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Abstract— Rumor spreading in online social networks can
inflict serious damages on individual, organizational, and societal
levels. This problem has been addressed via computational
approach in recent years. The dominant computational technique
for the identification of rumors is the binary classification that
uses rumor and non-rumor for the training. In this method,
the way of annotating training data points determines how
each class is defined for the classifier. Unlike rumor samples
that often are annotated similarly, non-rumors get their labels
arbitrarily based on annotators’ volition. Such an approach
leads to unreliable classifiers that cannot distinguish rumor from
non-rumor consistently. In this paper, we tackle this problem
via a novel classification approach called one-class classification
(OCC). In this approach, the classifier is trained with only
rumors, which means that we do not need the non-rumor data
points at all. For this study, we use two primary Twitter data sets
in this field and extract 86 features from each tweet. We then
apply seven one-class classifiers from three different paradigms
and compare their performance. Our results show that this
approach can recognize rumors with a high level of F1-score. This
approach may influence the predominant mentality of scholars
about computational rumor detection and puts forward a new
research path toward dealing with this problem.

Index Terms— Non-rumor,
rumor, rumor detection, tweet.

one-class classification (OCC),

I. INTRODUCTION

HE phenomenon of rumor propagation is one of the most
severe challenges that societies are dealing with for many
years. In fact, it is an ancient problem that can inflict damage
by harming the reputation of individuals or organizations [1],
shaking financial markets, and disrupting aid operations [2].
Traditionally, these kinds of information were propagated
by means of word of mouth, newspapers, and radio. How-
ever, in recent years, the emergence and rapid growth of
online social networks turned this problem into a major
socio-political challenge due to the easy, fast, and wide prop-
agation of information in online social networks. Because of

Manuscript received December 22, 2018; revised June 3, 2019; accepted
July 14, 2019. Date of publication August 16, 2019; date of current version
October 7, 2019. This work was supported in part by the Engineering Social
Technologies for a Responsible Digital Future Project at TU Delft and in
part by the National Natural Science Foundation of China under Grant
61602122 and Grant 71731004. (Corresponding author: Amir Ebrahimi Fard.)

A. E. Fard, M. Mohammadi, and B. Van de Walle are with the Fac-
ulty of Technology, Policy and Management, Delft University of Technol-
ogy, 2628 BX Delft, The Netherlands (e-mail: a.ebrahimifard@tudelft.nl;
m.mohammadi @tudelft.nl; b.a.vandewalle @tudelft.nl).

Y. Chen is with the School of Computer Science, Fudan University,
Shanghai 200433, China (e-mail: chenyang@fudan.edu.cn).

Digital Object Identifier 10.1109/TCSS.2019.2931186

volume and velocity of rumors in social networks, researchers
use large-scale data and computational methods to control
this phenomenon [1], [3]-[5]. One of the important steps in
a rumor control system is rumor detection that has been a
topic of interest for the community of computational social
science in recent years. The main goal of rumor detection
is to identify rumors in online social networks automatically,
accurately, and in a timely manner.

Binary classification is the dominant computational
approach for rumor detection [6]. In this approach, a model
is built by training the classifier with a data set comprising
samples of rumors and non-rumors. We then evaluate the
discrimination power of the model by subjecting the trained
classifier to a mixed set of rumors and non-rumors. The
model with higher performance in separating rumors from
non-rumors is considered as a better classifier. Although
this is a well-established approach in the literature and sev-
eral scholars used it for the computational rumor detec-
tion, it suffers from a serious flaw, namely, the non-rumor
pitfall.

Non-rumor is a fuzzy concept that is widely used by
scholars for computational rumor detection. Unlike the rumor
that has a long-standing definition due to its solid background
in social psychology, non-rumor has an ambiguous meaning,
which is not supported by either epistemological or psycholog-
ical studies. Ambiguity in this concept leads to different ways
of data collection/annotation. In other words, the lack of a clear
definition allows scholars to come up with their own read-
ings of non-rumor [1], [7], [8]. For instance, Kwon et al. [1]
considered any kind of factual information and news as non-
rumor, while Zubiaga et al. [9] annotated tweets that are
not rumor as non-rumor. This creates a confusing situation,
because from one hand, there are some tweets that are not
rumor, and on the other hand, they may or may not take the
non-rumor label. Therefore, the model may receive data points
that do not belong to its predefined classes. Those data points
will randomly be classified in a binary classifier as rumor or
Non-rumor.

