and anonymity;
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Figure 1: Illustration for the terminology of this paper,
where black circles are the non-overlapped packets of the
�rst page, white circles are overlapped packets of the �rst
page, and grey circles are the packets of the second page.
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1 INTRODUCTION
When a client is browsing the web, she inevitably reveals her desti-
nation website to all on-path routers. ISPs who are running these
routers may passively observe and collect clients’ information for
pro�t or due to legal pressure. Privacy enhancing technologies, such
as Tor, can protect the client from such threats by encrypting her
network �ow and hiding the true source and destination through
proxies. Even then, an attacker can still compromise a client’s pri-
vacy by observing patterns in the network �ow without decrypting
them, using a technique known as Website Fingerprinting (WF). A
site may prove to be uniquely identi�able from the order, number,
size, and direction of the transferred network �ow.

Recently, several studies have demonstrated the e�ectiveness of
WF attacks [6, 11, 21]. However, Juarez et al. [14] criticized these
works for overestimating the attacker’s abilities. They highlighted
the following critical assumption in all previous WF works, which
we refer to as the Single Page Assumption: “The attacker knows
when eachweb page starts loading andwhen it ends.” Unfortunately,
in practice, the assumption does not always hold [14, 23, 27]. In
particular, users may want to open multiple tabs in their browsers,
e.g., for the purpose of prefetching pages. Juarez et al. showed that
without the assumption, WF attacks are highly inaccurate; yet, the
Single Page Assumption remains unresolved.

In this paper, we propose a newWF attack that relaxes the Single
Page Assumption. What allows the attack to succeed in addressing
the Single Page Assumption is that we can split sequential multi-tab
pages and classify accurately only the small chunk of packets of
the �rst pages, e.g., even only using two seconds of data. Figure 1
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illustrates the terminology and scenario of this paper. A client loads
multiple pages simultaneously, with a small time gap between
their start times. The �rst page is loaded, and after some time
(corresponding to the split point), the second page is loaded; the
packets of the second page overlap with that of the �rst. We discard
the overlapping chunk entirely and classify web pages using the
initial chunk of packets, i.e., packets before the second pages. In
order to achieve this goal, the attacker must correctly identify the
split point by utilizing a split �nding algorithm to obtain the chunk
and classify pages with the restricted chunk of packets.

To develop a successful WF attack with relaxing the Single Page
Assumption, we make the following novel contributions:

(1) We propose a multi-tab �ngerprinting attack that allows an
attacker to classify web pages with multi-tabs, which is not
well addressed by the literature.

(2) We present a new BalanceCascade-XGBoost algorithm to
accurately identify the split point, given a combination of
two pages.

(3) We develop a new classi�er based on random forests, which
accurately classi�es web pages given only the initial chunk
of packets according to the selected features.

(4) Experimentally, we veri�ed the success of our new WF at-
tack in a multitude of scenarios, including datasets collected
with SSH, Tor, and under several recently proposed defenses
against WF. We found that our new WF attack can achieve
93.88% True Positive Rate (TPR) on two seconds of the initial
chunk against SSH-loaded data. It can also achieve 77.08%
TPR on six seconds of the initial chunk against Tor-loaded
data, which beats the previous best attack, i.e., k-FP [11], by
more than 9%.

The rest of the paper is organized as follows. In Section 2, we
present the threat model and introduce related work. We present
the framework of our new WF attack in Section 3. We present our
BalanceCascade-XGBoost algorithm to split pages in Section 4 and
classify pages in Section 5. We evaluate the e�ectiveness of our
attack in Section 6. Section 7 concludes the paper.

2 PROBLEM STATEMENT AND RELATED
WORK

2.1 Multi-tab Threat Model
In the WF threat model, the adversary records the encrypted net-
work �ow between the victim and the proxy. To determine whether
the encrypted network �ow is generated by a targeted page, the
adversary constructs his �ngerprint database by extracting various
network �ow features of the targeted page, such as the directions
and sizes of packets. The adversary eavesdrops on the victim’s
network �ow and classi�es the victim’s network �ow using a su-
pervised classi�er trained on his �ngerprint database.

When the victim opensmultiple tabs simultaneously, the browser
generates overlapped network �ows corresponding to di�erent
pages through the same connection. The attacker cannot distinguish
between overlapped network �ows [14, 27]. To avoid this issue,
WF attacks are evaluated with the Single Page Assumption: only
one page is visited at a time and no background network �ow is
generated. The assumption is unrealistic. Network �ows generated

by the same client are always overlapped [14, 23, 27]. Juarez et al.
showed that current WF attacks fail against overlapped network
�ows [14].

In this work, we address the Single Page Assumption and extend
the threat model. In the extended threat model, the client visits a
page, waits for a short period (referred to as the delay), and opens
another page in a new tab, which is called sequential multi-tabs (for
short, multi-tabs). If the �rst page does not �nish loading before the
time gap, the two pages will be loaded simultaneously, and their
network �ows will overlap. With such sequential multi-tab pages,
only the initial chunk is clear and can be used to launch the �nger-
printing attack. Therefore, the goal of our attack is to �ngerprint
a website by accurately identifying the �rst page obtained from
the website. For easy illustration, this paper focuses on the two-tab
scenario. In Section 6.5, we will illustrate that our attack is still
e�ective if there are more than two sequential pages.

2.2 Related work
Single Page Website Fingerprinting Attack Single page web-
site �ngerprinting attacks use the whole network �ow to identify
web pages visited by clients [2, 5, 6, 9, 12, 13, 16, 18, 22, 24]. In
2014, based on more than 3000 features extracted from network
�ows, Wang et al. [25] presented a k-Nearest Neighbours (kNN)
classi�er with weight adjustment, which achieves TPR of 0.85 and
FPR of 0.006 on Tor. In 2016, Panchenko et al. [21] presented a new
approach, CUMUL, which uses SVM with only 104 features; they
showed that CUMUL achieves better results than kNN. Hayes et
al. [11] created a K-FP attack that utilizes random forests to extract
�ngerprints for each network �ow and then train a kNN classi�er
by the �ngerprints. This attack shows better results under defenses
compared with Wang’s kNN attack and Panchenko’s CUMUL at-
tack. Unfortunately, these attacks cannot e�ectively identify pages
if there exist multiple tabs.
Multi-tabWebsite FingerprintingAttack Juarez et al [14] showed
that known WF attacks fail without the Single Page Assumption:
they cannot identify two pages that are loaded simultaneously.
There are two major works that have attempted to address this
issue. Gu et al. [10] relaxed the assumption about browsing behav-
ior and presented a WF attack on the multi-tab scenario. Using
the same extended threat model as ours, they selected �ne-grained
features such as packet order to identify the �rst page and utilized
coarse features to identify the second page. With a delay of two
seconds, when accessing the top 50 websites using SSH, according
to Alexa, their attack can classify the �rst page with 75.9% TPR,
and the second page with 40.5% TPR in the closed-world setting
where all the pages are monitored. Our attack achieves a higher �n-
gerprinting accuracy by �nding accurate split points of the second
pages. Even with the same split points, our attack shows a much
higher TPR on the �rst page.

The work of Wang and Goldberg [27] is most closely related
to our approach. They attempted to separate network �ows using
either a noticeable time gap or their split �nding algorithm, i.e.,
time-based KNN (time-kNN). Then, they classi�ed split pages using
the kNN attack from 2014 [25]. The e�ectiveness of the attack is
limited whenever two pages were loaded simultaneously. We will
show a superior split �nding algorithm using BalanceCascade on
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XGBoost as well as a WF classi�er better suited for classifying a
small chunk of packets, which ensures that our attack achieves the
accuracy of multi-tab �ngerprinting.

3 OVERVIEW OF MULTI-TAB ATTACKS
In this section, we present a new WF attack that e�ectively �nger-
prints web pages opened with multiple tabs. Our attack aims to
relax the Single Page Assumption used in the existing WF attacks.
It aims to accurately identify pages with multiple tabs by classi-
fying the pages only with the initial chunks. In order to achieve
this, we develop two classi�ers, the �rst one is used to identify the
split points of the pages and the second one is to classify the pages
according to the initial chunks after page split.

The key observation behind our attack is that, if clients want to
open pages with multi-tab pages, they normally open the second
page after some delay, i.e., sequential multi-tab pages. For example,
a client may spends reading some contents of the �rst page before
selecting a link to a new page [23]. Thus, our attack should be
able to always identify pages visited by clients as long as it can
successfully identify the split points of the pages and obtain the
�rst chunks for page classi�cation. However, it is challenging to
achieve the goal. In particular, in order to construct the multi-tab
attack, we should answer the following two questions in this paper.
• Is it possible to accurately identify split points of di�erent pages?
In particular, the pages are opened by various clients with arbi-
trarily delay.
• Is it possible to classify the �rst chunks after the split such that
an attacker can accurately identify the pages? Specially, the �rst
chunks are with a small number of packets.
Note that, in theory, we could identify web pages with any num-

bers of tabs as long as we can successfully obtain the �rst chunks of
the pages. For simplicity, in this paper, we only consider the attack
with two-tab pages to demonstrate the feasibility of the attack.

4 DYNAMIC PAGE SPLIT
In this section, we present our page �nding algorithm that allows
an attacker to accurately understand when the second page starts
so that the attacker can identify the page with the initial chunk.

4.1 Challenges in Identifying True Split Points
We extract 23 features according to the study of Wang and Gold-
berg [27] to identify split points of the pages. As mentioned above,
the split point we want to �nd is the start point of the second page,
which we refer to as the “true split”. It allows us to eliminate the
noise of the second page and obtain all the non-overlapped part
of the �rst page. In the web browsing process, a client sends an
outgoing packet to request web page resources from the server,
which means that the start point of the second page can be any
outgoing packet.

However, loading a web page may trigger multiple outgoing
packets, one of which is “true split” of the pages. It is di�cult to
�nd the “true split”. In particular, the number of outgoing packets is
large. In order to correctly identify the second pages, in the training
phase, we should place the true split in the “true splits” class and
all other outgoing packets in the “false splits” class. Thus, there
are only one “true split” and multiple “false splits” in the analyzed

network �ow instance, which incurs an unbalanced classi�cation
issue. According to our study with real datasets, we �nd that the
proportion of positive and negative instances can reach 1:461. The
goal of most existing learning algorithms is to reduce the overall
classi�cation error. In these algorithms, all instances are treated
equally and the error of the di�erent classes of misclassi�cation is
the same. Considering the ratio of the number of the “true splits”
class to that the “false splits” class in our datasets, even though
all the instances are predicted as the “false splits” class and the
accuracy of our classi�er can reach 99.78%, we cannot accurately
identify most “true splits”. The unbalanced training set will lead to
the result that the classi�er classi�es the “false splits” class with
high classi�cation accuracy and the “true splits” class with low
classi�cation accuracy. Thereby, it is challenging to use a classi�er
to �nd the start point of the second page.

4.2 BalanceCascade-XGBoost Algorithm
To address this issue, we propose our split �nding algorithm, i.e.,
BalanceCascade-XGBoost, which is an undersampling method com-
bining the BalanceCascade method [17] and the XGBoost classi-
�er [7] to train a binary classi�er. In the testing phase, the classi�er
calculates the individual probability of every outgoing packet be-
longing to the “true splits”, and then classi�er guesses the most
probable outgoing packet that may be the “true splits”. We ran-
domly obtain multiple b “false split” class instances and one “true
splits” class instance from each network �ow.

Given our training dataset D, where the ratio of the number of
classes in “false splits” class N to the number of instances in “true
splits” class P is b:1. In our BalanceCascade-XGBoost algorithm,
each time we randomly select Ni from N , where |Ni | = |P | (i is the
round of sampling), and then compose a training subsetDi by using
Ni and P . Thenwe train a kNN classi�er [8]1 with default parameter
k=1 using training subset Di , and then remove the instances in
N that are correctly classi�ed by kNN classi�er. We continue to
sample another training subset D j from D. In the end, with the help
of BalanceCascade, we have a collection of Di ,i = 1...n training
subsets, Di = {(x j ,� j )}( |Di | = 2|P |,x j 2 R

m ,� j 2 {0,1}), where
x j is a feature vector extracted from candidate split points, � j = 0
is the “false splits” class, 1 for the “true splits” class, and m is the
dimension of the feature vector.

Moreover, we utilize the XGBoost classi�er [7] in our Balance-
Cascade-XGBoost algorithm to boost trees on a large amount of data.
XGBoost is a massive parallel boosted tree tool, which is a widely
used boosted tree tool and achieves more than ten times faster than
the other popular classi�ers. We train an XGBoost classi�er with
each training subset Di . The hypothesis function of XGBoost is
an ensemble of regression trees, where regression tree [4] is a tree
whose leaf node stores a class value that represents the average
value of each leaf node’s instances. When we solve our binary-class
task, the ensemble of regression trees outputs a real number value
and XGBoost uses the Sigmoid function to convert the output to
be a value close to 0 or 1, where 0 is the probability of being “false
splits” class, and 1 is the probability of being “true split” class. In

1Our algorithm uses the kNN classi�er instead of the AdaBoost classi�er used in
the original BalanceCascade algorithm since the kNN classi�er can achieve better
performance according to our study.
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the construction of XGBoost, regression trees are constructed one
by one incrementally, and thus it is impossible for XGBoost to
construct each tree in parallel. Fortunately, the training data can be
sorted in advance before training so that it can be organized with
a block structure. This block structure makes parallelism possible.
During the splitting of a node, the gain of each feature will be re-
calculated, and the gain calculation of each feature can be performed
by multiple threads.

We use each Di training subset to train a weak XGBoost classi-
�er fi , and then combine all the weak classi�er to compose a �nal
classi�er F (x ) “ensemble of XGBoost”, which actually is an “ensem-
ble of forests of regression trees”. Here we have n training subsets.
The hypothesis function of our �nal classi�er can be computed as
follows.

F (x ) =
1
n

nX

i=1
fi (x ). (1)

To �nd the true split, the classi�er tests every outgoing packet in
the network �ow and then outputs the probability of each candidate
split point. Finally, the classi�er returns the outgoing packet that
has the highest probability of being the true split.

5 CHUNK-BASED PAGE CLASSIFICATION
In this section, we develop a classi�er to classify the initial chunks
of pages obtained by page split. In particular, it utilizes a random
forest ensemble classi�er, based on extensive feature sets which are
�rst trimmed down using feature selection.

5.1 Feature Selection
Now we present the feature set selected by our attack. Since we
only use the initial chunk to extract features, many features used
in the previous work cannot be applied, e.g., total transmission
time. Inspired by the prior WF work [11, 21, 25], we choose 452
candidate features, and develop a feature selection algorithm to
select the most useful feature subset based on the training subset.
We utilize IWSSembeddedNB [1], an incremental wrapper subset
selection embedded Naïve Bayes classi�er [20], to select the most
useful features in our attack.

First, we rank all the features in descending order using sym-
metrical uncertainty (SU), which is used to compute the correlation
between individual features and classes by the following equation:

SU ( f ,�) = 2(
SE ( f ) � SE ( f |�)
SE ( f ) + SE (�)

), (2)

where � indicates a class and SE ( f ) is the Shannon entropy for
each feature f . Our feature subset is S ; we try to add the feature
into S from rank list, starting from the �rst one.

Second, we use a Naïve Bayes classi�er to compare the true
positive rate (TPR) between S [ f and S over the training subset,
and add f into S only if the TPR increases with f . Finally, we can
obtain the feature set S . The most representative features selected
by our algorithm are listed as follows, and the rest can be found in
Appendix A.
• The round trip time (RTT ), which is the delay between the �rst
outgoing packet and the �rst incoming packet.
• Document length and the size of incoming packets rounded to
the nearest multiple of 100.