The implication of such discrepancy between various
non-rumor definitions is that the binary classification is not
the right approach for computational rumor detection. In other
words, every scholar can define non-rumor according to which
they collect data from social networks. This raises two impor-
tant issues regarding rumor detection systems in real situations.
First, the results of rumor classifiers become inconsistent, and
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second, the results of different classifiers cannot be compared.
Therefore, the question that arises here is how can rumors
be identified in social networks regardless of the non-rumor
definition?

We address this question from the one-class classifica-
tion (OCC) perspective [10]-[12]. OCC is a supervised algo-
rithm with the ability to identify class X between multiple
classes of data when the classifier is trained by class X only.
For the computational rumor detection, this means that the
classifier is trained with rumors only, and the trained classifier
can be used to detect rumors from other kinds of tweets.
In contrast to non-rumor, which is not well-defined and has
a controversial conceptualization, there is a consensus in the
literature for rumor, and scholars often follow definitions with
similar elements.

In this paper, we benefit from two available data sets,
one from [4] with 6425 tweets and the other from [1] with
140910 tweets. We extract 86 features from each tweet. After
feature extraction, we build models with seven algorithms
that implement an OCC approach. Each algorithm has two
hyper-parameters that impact its performance. We use grid
search over the hyper-parameters to discover the best perfor-
mance of the models. Fig. 1 shows the research workflow in
three stages: 1) data set preparation; 2) feature extraction; and
3) OCC.

The main contributions of this paper are summarized as
follows:

1) discussing the conceptualization problem of non-rumor
as a widely used term in the computational rumor
detection;

2) addressing the weaknesses of the binary classification
as the dominant approach in the computational rumor
detection problem;

3) justifying the rumor detection as an OCC problem and
designing a set of experiments over two data sets with
seven prominent one-class classifiers.

The remainder of this paper is organized as follows.
In Section II, we discuss the background of rumor studies
and the computational rumor detection. Section III elabo-
rates on the concept of non-rumor and the fallacies of the
binary classification in the computational rumor detection.
In Section IV, we discuss the general idea behind an OCC
approach and explain seven renowned algorithms with this
approach. Section V contains the features extracted for each
tweet, while Section VI presents the results of the experiments
regarding the rumor detection using OCC. Finally, we con-
clude the research by summarizing the main finding and giving
some suggestions for future work in Section VII.

II. BACKGROUND AND RELATED WORKS

In this section, the background information and related
works regarding the primary elements of this paper are pro-
vided. To give some context to the reader, we first introduce
the field of rumor studies by briefly explaining the important
theories and findings of the field. Then, we focus on com-
putational rumor detection by first explaining the dominant
approach of the rumor detection, and then reviewing some of
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the significant studies in the computational rumor detection,
to give the state-of-the-art overview of this research domain.

A. Rumor Theories

Rumors are unverified propositions or allegations about an
object, event, or issue, which are not accompanied by corrob-
orative evidence [13], [14]. Rumors take different forms, such
as exaggerations, fabrications, explanations [15], wishes, and
fears [16]. Rumors have a life cycle and change over time.
Allport and Postman [17] in their seminal work “psychology
of rumor” concluded that “as a rumor travels, it grows shorter,
more concise, more easily grasped and told.” They refer to
these three steps in rumor life cycle as leveling, sharpening,
and assimilation. In the same vein, Buckner [18] considered
rumor as a collective behavior which is becoming more or
less accurate while being passed on as it is subjected to the
individuals’ interpretations.