• The total size of incoming packets and total packets, the ratio
of the total size of incoming and that of outgoing packets to the
total size of the network �ows.
• The number of outgoing packets, and the fraction of the number
of outgoing packets and that of incoming packets in the �rst 20
packets of the network �ows.
• Statistics of packet ordering. We extract the total number of
packets before the next incoming or outgoing packet recorded
in the network �ow, obtain two lists for incoming and outgoing
packets individually, and then compute the standard deviation
and the average deviation of the two lists.
• Burst sizes and quantity. In Wang et al.’s kNN attack [25], Wang
et al. de�ned burst as a sequence of outgoing packets, which is
triggered by one incoming packet. We sample 20 bursts. We select
the size sequence of 20 bursts as the bursts’ size features (BSF)
and the quantity sequence of 20 bursts as the bursts’ quantity
features (BQF). Note that, the 2-4th BQF and the 1-5th BSF are
included in the feature subset.
• The cumulative size of packets (CSOP) [21]. We sample 100 CSOP
features as recommended by[21]. Note that, the 2-6th, 8-11th,
29th, 98-99th CSOP features are selected in the feature subset.
• Statistics of transmission time. We extract all three quartiles from
the total, incoming and outgoing packet sequences, and extract
the total transmission time from the incoming and outgoing
packet sequences. Note that, only the �rst quartile of the total,
incoming and outgoing packet sequences and the second quartile
of the total packet sequence are selected in the feature subset.
• Statistics of packet inter-arrival time. We extract three lists of
inter-arrival times between two packets of the network �ow
for total packets, incoming packets, and outgoing packets. We
collect the statistics: max, mean, standard deviation, and the third
quartile features from each list. Note that, maximum inter-arrival
time of total packets and incoming packets, and minimum inter-
arrival time of incoming packets are selected by feature selection
and included in the feature subset.
• Fast Levenshtein-like distance (FLLD) [26], where each class has
a FLLD feature measuring the similarity of two instances by its
packet size and order. Note that, the 1-4th, 6th, 8th, 12th, 16-17th,
19-23th, 26th, 28-31th, 33-35th, 39-40th, 42th, 44th, 46-50th FLLD
features are selected in the feature subset.
• Jacquard similarity with unique packet length (JSWUPL) [16],
measuring a Jacquard similarity between each instance and the
total instances associated with each website with respect to the
unique packet length of each page. Note that, the 16th, 18th, 31th,
35th JSWUPL features are selected in the feature subset.

5.2 Classi�er Design
Our classi�er is built upon random forests [15], which identi�es the
�rst page based on the features we selected. On each training set
Di , where |Di | =m for each 1  i  n. n is the number of decision
trees, which we set to 100. We select n data subsets and uniformly
samplem packet sequences with replacement of a total ofm times
to obtain n subsets of i.i.d.

Random forests are ensemble classi�ers which consist of a collec-
tion of weak classi�ershi (x ). The weak classi�ershi (x ) are random
forest decision trees [4] that use the Gini index to grow the tree.
Each x is an input feature vector we extracted from the network
�ow; a decision tree classi�er is trained by x 2 Di .
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The training process of the random forest decision tree selects
a random subset I which contains k features from the feature set
d of the node, and then the tree chooses the best feature from I to
grow the tree, where k is recommended as log2 d in [3]. Note that,
the training process is di�erent from the traditional CART decision
tree. The traditional CART decision tree selects the best feature
using the Gini index from all the features belonging to the node to
grow the tree, which cannot achieve the diversity of classi�ers.

Here, we assume we have P classes labeled as {c1,c2,c3...cP }.
Given a testing element for classi�cation, each hi (x ) separately
classi�es the element and outputs a label vector of P dimensions ,
i.e., [h1i (x ),h

2
i (x ), . . . ,h

P
i (x )], where h

j
i (x ) indicates the output of

hi (x ) on label c j , and then random forests classi�er H (x ) labels
the input x with the most popular class. Thus, our random forests
classi�er can be expressed as follows:

H (x ) = cargmax j
Pn
i=1 h

j
i (x )
. (3)

6 EXPERIMENTAL RESULTS
In this section, we describe the collected datasets used in our ex-
periments in this paper, and then present our experimental results.

6.1 Experiment Setup
Single-Tab Datasets:We collect three datasets: SSH_normal, SSH-
_noisy, and Tor_normal. In each instance, the network �ow cor-
responds to one page. We choose to monitor the web pages from
Alexa’s top-ranked websites2; Alexa is a website collecting the
most visited URLs, which is widely used in previous WF studies.
SSH_normal consists of 50 monitored web pages over SSH with
50 training instances and 50 testing instances for each page. There
are a total of 100 instances for each page without any background
network �ow. SSH_normal also contains 2500 unmonitored web
pages chosen from Alexa’s top 5,000 websites. We collected the
SSH_normal dataset with a headless browser, PhantomJS3, and we
used tcpdump to record the network traces. Similar to the work
in the literature [26], pages are retrieved without caching, and we
wait for two seconds after a page �nishes loading before fetching
the next one.

Moreover, in order to verify the e�ectiveness of our proposed
attack in the real world, we collect a SSH_noisy dataset. The di�er-
ence between SSH_noisy and SSH_normal is that the web pages
in SSH_noisy contain dynamic content such as audio and video.
SSH_noisy is generated by accessing 50 chosen web pages with-
out any background network �ow, including 50 training instances
and 50 testing instances for each page. As PhantomJS cannot load
dynamic content, we used Selenium4 for SSH_noisy.

Tor_normal is collected by automatically visiting pages using Tor
Browser 6.5.15. It includes the same pages and number of instances
to SSH_normal. Tor_normal consists of three subsets of web pages:
(i) 50 instances from each of 50 monitored web pages without back-
ground noise as training subset, (ii) another 50 instances from each

2http://www.alexa.cn/
3PhantomJS is a headless WebKit scriptable with JavaScript: http://phantomjs.org/.
4Selenium is a suite of tools to automate Chrome and Firefox web browsers across
various platforms: https://www.seleniumhq.org/.
5https://www.torproject.org/projects/torbrowser.html.en

of 50 monitored web pages without background noise as testing
subset, (iii) a open world dataset that included the instances with
2,500 unmonitored web pages.
Two-tab Datasets:We collect two datasets, SSH_two and Tor_two,
where each instance contains two pages instead of one. In each
instance, we access two chosen pages, and the second page that
is randomly selected from the monitored pages is loaded with a
time gap. Since delays of most page retrieval are larger than two
seconds [23], we set theminimal initial chunk size to be two seconds.
In addition, according to our observation (see Section 6.4), we �nd
six seconds are enough to collect packets for the attacks and thus
we set the maximum initial chunk size to six seconds. Therefore, in
our experiments, we collect the SSH_two dataset with �ve di�erent
time gaps: two, three, four, �ve, and six seconds. For each time gap,
we collect 50 monitored web pages, each with 50 instances. We
collected Tor_two with random time gaps. We access two pages at
the same time, and the second page is opened with a random time
gap. We collected 5000 instances, which is used for our dynamic
split experiments. The time gap ranges from two seconds and six
seconds with the same setting as SSH_two. With each time gap, we
also have 50 web pages with 50 instances for each page.
Data Preprocessing. The essence of the WF attack is a page clas-
si�cation problem, and the e�ectiveness of the attack is a�ected by
noise. Thus, we need to preprocess the data to remove the noise.
In the SSH dataset, if a �ow has fewer than 20 packets before the
second page loads, we treat it as failed page loading and throw
away the instance. In addition, we throw away packets with the
lengths of 100, 44, 52, or 36, because these are likely to be SSH con-
trol packets. We also throw away TCP ACK packets whose lengths
are 0. We note that an attacker can do the same to improve the
e�ectiveness of the attack and thereby our preprocessing does not
enhance the attacker’s power. As for the Tor dataset, we throw
away instances with fewer than 75 Tor cells. Note that, we observe
that, in Tor_two, the second pages are loaded with a random delay
after the �rst pages. In order to accurately evaluate the e�ectiveness
of our attack, we use the Tor_normal testing subset to generate
a new dataset with two pages called Tor_twop, where the second
page is randomly selected from the Tor_normal testing subset with
the delay of one-second granularity. Actually, if we use a �ner gran-
ularity, we could obtain a higher TPR with more collected packets
(see Section 6.4). Similarly, we also use the Tor_normal training
subset to create Tor_split, where two pages are loaded with the
delay of one-second granularity, which is used to train our classi-
�ers to identify di�erent pages in Tor. We create 50 monitored web
pages in Tor_split for each time gap and each web page include 50
instances.
Metrics. In this paper, we use false positive rate (FPR) and true
positive rate (TPR) to measure the e�ectiveness of our attack. FPR
measures how often unmonitored instances are wrongly classi-
�ed as monitored ones and TPR measures how often monitored
instances are correctly classi�ed. Note that, for simplicity, except
split evaluation experiments, we use split times to measure the
chunk sizes. Split times are trimmed down from the original split
points so that they are with one-second granularity.
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Table 1: Detection accuracy with respect to speci�ed split
timewith our newWFattack on SSH. For each real split time,
the table shows the TPR of network �ows detected as each
speci�ed time. Bolded values represent TPR when speci�ed
split time is equal to real split time.

Real split
2s 3s 4s 5s 6s

Sp
ec
i�
ed

sp
lit 2s 94.2% 93.56% 93.68% 93.76% 93.2%

3s 70.08% 93.68% 92.44% 92.84% 93.56%
4s 56.68% 73.96% 92.4% 91.4% 92.16%
5s 54.08% 59.76% 77.48% 92.04% 92.32%
6s 39.72% 44.24% 55.16% 76.16% 90.6%

6.2 Evaluation of Multi-tab] Attacks
In this section, we evaluate our WF attack based on the dynamic
split on both SSH and Tor.
Evaluation on SSH. In this experiment, we train classi�ers with
split times set to two, three, four, �ve, and six seconds using the
training subset of SSH_normal. In the testing phase, we test on SSH
by loading two pages with a di�erent delay time, where we extract
the features from the initial chunk of network �ow with speci�ed
split time. We show the results in Table 1. When the split time is
correctly detected, the TPR values are shown in bold. We observe
that, if the split time later than the real-time, it incurs worse results
than when the split time is earlier than the real time, which can be
seen in each column of the table. Surprisingly, we �nd that setting
the split time to be two seconds (see the �rst row of the table) is
slightly better than dynamic page split by around 3%. However, our
dynamic split ensures our attack can succeed in various scenarios,
e.g., on both SSH and Tor.
Evaluation on Tor. In this experiment, we use the same setting
as that in our SSH experiments. We train classi�ers with split times
between two seconds and six seconds, and test with instances in
Tor_twop. Table 2 illustrates the results of detected delay with
respect to various speci�ed split time. Di�erent from the SSH results,
we �nd the dynamic split is necessary for Tor. The bold TPR values
with the corrected detected split time are the best in each column.
The di�erence between the results on SSH and Tor is probably
due to the fact that most pages loaded with several seconds on
SSH but with much longer time on Tor. It demonstrates that our
dynamic split �nding techniques (BalanceCascade-XGBoost) are
necessary for Tor. Note that, the TPR is constant for each row when
the speci�ed split time is lower than the real split time because
our dataset for Tor_twop was synthesized by combining packet
sequences within a time gap.

Table 3 shows that the detection results with respect to various
real split time. We train classi�ers using Tor_normal with varied
split time between two seconds and six seconds, and use Tor_split to
train a BalanceCascade-XGBoost classi�er with the same features as
Section 6.3. We see that the error rate increases when the split time
decreases. The reason is that many features cannot be extracted
within shorter split time. The larger expected round-trip time on
Tor, fewer packets in smaller split time. We also can observe that the
classi�er appears biased in the classi�cation with larger split time.
Almost all incorrect detected split times are with the real split time
of six seconds because we set the maximum delay time to be six
seconds. As shown in Figure 2, dynamic split WF attack performs
much better than that with any other speci�ed split time on Tor,

Table 2: Detection accuracy with respect to various speci�ed
split time with our newWF attack on Tor. For each real split
time, the table shows the TPR of network �ows detected at
each speci�ed time. Bolded values represent TPRwhen spec-
i�ed split time is equal to real split time.

Real split
2s 3s 4s 5s 6s

Sp
ec
i�
ed

sp
lit 2s 50.4% 50.4% 50.4% 50.4% 50.4%

3s 47.2% 64.76% 64.76% 64.76% 64.76%
4s 44.28% 59.4% 68.76% 68.76% 68.76%
5s 42.6% 59.64% 67.32% 73.36% 73.36%
6s 41.6% 57.32% 67.28% 71.32% 77.08%

Table 3: How often BalanceCascade-XGBoost outputs each
possible split time for each real split time. Bolded values
represent correct detection of split time. There are 2500 in-
stances for each split time.

Real split
2s 3s 4s 5s 6s

D
et
ec
te
d
sp
lit 2s 51.96% 0.72% 0.64% 0.44% 1.04%

3s 4% 66.48% 1.28% 0.92% 1.52%
4s 4.72% 3.24% 65.72% 1.4% 1.76%
5s 6.2% 5.28% 5% 74.28% 3.04%
6s 33.12% 24.28% 27.36% 22.96% 92.64%

Figure 2: TPR of detected split time with our dynamic split
WF attack on Tor that loads two pages with the di�erent
time gap, comparing with the assumed split time ranging
from two seconds to six seconds.

which achieves a TPR of 64.94%. It is interesting to see that the TPR
with di�erent speci�ed split time is random, which means it is hard
to select and set a �xed split time to construct the attack. However,
our dynamic split WF attack solves the problem and achieves a
higher TPR than any other speci�ed split time. It is not surprising
to see that, compared with CUMUL and k-FP, our attack achieves
the best attack accuracy (see Figure 3).

Note that, in our experiments, we use one-second granularity
to set various split times. In practice, an attacker can use �ner
granularity, e.g., 500 milliseconds, when training classi�ers, which
may achieve a higher TPR.
Attack Against Defenses. We observe that feature selection was
especially useful to defeat some defenses proposed in the WF litera-
ture. The reason is that WF defenses signi�cantly change the shape
and characteristics of the client’s tra�c. We tested the following
defenses, and evaluated defenses when applied to the SSH_normal6.

6We used Wang’s code at https://cs.uwaterloo.ca/ t55wang/wf.html to create defenses.
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Figure 3: TPR of detected split time with our dynamic split
WF attack on Tor that loads two pages with the di�erent
time gap, comparing with CUMUL and k-FP.

Table 4: Comparison of the TPR of our classi�er with CU-
MUL and k-FP against various defences with an initial
chunk size of two seconds.

Defense CUMUL k-FP Our
HTTPOS split 2.16% 88.12% 93.92%

Tra�c morphing 2.96% 80.08% 84.52%
Decoy pages 2.92% 70.36% 74.16%

BuFLO 4.4% 12.6% 12.32%

• Tra�c morphing [28], which alters the packet sizes of the client’s
tra�c according to the packet distribution of a target web page,
used as a decoy for the real web page.
• HTTPOS split [19], which utilizes HTTP range requests to obfus-
cate the size of small outgoing and incoming packets, splitting
them into random sizes.
• Decoy pages [22], which loads a decoy page whenever the client
opens a new web page.
• BuFLO [9], which sends packets at a constant size and at regular
intervals in both directions.
We compare our classi�er with the state of the art, i.e., k-FP

and CUMUL, on various defenses in the closed-world setting. Our
defense datasets are converted from SSH_normal. Table 4 shows
the performance of all three classi�ers under various defenses,
where the initial chunk size is two seconds. Against each defense,
our attack is comparable to or performs better than both k-FP and
CUMUL. Surprisingly, against HTTPOS split, we achieve almost the
same TPR as on the SSH_normal dataset, which means the HTTPOS
split has no in�uence on TPR. When tra�c morphing is applied, our
attack can achieve 84.52% TPR, which is better than K-FP by more
than 4%. It is interesting to �nd that our attack achieves 74.16%
TPR when decoy pages are used. Usually, in decoy page defense,
we load another page at the same time when we open a target page.
In theory, background noise and network �ows of the target page
are mixed and there is no non-overlapped part. However, as long as
there is delay between the load time of these two types of pages, we
can still classify the target page. Here, we use unmonitored pages
as the noise [25]. Our new WF attack can still achieve high TPR
with the initial chunk against defenses even when the split time is
only two seconds. We observe similar TPR if the initial chunk size
is larger than two seconds.