Rumors tend to thrive and transmit in situations that are
ambiguous and/or pose a threat or potential threat situations
in which meanings are uncertain; questions are unsettled,
information is missing, and/or lines of communications are
absent [19]. Allport and Postman [17] gave a more formal
interpretation of rumor transmission dynamic and called it
basic law of rumor, that is

R~ixa (1)

where R, i, and a denote rumor intensity, importance, and
ambiguity, respectively. This formula means that the intensity
of a rumor varies with the importance of the rumor subject to
the individuals times ambiguity of the evidence pertaining to
the rumor topic. Hence, if a topic is not important for a certain
community, there will not be any rumor about that topic in that
community. Allport and Postman [17] provided an example on
this topic that it is not likely for an American to spread rumors
concerning the market price of camels in Afghanistan, because
the subject has most probably no importance for him. Later,
Rosnow [54] studied the influence of other factors, such as
anxiety and credulity of the individuals on rumor transmission.
Rumors emerge to fulfill a particular function. Sometimes,
rumors work as a diversion and serve the function of titilla-
tion and breaking the monotony. News is the other role of
rumor, as certain people do not have access to any bona fide
information concerning a situation. Need for meaning and
structure or what the Gestalt theorists in psychology called
“closure” is another situation that rumors emerge. Information
verification and discovering the truth behind unverified pieces
of information are another reason for spreading the rumor.
Rumors can also play a political role and used by politi-
cians to manipulate societies as Knopf [21] wrote that rumors
“increase polarization while at the same time strengthening
solidarity within each group.” Rumors can also work as a
defense mechanism for the ones who are unsuccessful or failed
(see [22] for detailed explanations and examples).
Regardless of their roles, rumors cause serious issues [23].
They can damage the reputation of individuals or
organizations [1], provoke riot and unrest [23], catapult
firms into financial disaster [13], shake financial markets, and



832 IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, VOL. 6, NO. 5, OCTOBER 2019

N

m
X

°
g
El
°
3
=
"
o
X
=)

©
o
o
7]
8,
Y
a
8
=3
o
3
x
o

°
°
S
=
@

1
I 1

W : 1 ‘ Baseline comparison
o
] 1

( OCSVM ) ! Change of training
: : sample size
o
o

|

Training data

v

Test data

Classifiers performance
analysls

K means

1
|
]
|
|
]
]
|
|
]
|
|
]
|
|
]
|
|
]
]
|
|
]
\

Classifiers speed
analysls

N

'

1

1

]

1

1

1

1

1

]

( Hyper-parameters )‘
1 1
'_" analysis )
'

1

1

]

1

1

1

1

1

l

4 I

1 ]

1 1

1 ]

1 ]

1 ]

1 1

! ! 11 (K=3510

¥ ' ¥

1 ]

| Kwonetal. ! N 1

: (2017) Zubiagaset Tweets : : :

i —h

i v i i i

| | ' User "

| e | ! I

1 1

: E : Non- !

: Zubiaga et al. : : rumour : :

' (2016) | 1

1 1 ! : l\

i v i i | tEesEsesEsesEsE

\ , \ | L eimssse e e ee e e e e

S s e o 1
E ( Hyper-parameters )—(Gridsearch)
|l Secaccccccccccccccapecccccccccccaces
: L
. NS

Fig. 1. Research flow of rumor detection with OCC approach.

disrupt aid operations [2]. Hence, it is necessary to manage
this potentially harmful phenomenon effectively. DiFonzo and
Bordia [23] provided a comprehensive list of rumor-quelling
strategies drawn from the psychological and business
literature. Modeling rumor propagation is the other approach
toward rumor management, which is mostly developed by
physicists and mathematicians on the basis of network
models [24]-[27] and population dynamics [28]-[30]. This
approach aims to provide an abstract realization of rumor
propagation and examine the performance of different
control strategies, such as source detection, network cut,
and immunization. The other class of control strategies is
a computational approach that attempts to tackle rumors
using computational and statistical modeling. This approach
has drawn much attention recently due to the rapid growth
of online social networks that produced a tremendous
amount of data. In Section II-B, we further elaborate on this
approach.

B. Computational Rumor Detection

Computational solutions are among the most recent
approaches that academia has adopted to tackle the problem of
rumor spreading in social networks. This family of solutions
is usually part of a framework called rumor resolution system
that constitutes of four modules: 1) rumor detection, which
specifies whether a piece of information is relevant to a rumor
or not; 2) rumor tracking, which collects the posts discussing
the rumor; 3) stance classification, which determines how
each post orients to the rumor’s veracity; and 4) veracity
classification, which determines the truth behind the rumor [6].
The four modules are shown in Fig. 2.