6.3 Evaluation of Page Split
Now we compare the performance of BalanceCascade-XGBoost
with time-kNN [27] that achieves page splitting. If the start point

Figure 4: The split accuracy of BalanceCascade-XGBoost
compared to time-kNN while varying the proportion of
“false splits” class to “true splits” class.

of the second pages is within 50 packets of the �rst page, time-
kNN cannot classify such pages. To perform a fair comparison
between the two algorithms, we �lter the instances which do not
satisfy the requirement of time-kNN.We use the same features used
in time-kNN to compare the performance of the two algorithms.
We generate the SSH_random and Tor_random datasets that are
randomly selected from SSH_two and Tor_two datasets with two
pages, respectively. We train 1,500 instances in each dataset and
then use 1500 instances for test.
Accuracy Evaluation with Varying Sampling. As we discussed
above, the binary classi�cation has a problem that there is a seri-
ous unbalance between “true splits” and “false splits” classes. The
BalanceCascade used in our split �nding algorithm resolves this
issue by balancing the quantity of two classes in an under-sampling
method. We evaluate how the proportion b of “false splits” and
“true splits” classes a�ect our split accuracy compared with time-
kNN. Here, the split accuracy is de�ned as the percentage of packet
sequences of the dataset on which our algorithm returns a split
point that is fewer than 25 packets before or after the true split
point.

As shown in Figure 4, we can see that, even when the ratio
of the number of “false splits” class to that of “true splits” class
is 1:1, our split accuracy is higher than time-kNN. However, the
accuracy is relatively stable after b is larger than 10. On the one
hand, more “false splits” class instances introduce more information
about the false split point. On the other hand, more “false splits”
class instances mean more weak classi�ers built and thus incur
more computation time. Hence, we consider b = 10 is a good choice.
However, the split accuracy of time-kNN decreases with b increases,
which means time-kNN has a limitation in an unbalanced dataset.
Thus, time-kNN achieves low classi�cation accuracy if the classes
are unbalanced.

Next we compare the split accuracy of our algorithm with time-
kNN. In this experiment, the ratio of the number of “false splits”
class N to the number of “true splits” class P is 10:1 in our training
dataset. Figure 5 shows the performance of our algorithm compared
to time-kNN algorithm. On the Tor dataset, we have achieved a
higher split accuracy than time-kNN. They achieve the split accu-
racy of 82% and 69%, respectively. Note that, the split accuracy of
guessing correct split randomly for any outgoing packets is only
0.22% with the Tor_two dataset. As for SSH dataset, when an SSH
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Figure 5: The split accuracy of BalanceCascade-XGBoost
compared to time-kNN on SSH and Tor dataset.

Table 5: TPR of split time detection with time-kNN on SSH.
With each real split time, the table shows the number of
network �ows detected as each possible split time, where
bolded values represent correctly detected split time.

Real split
2s 3s 4s 5s 6s

D
et
ec
te
d
sp
lit

2s 961 44 28 29 40
3s 46 932 20 24 21
4s 34 77 1024 32 30
5s 21 40 44 1028 21
6s 28 41 67 112 1095
N/A 160 116 67 25 43

client requests to open a new channel, it will issue an SSH-MSG-
CHANNEL-OPENmessage of 100 bytes to SSH server. Because each
new page will ask for an SSH-MSG-CHANNEL-OPEN message, we
reduce the number of candidate points by abandoning these can-
didates whose length is not 100, which helps to improve the split
accuracy of SSH dataset. According to Figure 5, the split accuracy
of SSH dataset is much better than that of Tor. We can detect the
“true split” with an 89.41% split accuracy. Therefore, our algorithm
well outperforms time-kNN.
Splitting Time Evaluation. In this experiment, we use the de-
tected split time to evaluate the performance of our BalanceCascade-
XGBoost against time-kNN. We use the Tor_twop and SSH_two
to do the experiments, respectively. For instance, we use the half
of the Tor_twop dataset to train the classi�er. In each subset of
di�erent delay time, each web page has 25 instances in the training
phase, and then we use the remaining to test. Due to that some true
split point is near the start of network �ow, we want to detect all
the outgoing packets. We extract the same features as time-kNN
except for the features of mean, standard deviation, and maximum
inter-cell time for twenty cells before and after the candidate cell.
We measure all the outgoing packets, and set 0 to the feature by de-
fault if we cannot get enough packets to extract the corresponding
feature.

As we described above, time-kNN has ignored some instances
due to their start point of the second page is within 50 packets
of network �ow. According to Table 5 and 6, each column has
1250 instances. N/A in the table means the number of instances that
cannot be captured by time-kNN. In each split time, BalanceCascade-
XGBoost has more true positive instances than time-kNN on SSH.
According to the columns shown in Table 6, the number of detected
later is larger than the number of detected earlier, which means it

Table 6: TPR of split �nding with BalanceCascade-XGBoost
on SSH. For each real split time, the table shows the number
of network�ows detected as each possible split time. Bolded
values represent correctly detected split times.

Real split
2s 3s 4s 5s 6s

D
et
ec
te
d
sp
lit 2s 1086 25 14 18 21

3s 51 1112 27 11 15
4s 47 52 1112 22 14
5s 45 28 61 1148 25
6s 21 23 36 51 1175

Table 7: TPR of split �nding with time-kNN on Tor. For each
real split time, the table shows the number of network�ows
detected as each possible split time. Bolded values represent
correctly detected split times.

Real split
2s 3s 4s 5s 6s

D
et
ec
te
d
sp
lit

2s 124 15 24 25 19
3s 13 252 29 31 32
4s 29 39 388 56 56
5s 35 64 69 590 74
6s 60 91 167 164 787
N/A 989 789 573 384 282

Table 8: TPR of split �nding with BalanceCascade-XGBoost
on Tor. For each real split time, the table shows the number
of network�ows detected as each possible split time. Bolded
values represent correctly detected split times.

Real split
2s 3s 4s 5s 6s

D
et
ec
te
d
sp
lit 2s 644 8 9 9 16

3s 46 818 15 16 17
4s 65 43 822 23 26
5s 71 60 60 910 36
6s 424 321 344 292 1155

is much easier to detect later than earlier when the detection of
split �nding is wrong. With real split time increase, we can see the
decrease of the number of N/A as well as the increase of corrected
instances, which means longer delay time is advantageous to split
�nding. As shown in Table 6 and 8, we �nd it is more di�cult to
identify web pages on Tor. In addition, Table 7 and 8 illustrates that
the number of our true positive of all the split time is larger than
time-kNN. In a nutshell, we can conclude that our Balance-XGBoost
is better than time-kNN in both SSH and Tor scenario.

6.4 Evaluation of Chunk-Based Classi�cation
In this section, we evaluate the performance of our new WF clas-
si�er. Therefore, the attacker trains and classi�es with only the
initial chunk, i.e., the packets before the split point (corresponding
to one page). We perform experiments under the closed-world and
open-world settings. In the closed-world setting, we test our clas-
si�er with a dataset where all web pages are monitored, while in
the open-world setting, the dataset consists of both monitored and
unmonitored web pages. In order to fairly compare with previous
classi�ers, we will use a short initial chunk to compare these ex-
isting classi�ers, which makes our classi�er the optimal choice for
the multi-tab scenario.
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Before After Feature Selection
datasets TPR TPR # of Features

SSH_normal (2s) 93.96% 95.84% 79
Tor_normal (2s) 56.64% 56.2% 31
Tor_normal (3s) 68.04% 68.72% 48
HTTPOS split (2s) 91.48% 93.6% 81

Tra�c morphing (2s) 78.16% 83.64% 82
Decoy pages (2s) 75.36% 80.06% 92

BuFLO (2s) 13.08% 13.2% 15

Table 9: Comparison of TPR before and after feature selec-
tion. The number of features before feature selection is 452,
where 2s and 3s indicate the split time of two seconds and
three seconds, respectively.

Results of Feature Selection. In the experiment, we evaluate the
TPR of our new WF attack after performing feature selection on
each dataset using IWSSembeddedNB, while limiting each packet
sequence to two seconds of the initial chunk. We calculate the
TPR using ten-fold cross-validation in the closed-world setting.
The datasets we use include both the SSH_normal and Tor_normal
datasets. We also do experiments on Tor_normal when the split
time is three seconds.

According to Table 9, we can see that our attack achieves higher
TPR after feature selection (except on the Tor_normal training
subset when the split time is two seconds), even though we are
using strictly less information after feature selection. The feature
subset each dataset uses is described in Appendix B. In the case
of SSH_normal, the jump in accuracy is especially surprising: an
almost two-percent increase in the true positive rate corresponds to
a one-third decrease in the false negative rate (6% to 4%). Our �nal
TPR of 95.84% compares favorably with state-of-the-art attacks,
even though we only used two seconds of data. Against BuFLO,
feature selection left us with only 15 features that relate to time
statistics, as size and ordering features are removed by BuFLO. As
for Tor_normal, we are interested to �nd that with feature selection
we only utilize 31 features, and we can achieve a similar TPR as
452 features in the Tor_normal dataset when the split time is two
seconds, even more, we have a slightly higher TPR with fewer
features when the split time is three seconds.
Attack Under the Closed-world Scenario.We compare our clas-
si�er with k-FP [11] (which also uses random forests) and CU-
MUL [21] on three datasets above: SSH_normal, SSH_noisy, and
Tor_normal. For each dataset, we use the training subset to train the
classi�ers and the testing subset to test. In the closed-world setting,
we set the number of features k in the random subset I to 100. The
reason why we have such setting is that we do not consider feature
selection here such that we can systematically study the perfor-
mance of our attack without selection and our new WF attack can
achieve the highest TPR when k is set to 100 according to our stud-
ies. For k-FP, we set the parameters according to Hayes et al.’s code7,
and for CUMUL, we scale each feature linearly to the range of [-1,1]
and search from the range of parameters recommended by [21].
Figure 6, 7, and 8 show that TPR with the SSH_normal, SSH_noisy,
and Tor_normal datasets, respectively. According to the experiment
results, we made the following observations:

7https://github.com/jhayes14/k-FP

Figure 6: TPR of our classi�er compared to k-FP andCUMUL
while varying the initial chunk size between two seconds
and six seconds on the SSH_normal dataset.

Figure 7: TPR of our classi�er compared to k-FP andCUMUL
while varying the initial chunk size between two seconds
and six seconds on the SSH_noisy dataset.

• Our classi�er achieves better TPR on the initial chunk.
Our classi�er outperforms k-FP though they have similar �ne-
grained features such as the number of packets and packet or-
dering. This may be because we also use high-level features, e.g.,
Fast Liechtenstein-like distance, which can be used to describe
the correlation between two network �ows in a coarse manner.
CUMUL always had a low TPR even though we tried various
parameters. According to the previous studies [11], CUMUL does
not outperform k-FP, which is consistent with our results.
• Increasing the initial chunk size does not always increase
TPR. According to Table 6, on SSH_normal, the TPR of our
new WF classi�er slightly decreases when the split time in-
creases due to the limited number of instances. On SSH_noisy
and Tor_normal, the TPR increases when the split time increases.
In particular, on Tor_normal, our classi�er achieves a TPR of
50.4% for an initial chunk size of two seconds and 77.08% when
it is six seconds.
• Tor_normal is the most di�cult to classify. This is followed
by SSH_noisy and SSH_normal is the easiest to classify. Previous
researchers [22] have also observed that Tor is more di�cult than
SSH because all Tor cells have the same size.
The poor performance of our classi�er on Tor_normal is due to

large round-trip times: if we take a short initial chunk size, it may
leave us with almost no data to classify. To mitigate this e�ect, we
preprocess the training and testing data of Tor_normal, and remove
the �rst ten packets in the network �ow. Thus, each network �ow
will start from the 11th packet if there are fewer than ten packets
in the �rst three seconds. We repeat the above experiment with
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Figure 8: TPR of our classi�er compared to k-FP andCUMUL
while varying the initial chunk size between two seconds
and six seconds on the Tor_normal dataset.

Figure 9: TPR of our classi�er compared to k-FP andCUMUL
while varying the initial chunk size between two seconds
and six seconds on the modi�ed Tor_normal dataset.

Figure 10: TPR of our classi�er compared to k-FP and CU-
MUL while increasing the initial chunk up to the maximum
60 seconds on the Tor_normal dataset.

the modi�ed Tor_normal dataset. Figure 9 shows that our modi�ed
dataset improves the accuracy of all three classi�ers. When the split
time is four seconds, we achieve 78% TPR, which is much better
than Tor_normal. In particular, when the split time is six seconds,
we achieve 81.04% TPR.

Furthermore, we measure how TPR changes when increasing the
initial chunk size. We combine the training and testing subsets of
Tor_normal, and then use 10-fold cross-validation to test the three
classi�ers. Note that, the reason why the setting here is di�erent
from the previous experiment setup in Section 6.4 is that we want
to fairly compare the performance of identifying pages in the single
tab and two-tab scenarios, where training on single tabs is required
for the two-tab scenario, while 10-fold cross-validation used here

Figure 11: The TPR of di�erent speci�ed split time on
Tor_two with two pages where true delay time is 3s

generates the distribution of instances close to the original datasets,
which outputs reliable generalization error for the comparison of
three attacks. As shown in Figure 10, our newWF classi�er performs
best when the initial chunk size is less than 17 seconds. k-FP is
slightly better than our classi�er if the whole network �ow is used.
When the initial chunk size is 10 seconds, our TPR is 85.4%, while
we can have a TPR of 89.93% when the initial chunk size is 20
seconds. CUMUL performs well with the entire network �ow and
achieves 91% TPR. Our classi�er is especially e�ective on a short
initial chunk.
EvaluationwithOpen-World Setting.We also compare our clas-
si�er with k-FP and CUMUL on the more realistic open-world set-
ting using 10-fold cross-validation. We vary the size of the unmon-
itored part from 500 instances to 2500 instances on SSH_normal
training subset and Tor_normal training subset. Here, we use �n-
gerprints of length 200 bytes recommended by [11] and set the
neighbor of kNN to one that is the default setting in Hayes et
al.’s code. For CUMUL, we use the same method as in closed-world
setting.

As shown in Table 10, our attack has a TPR of 86.56% and an
FPR of 0.52% when training on 2500 unmonitored web pages in
SSH_normal. We show that the FPR of all three attacks decreases
when we increase the number of unmonitored pages. Our attack
achieves a higher TPR and lower FPR than both k-FP and CUMUL.
When there are 500 unmonitored pages, we have a 90.23% TPR,
which beats CUMUL by more than 20%, and k-FP by 3%.

We can achieve a TPR of 65.64% and FPR of 0.1% when training
on 2500 unmonitored instances in Table 11. Although Tor_normal
presents a greater challenge for classi�cation than SSH_normal, our
classi�er nevertheless beats both CUMUL and k-FP when the initial
chunk size is 3s. We can observe similar results with other initial
chunk sizes. Furthermore, as shown in Figure 10, the TPR increases
when the size of the initial chunk increases. The possible reason
is that larger initial chunk sizes allows more data for classi�cation
and does not incur signi�cant noise due to the slow connections
on Tor.
The Impact of Wrong Split Time. In order to show the impact
of the wrong split time (i.e., wrong initial chunks), we use the
Tor_normal training subset with di�erent assumed split points to
train classi�ers, where the delay ranges from two seconds to six
seconds, and test such a classi�er on the Tor dataset with two pages.
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Table 10: TPR and FPRof our classi�er compared tok-FP andCUMULon SSH_normalwith an initial chunk size of two seconds.