In this paper, we focus on the detection module in Twitter,
which aims to annotate tweets automatically as rumor or
non-rumor to identify new rumor-relevant tweets that appear in
Twitter. This problem has drawn computer scientists’ attention
in recent years due to its tremendous importance to the social
context. In this problem, the main focus is on providing an
accurate representation of rumor for the computer in such a
way that it can recognize rumors with minimum error. Such
a representation is a function f of three elements, i.e., data,

features, and learning algorithm

Quality of Rumor Classifier

o f(data, features, learning algorithm).

If rumors are modeled via sufficient data, illustrative features,
and a powerful algorithm, the rumor detection system is
expected to identify rumors accurately, but any flaw in those
elements can impact the quality of the rumor detection. In the
study of digital rumors, obtaining sufficient data is an arduous
task due to the difficulties and barriers of knowing the latest
rumors and restrictions of social networks over the data col-
lection. Therefore, collecting and annotating data in different
topics and from various social networks are considered as
an important contribution to this field. For instance, Zubiaga
et al. [8] created a data set of tweets, containing 6425 rumors
and non-rumors, posted during five breaking news events.
Sicilia et al. [7] also made a contribution by building a data
set of Twitter rumors and non-rumors containing 709 samples
regarding the Zika virus. In other work, Yang et al. [5] pro-
vided the first data set of Chinese microblogs from the biggest
microblogging service in China, namely, Sina Weibo. In the
same vein, Turenne [31] created the first French data set in
this field by collecting 1612 rumor related texts. Additionally,
in one of the biggest data sets in this field, Kwon et al. [32]
provided a data set comprising more than 140000 rumors
and non-rumors in a wide range of topics from politics to
entertainment.

The second important element of rumor detection is feature
extraction. Rumors in their raw formats are incomprehensible
for the computer. Hence, it is essential to find a way to
make this concept machine-readable. The feature extraction
aims to respond to the same need by selecting d quantifiable
properties and representing each rumor with those properties
to the computer. More formally, in this step, we map every data
point (rumor) to a d-dimensional space, where each dimension
represents one property of rumors. The better the features
can reflect different dimensions of rumors to the computer,
the more realistic the understanding of the computer from
this phenomenon will be. Many of the computational rumor
scholars studied new features and their impact on the rumor
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Rumor resolution system has four modules: 1) rumor detection for identifying rumor related information; 2) rumor tracking for collecting the posts

discussing the rumor; 3) stance classification for determining posts’ orientations toward rumors’ veracity; and 4) veracity classification for verifying truth

behind the rumor [6].

detection. For instance, Castillo et al. [33] introduced the fea-
tures related to the account holders and their social networks.
In the other work, Kwon et al. [32] introduced temporal fea-
tures and studied the importance of temporal patterns in rumor
detection. In another work, Kwon et al. [1] discovered the
effectiveness of features in detection of rumor that varies in
the course of time. They concluded that some features (user
and linguistic) are more effective for rumor detection in early
stages of diffusion, while some others (structural and temporal)
are more effective for rumor detection in longer time windows.

The third important element in computational rumor detec-
tion is the learning algorithm. In this step, a classifier defines
its decision boundary to understand what rumor and non-rumor
are. As the decision boundary gets more accurate, the classi-
fier performance improves. Computational rumor researchers
apply new algorithms, statistical analysis, or methods to this
domain in order to detect rumors more accurately. To be
considered as a contribution, these algorithms should not be
necessarily newly designed. They might be popular algorithms
in other contexts; however, they have not been used in rumor
detection before. For instance, Ma et al. [34] applied recurrent
neural networks (RNNs) to the rumor context for the first time.
They evaluated their model with three widely used recurrent
units, tanh, long short-term memory (LSTM), and gated recur-
rent unit (GRU), which could perform significantly better than
state of the art. In the other work, Zubiaga et al. [4] modeled
the rumor tweets as sequences by extracting their features in
the course of time and applied the conditional random field
(CRF). This allowed them to obtain the context from a set of
tweets and identify rumors with higher performance.

III. PROBLEM STATEMENT

In Section II, we explained the binary classification as the
dominant approach for computational rumor detection in the
literature. However, the binary classification suffers from a

major drawback for detecting rumors. In this section, we dis-
cuss the drawback and reason why binary classifiers cannot
be appropriate for identifying rumors. To this end, we first
explain the concept of non-rumor and provide some evidence
of multiple ways of defining non-rumor in the literature. Then,
in the second step, we argue how this controversial concept
makes the binary classification unreliable and inconsistent for
detecting rumors in real-world situations.