Page number CUMUL k-FP Our
TPR FPR TPR FPR TPR FPR

500 69.68% 28.8% 86.8% 10% 90.23% 6.2%
1500 66.28% 16.2% 86.36% 5.8% 88.84% 1.1%
2500 64.32% 11.48% 85.88% 4.48% 86.56% 0.52%

Table 11: TPR and FPR of our classi�er compared to k-FP and CUMUL on Tor_normal with an initial chunk size of 3s.

Page number CUMUL k-FP Our
TPR FPR TPR FPR TPR FPR

500 58.8% 14.8% 62.56% 12% 66.04% 0.2%
1500 57.32% 6.8% 62.58% 10.86% 66.68% 0.1%
2500 56.36% 4.2% 62.56% 9.88% 65.64% 0.1%

We observe that, if we use data with a split time that is shorter than
the real split time to train classi�ers, the TPR of page classi�cation
decreases since we lose useful data for training. Figure 11 shows the
TPR with di�erent splits times on the Tor_two dataset. We observe
that, when the true delay time is three seconds and we only use the
�rst 2 seconds to train the classi�er, the TPR decreases by around
5% since we lose useful information of the 3rd second. Similarly, if
the split time is larger than the true delay time, we �nd that our
TPR decreases since inappropriate split time incurs the features we
extracted including the second page information. Fortunately, the
accuracy is relatively stable when more noises are included in the
training data. Our WF attack dynamically identi�es the split time
so that it does not waste the useful information or mix the noise
into the features. Therefore, we can e�ectively construct the attack
in practice.

6.5 Evaluation with More Than Two Tabs
We used Selenium to collect datasets with more than two tabs.
We �rstly load a random page and then request the subsequent
pages with random delays. We obtain datasets with three tabs
and four tabs. All datasets have 5000 samples. We use half of the
datasets to train our page split classi�er, and use another half to
test. We observe that the split accuracy with more than two pages is
relatively lower than that with two-tab pages. However, we can still
obtain around 70% split accuracy. In particular, the split accuracy
with various numbers of pages is similar. The possible reason is
that, with the increase in the numbers of pages, the probability of
overlapping the �rst page decreases. Note that, the existing attacks
that almost fail to classify multi-web pages. Therefore, our attack
can be still e�ective with more than two tabs pages.

7 CONCLUSION AND FUTUREWORK
In this paper, we described two new algorithms to relax the Single
Page Assumption, an unrealistic assumption that all WF attacks
relied on. For a client who visits two pages, where the amount of
time between the two pages is demarcated by the split point, we
consider an attacker who attempts to identify the �rst web page
the client is visiting. Our strategy is �rst to develop a classi�er
that works with minimal amounts of data, and then to use such a
classi�er on an initial chunk of packets before the split point.

First, we showed that our new WF classi�er could achieve a
higher TPR compared to the previous best WF classi�ers on an

initial chunk of data. In the closed-world Tor scenario, we achieved
a TPR of 77.08% on Tor when split time is six seconds and 93.88% on
SSH only using the �rst two seconds of the initial chunk, beating
CUMUL by Panchenko et al. and k-FP by Hayes et al. We found that
our classi�er became slightly less accurate when using more than
two seconds of data on SSH, maybe due to the limited number of
instances; however, we can achieve the highest TPR only using the
�rst two seconds of initial chunk, this suggests that split �nding is
not necessary on SSH, and we should simply take two seconds of
data to classify. It was still necessary to �nd the correct split point
for the Tor scenario.

Second, we described a new split �nding algorithm to identify
the correct split point for the Tor scenario. Our algorithm uses
BalanceCascade to resolve the class size imbalance between the
false split class and the true split class. We use an ensemble of
forests of regression trees to classify the data, where each forest of
regression tree uses a novel gradient tree boosting technique by
Chen and Guestrin called XGBoost. We found that our algorithm
was able to outperform the previous state of the art, timekNN by
Wang et al.

In a nutshell, when combining the split �nding algorithm with
our random forest classi�er, we achieved an overall TPR of 64.94%
on Tor; we achieve an overall TPR of 92.58%. Our work is, therefore,
the �rst to show that it is still possible to perform WF against a
client who visits multiple pages simultaneously.
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A THE REST FEATURES IN FEATURE SET
This section shows the other features used in our attack as well.
Together with the features shown in Section 5, our attack can
achieve better performance than CUMUL and k-FP.
• The cumulative size of packets without MTU size (CSOPWMS).
The feature is similar with CRFONF, deleting the packet bigger
than 1448 from the network �ow, and the number of samples is
�ve.
• The quantity of incoming in the �rst 20 packets of network �ow.
• URL_length. URL_length is the size of the �rst outgoing packet
which is a request to the server’s HTML document.
• Statistics of the quantity of packets. The quantity of total pack-
ets and incoming packets. The quantity of incoming packets as
fraction of total packets.
• Statistics of size of packets. The total size of outgoing packets,
the total incoming size of packets as fraction of total packets.
• the quantity of incoming & outgoing packets and the size of
outgoing packets rounded to the nearest multiple of 100.
• Document length. If the second outgoing packet is sent at time t ,
we take all the incoming packets before t +RTT as the document
length. The HTML document contains text and objects links
which will be loaded by browser, whose size is a more constant
value compared to changeable object such as img. Thismay not be
applied in Tor, because Tor may send multiple outgoing packets
in a row at the start.
• the quantity and the transmission speed of incoming and outgo-
ing packets. For instance, to compute the speed of total number,
for each recorded packet, we extract a list using 1 to divide the
inter-arrival time, and sampling the list to 20 samples.
• Vector inner product using packet length. Similar with FLLD, we
compare the distance of two instances with inner vector product
using the bag of packets length.

B FEATURE SELECTION
The following tables illustrate the features selected from various
datasets. As shown in Table 12, most FLLD features are included
in the feature subset of SSH_normal. However, the features related
to the transmission speed of packets are much less included. In
addition, the time features have more importance, which almost
takes 10% of the total features. The Tor_normal dataset only uses
one CSOP feature and has the second smallest subset among all
the datasets when the split time is two seconds. While the features
related to outgoing packets play a key role in Tor_normal when
the split time is three seconds. There are around 20% out of the
total features. The HTTPOS split and Tra�c morphing datasets
use similar features to that used in SSH_normal. The Decoy pages
dataset has the largest subset among all the datasets. The BuFLO
and Decoy pages datasets use many features related to time and
FLLD.
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Table 12: The most useful features selected from the
SSH_normal dataset.

No. Description of Features
1 RTT
2 average_packet_number_before_every_incom-

�ng_packet
3 the 2-4th burst_number_packet
4 the 1-5th burst_size_packet
5 the 2-6th, 8-11th, 29th, 98-99th cumula-

tive_packet
6 the 5th cumulative_without_mtu_packet
7 �rst_quartile_of_outgoing_transmission_time
8 �rst_quratile_of_incoming_transmission_time
9 �rst_quratile_of_transmission_time
10 the 1st in_size_speed_packet
11 incoming_packet_number_ratio_in_the_�-

rst_20_packets
12 incoming_size
13 maximun_inter_arrival_time_of_inco-

ming_packets
14 maximun_inter_arrival_time_of_total_packets
15 minimum_inter_arrival_time_of_inco-

ming_packets
16 the 1st number_speed_packet
17 the 3-5th out_number_speed_packet
18 the 4th out_size_speed_packet
19 outgoing_packet_number
20 outgoing_packet_number_in_the_�r-

st_20_packets
21 outgoing_packet_number_ratio_in_the_�r-

st_20_packets
22 outgoing_packet_size_ratio
23 rounded_document_length
24 rounded_incoming_size
25 second_quartile_of_transmission_time
26 total_size
27 the 1-4th, 6th,8th, 12th, 16-17th, 19-23th, 26th,

28-31st, 33-35th, 39-40th, 42th, 44th, 46-50th web-
site_similarity_by_fast_edit_distance 16th, 18th,
31st, 35th website_similarity_by_jaccard

Table 13: The most useful features selected from the
Tor_normal dataset when the split time is two seconds.