A. Concept of Non-Rumor in Computational
Rumor Detection

As explained in Section II-B, we train the classifier with
features obtained from rumor and non-rumor tweets. However,
the question that remains here is “how do the data points
take rumor/non-rumor labels?” Data points that are annotated
define each class for the model.

For rumor, researchers most often refer to definitions with
similar elements, which is due to years of research by rumor
scholars that ultimately lead to relative convergence on some
aspects of this field, such as rumor conceptualization. This
allows researchers to annotate rumorous tweets consistently,
but what about non-rumor? What is exactly the non-rumor?
Are rumor and non-rumor complementary concepts, in a
way that by specifying one, the other will be automatically
specified? Or, they are not complementary, and there are other
sorts of tweets that fall into neither rumor nor non-rumor
category? These are non-trivial questions that, to the best of
our knowledge, have not been addressed in the literature yet.

Non-rumor is an ambiguous term that is coined mostly
by computer scientists who used the binary classification
for detecting rumors. From a historical point of view, this
term has been mentioned two times in the non-computational
part of rumor literature [35], [36], but it has been defined in
neither of them. Similarly, non-rumor has been used frequently
in the literature of computational rumor detection; however,
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Fig. 3.

(b)

Schematic description of two primary perspectives toward non-rumor. In both diagrams, squares with border show different events. Yellow and blue

squares denote rumor and non-rumor area, respectively. Size does not mean anything and cannot be a basis for comparison. (a) Non-rumor as fact [1]. Five
events are depicted in this diagram; two rumors worthy and three non-rumors worthy. (b) Non-rumor as any piece of information that cannot take rumor
label [8]. Two events are depicted in this diagram. In each event, the yellow and blue areas show the rumor and non-rumor worthy part in each event.

it has not always been portrayed in the same way. In other
words, there is no consensus between the researchers about the
conceptualization of non-rumor. This leads to different ways
of annotating the non-rumor tweets.

We investigated two primary and widely used data
sets [1], [8] in the literature of the computational rumor
detection which does not define non-rumor in the same way.
Kwon et al. [1] took non-rumor as news items that are
extracted from credible news sources, while Zubiaga et al. [9]
treated non-rumors as any related information that cannot
take the rumor label. Fig. 3 shows the conceptualization of
rumor and non-rumor in these two data sets in a schematic
way. In Fig. 3(a), which shows the idea of Kwon et al. [1]
about rumor, the big gray rectangular area demonstrates the
social network space. Each square in this area illustrates a
distinct event. The ones with yellow color correspond to rumor
worthy tweets, while the blue squares show tweets related to
the reliable news. On the other hand, Fig. 3(b) shows the
approach of Zubiaga et al. [8]. Like the previous one, the big
gray area is the social network space, and each square with
black border shows the relevant tweets to a particular event.
However, unlike the approach of Kwon et al. [1] in which
an event corresponds to either rumor or non-rumor, here an
event is a mixture of rumor and non-rumors tweets. The yellow
part of the squares shows the rumor relevant tweets, and the
remaining blue area demonstrates the non-rumor tweets.

B. Fallacy of Binary Classification for Computational
Rumor Detection

In this section, we argue how various interpretations of
non-rumor can impact the quality of the rumor detection
systems. To answer this question, we need to inspect the
multi-class classification and specifically binary classification
more closely to understand how they classify their input into
predefined classes. To this end, we use the case of compote
making factory to show how unexpected input can violate the
consistency of the classification system.

We assume that a compote making factory produces five
types of fruit compotes based on five different fruits (there is a
one-to-one association between fruits and compotes). Because
each type of compote is prepared in different parts of the
factory, first of all, fruits must be categorized based on their
type (at the beginning, the fruits are mixed). In fact, this
machine is a multi-class classifier that is trained with samples
from five types of fruits. We assume that any fruit that enters
this machine belongs to one of the five pre-determined fruit
types, but what would happen if this condition was violated?
What would happen if once ten types, once five types, and
once eight types of fruits entered to the machine? What would
happen if new types of fruits entered to the machine with
which it was not trained?