No. Description of Features
1 average_packet_number_before_every_in-

coming_packet
2 standard_deviation_of_packet_number_be-

fore_every_incoming_packet
3 minimum_inter_arrival_time_of_outgoing_pa-

ckets
4 second_quartile_of_transmission_time
5 rounded_incoming_size
6 the 2th out_number_speed_packet
7 the 3th, 6th, 10th in_size_speed_packet
8 the 2-3th out_size_speed_packet
9 the 2th cumulative_packet
10 the 1st, 3th burst_size_packet
11 the 1-3th burst_number_packet
12 the 21st, 37th, 40thwebsite_similarity_by_vector
13 the 7th, 10th, 14th, 22th, 24th,

31st, 33-34th, 38th, 44th, 46th web-
site_similarity_by_fast_edit_distance

Table 14: The most useful features selected from the
Tor_normal dataset when the split time is three seconds

No. Description of Features
1 outgoing_size
2 outgoing_packet_number
3 outgoing_packet_number_in_the_f-

irst_20_packets
4 outgoing_packet_number_ratio_in_the_�-

rst_20_packets
5 outgoing_packet_number_ratio_in_the_la-

st_20_packets
6 standard_deviation_of_packet_number_bef-

ore_every_incoming_packet
7 standard_deviation _of_packet_number_be-

fore_every_outgoing_packet
8 average_inter_arrival_time_of_outgoing_pac-

kets
9 std_inter_arrival_time_of_outgoing_packets
10 rounded_document_length
11 rounded_outgoing_size
12 the 3th out_number_speed_packet
13 the 1st size_speed_packet
14 the 1st, 3-4th, 13th in_size_speed_packet
15 the 2th, 3th, 5th out_size_speed_packet
16 the 2-5th, 7th, 15th, 51st cumulative_packet
17 the 1st,3-5th burst_size_packet
18 the 1-5th burst_number_packet
19 the 15th, 17th, 19-20th, 25th, 30th,

33-35th, 43th, 45-46th, 50th web-
site_similarity_by_fast_edit_distance
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Table 15: The most useful features select from the HTTPOS
split dataset when the split time is two seconds.

No. Description of Features
1 RTT
2 the 3-4th, 19th burst_number_packet
3 the 2-6th, 14-15th, 18th burst_size_packet
4 the 2-7th, 9th, 12th, 14-15th, 17th, 85th, 100th

cumulative_packet
5 the 1st, 3th cumulative_without_mtu_packet
6 �rst_quratile_of_incoming_transmission_time
7 �rst_quratile_of_transmission_time
8 the 1st in_number_speed_packet
9 the 1st in_size_speed_packet
10 incoming_packet_number_ratio_in_the_�r-

st_20_packets
11 incoming_packet_size_ratio
12 incoming_size
13 maximun_inter_arrival_time_of_incoming_pa-

ckets
14 minimum_inter_arrival_time_of_incoming_pa-

ckets
15 number_speed_packet
16 out_number_speed_packet
17 the 4th out_size_speed_packet
18 the 7th out_size_speed_packet
19 outgoing_packet_number_ratio
20 outgoing_packet_number_ratio_in_the_�r-

st_20_packets
21 outgoing_packet_size_ratio
22 rounded_document_length
23 rounded_incoming_size
24 second_quartile_of_incoming_transmissio-

n_time
25 second_quartile_of_outgoing_transmissi-

on_time
26 third_quartile_of_ougoing_transmission_time
27 total_incoming_transmission_time
28 the 5-8th, 16-21st, 23th, 27th, 29-30th,

32th, 34-38th, 42th, 44th, 46th, 48th web-
site_similarity_by_fast_edit_distance

29 the 14-15th, 28th, 39th, 45th web-
site_similarity_by_jaccard

30 the 2th, 9th, 24th website_similarity_by_vector

Table 16: The most useful features selected from the Tra�c
morphing dataset.

No. Description of Features
1 RTT
2 average_packet_number_before_every_ou-

tgoing_packet
3 the 2th, 5th, 7-8th, 13th, 16th, 18th

burst_number_packet
4 the 2-6th, 9th, 11th, 20th burst_size_packet
5 the 2-3th, 6-7th, 12th, 14th, 15th, 24-25th, 36-37th,

54-55th, 64th, 79th, 96-97th cumulative_packet
7 the 2th cumulative_without_mtu_packet
8 �rst_quratile_of_incoming_transmission_time
9 �rst_quratile_of_transmission_time
10 the 1st in_number_speed_packet
11 the 1st, 5th, 7th, 12-13th, 15th, 17th

in_size_speed_packet
12 incoming_packet_number_in_the_�r-

st_20_packets
13 incoming_packet_number_ratio_in_the_�r-

st_20_packets
14 incoming_packet_number_ratio_in_the_la-

st_20_packets
15 incoming_packet_size_ratio
16 maximun_inter_arrival_time_of_incoming_p-

ackets
17 maximun_inter_arrival_time_of_outgoing_p-

ackets
18 maximun_inter_arrival_time_of_total_packets
19 minimum_inter_arrival_time_of_incoming_pa-

ckets
20 the 4th, 6th, 24th out_number_speed_packet
21 the 4th, 6th, 25th out_size_speed_packet
22 outgoing_packet_number_in_the_�rst_20_p-

ackets
23 outgoing_packet_number_in_the_last_20_pa-

ckets
24 outgoing_packet_number_ratio
25 outgoing_packet_number_ratio_in_the_�r-

st_20_packets
26 outgoing_packet_number_ratio_in_the_la-

st_20_packets
27 rounded_document_length
28 rounded_incoming_size
29 rounded_outgoing_size
30 second_quartile_of_incoming_transmission_ti-

me
31 the 2-3th size_speed_packet
32 standard_deviation_of_packet_num-

ber_before_every_outgoing_packet
33 third_quartile_of_incoming_transmission_time
34 third_quartile_of_transmission_time
35 total_incoming_transmission_time
36 the 1st, 6th, 14th, 22th, 27th, 33th, 36th web-

site_similarity_by_fast_edit_distance
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Table 17: The most useful features selected from the Decoy
pages dataset.

No. Description of Features
1 RTT
2 URL_length
3 the 2-7th, 11th, 19th burst_number_packet
4 the 1-4th, 19th burst_size_packet
5 the 2-3th, 42th, 52th, 55-56th cumulative_packet
6 the 1st, 5th cumulative_without_mtu_packet
7 �rst_quartile_of_outgoing_transmission_time
8 �rst_quratile_of_incoming_transmission_time
9 �rst_quratile_of_transmission_time
10 the 1st in_number_speed_packet
11 the 1st in_size_speed_packet
12 incoming_packet_number
13 incoming_packet_number_in_the_�r-

st_20_packets
14 incoming_packet_number_ratio
15 the 3th out_number_speed_packet
16 outgoing_packet_number_in_the_�rst_20_pa-

ckets
17 outgoing_packet_size_ratio
18 outgoing_packet_number_ratio_in_the_�r-

st_20_packets
19 outgoing_packet_size_ratio
20 rounded_document_length
21 rounded_incoming_size
22 second_quartile_of_incoming_transmission_ti-

me
23 second_quartile_of_outgoing_transmission_ti-

me
24 second_quartile_of_transmission_time
25 standard_deviation_of_packet_number_bef-

ore_every_outgoing_packet
26 third_quartile_of_incoming_transmission_time
27 third_quartile_of_ougoing_transmission_time
28 third_quartile_of_transmission_time
29 the 1st, 3-7th, 9-10th, 12th, 14-18th, 21-25th, 28th,

30-35th, 36-37th, 39-40th, 42th, 44th, 46-50th
website_similarity_by_fast_edit_distance

30 the 3th, 17-18th, 23th, 49th web-
site_similarity_by_jaccard

31 the 5th, 26th, 38th, 42th, 46th web-
site_similarity_by_vector

Table 18: The most useful features selected from the BuFLO
dataset.

No. Description of Features
1 �rst_quratile_of_transmission_time
2 the 1st out_size_speed_packet
3 the 1st in_size_speed_packet
4 third_quartile_of_ougoing_transmission_time
5 third_quartile_of_incoming_transmission_time
6 99th cumulative_packet
7 the 7th, 9th, 19th, 28th, 3, 39-41th, 49th web-

site_similarity_by_fast_edit_distance
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