When a model is trained for k-classes and a new data
point without belonging to any of these k-classes is given to
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Chain of the reasoning behind the problematic consequences of non-rumor in the binary classification. It starts with a lack of sufficient theoretical

background for the concept of non-rumor. It leads to the emergence of ambiguous and contradictory definitions of non-rumor. Lack of clear definitions causes
data annotation to be done arbitrarily, which makes the rumor classifier unreliable (it is not clear, what it separates) and incomparable (it is not possible to

compare the results of different classifiers).

the classifier, the data point will be definitely classified into
one of the k-classes. This is a case of false positive since
that data point gets a wrong label. This is exactly similar to
the case of the computational rumor detection using binary
classification techniques. If we build a binary classification
model for the rumor detection (according to any of the existing
definitions for non-rumor), there might be data points coming
to our system without belonging to the rumor or non-rumor
classes (based on the definition we used). Hence, if we build a
rumor detection system to identify rumors in the real world,'
(depending on the definition of non-rumor we use to train the
classifier), new data points that do not belong to rumor or
non-rumor classes increase the number of false positives.

The lack of consensus on the meaning of non-rumor causes
every researcher to come up with his/her definition. This
diversity of definitions creates two major problems; first of all,
the rumor detection becomes inconsistent and unreliable as we
cannot be sure about their functions and what they separate.
Second, we cannot compare the outcome of different models
as they measure different things. Fig. 4 shows the chain of
reasoning behind the problematic consequences of non-rumor
in the binary classification.

Due to these difficulties, questions, and ambiguities in the
classical rumor detection, we are thinking of the rumor detec-
tion with rumor data only. Such an approach can address both
problems of the binary classification. It makes the classifier
reliable and effective by identifying the relevant information
to the rumor as rumor. From the data collection perspective,
we can annotate rumor relevant data easily, something that
is almost impossible for non-rumor. Therefore, in a data set,
the annotation of rumors is a feasible task, while it is quite
challenging for non-rumors. But how can we detect rumors
without having and representing the other group of data? The
answer is with an approach called OCC [12].

OCC is an approach that can address such a situation
as it works based on the recognition of one class only
and classifying it as a target class while annotating all the
other data points as an outlier class. Table I shows the
differences between the multi-class and on-class approaches.
The second and fourth columns demonstrate different aspects
of multi-class classification and OCC, respectively. The third

1t means in a non-experimental setting.

column shows two situations that we use OCC: when the data
set is imbalanced and when we are not sure about the number
of classes. In Section IV, we discuss the OCC in more detail.

IV. ONE-CLASS CLASSIFICATION

Binary classification is the dominant strategy in the realm
of pattern recognition and machine learning. Binary classifiers
try to learn a function that is able to discriminate the samples
of two given classes. To compute such a function based on the
given samples, a plethora of methods exist, each of which has
an underlying idea and is predicated on some presumptions.
The classification problem compounds for the cases where
we have the samples of one of the classes only, i.e., OCC
problem. Several techniques have been proposed to solve an
OCC problem. Tax [12] classifies one-class methods into three
categories: the density estimation, the boundary methods, and
the reconstruction methods. Fig. 5 shows an overview of the
categories and their corresponding methods. In the following,
several one-class classifiers for each of these categories are
discussed.

A. Density Estimation

In this approach, the underlying idea is that target samples
follow a distribution, which needs to be estimated in the
training phase. The most prevalent distribution, which is
used for the density estimation, is the multivariate Gaussian
distribution. In this model, it is assumed that each of the
training data x € R? is a sample of a multivariate Gaussian
distribution, that is

pN(x; p, X)
1 1 T el
=WCXP[—§(X—,U) z (X—ﬂ)] (2)

where u € R? is the mean and £ € R?*? is the covariance
matrix. Thus, the training of this method entails the estimation
of the mean and the covariance matrix. The maximum likeli-
hood estimation (MLE) can swiftly estimate these parameters;
thus, the OCC based on the density estimation is usually faster
compared to other methods. Having estimated the distribution
of the target samples, the probability that a test sample z
belongs to the target class can be simply computed by the
likelihood of z with respect to the estimated distribution. If the
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TABLE I
COMPARISON BETWEEN THE MULTI-CLASS CLASSIFICATION AND THE OCC

Multi-class Classification

Transition One-class Classification

Number of
classes

Training dataset

n>2

A dataset comprising balanced
samples of n classes
A dataset comprising balanced
samples of n classes

Test dataset

Training Train the model with n classes
Test Testing the model with n classes
Performance Reporting the model performance

via confusion matrix

2

Lack of either of the following
conditions suffices for transi-
tion from multi-class to one-
class classification:

A dataset comprising only
one class that we know
A dataset comprising both

classes
o well-represented class Train the model with one
o well-identified class class

Testing the model with
two classes

Reporting the model per-
formance via confusion
matrix

Fig. 5. Categorization of OCC algorithms.

computed likelihood is less than a threshold, then the sample z
is said to be an outlier; otherwise, it belongs to the target class.

B. Boundary Methods

Due to limited data availability in some cases, the density
estimation does not provide a comprehensive overview of the
data and the result of the consequent one-class classifier is thus
not acceptable. To tackle this problem, boundary methods are
proposed, which tries to optimize a closed boundary around
the target class. In this paper, we consider three algorithms
with this perspective. The two widely used one-class classifiers
are the one-class support vector machine (OCSVM) [37] and
support vector data description (SVDD) [38]. Given a set
of training samples {x;}7_,, x; € R?, the goal of these
methods is to specify a region for the target samples. The other
well-known classifier with a different perspective is based on
k-nearest neighbors (KNN), which decides if a sample belongs
to the target class based on its distance to k-nearest data points
in the training set, in contrast to SVDD and OCSVM that
define a region for the target class. Thus, this classifier does
not assume a fixed boundary for the target class, and the size

of the boundary is flexible and reliant on the nearest neighbors
of a test sample.

1) One-Class Support Vector Machine: The OCSVM aims
to specify a function that takes a positive value for a small
region that the training data live and take —1 elsewhere. This
is done by maximizing the distance of the desired hyperplane
to origin. The optimization problem is

S U |

min 2||w||2+m§ijfl—p

s.t. ch,zS(x,-) >p—=¢&, i=1,...
& >0

,n

3

where ¢(-) is the high-dimensional space to which data are
mapped and v is the prior probability for the fraction of
outliers. The OCSVM decision function can be computed
using the kernel trick as

f(x) = sign(w” ¢ (x)—p) = sign ZaiK(x, x)—p) @4
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where x is a test sample, K (-, -) is the kernel function used for
the training, sign is the sign function, and a is the Lagrangian
multiplier of problem (3).

2) Support Vector Data Description: This method also
seeks to estimate a region for the target class. In contrast to the
OCSVM, the SVDD has a distinct approach to computing the
desired region for the OCC. The SVDD describes the region
of training samples as a hypersphere that is characterized by a
center a and a radius R in the feature space. The corresponding
minimization is

Iren;rlz R +C Zéi
st |¢p(xi) —all < R*+¢
E>0 (5)

where C is the regularization parameter. Given a new test
sample z, it is from the desired class if its distance from the
center is less than R.

3) K-Nearest Neighbors: KNN is another technique from
the boundary-method class, but it does not seek a region for
the target class. Instead, it classifies a test sample based on its
distance to its nearest neighbors. In other words, this method
does not assume a fixed region for the target class. Rather,
the region is flexible and reliant on the nearest neighbors of the
test sample. This algorithm has no training algorithm, and the
decision for the test sample z is directly obtained based on
the training samples. The underlying notion behind one-class
KNN is the ratio between the distance of the sample z from
its k neighbors and the distance of its k-neighbors from their
nearest neighbors. In order words, assume that g;,i = 1, ...,k
are the KNNGs of the test sample z and ¢;,i = 1, ..., k are the
nearest target sample to g; from the training data. The decision
function p(-) of this method for the test sample z is

> llz —gill
> lgi — il
If the value of p(z) is less than a predefined threshold,
then z is deemed to belong to the target class. Although
the method has no training, the computation of (6) is time-
and memory-costly since we need to hold all the samples in

memory, and also, we have to compute the distance of a test
sample to other points to get the KNNs.

p2) = (6)

C. Reconstruction Methods

The underlying idea of this class of methods is that the
target-related test samples must be properly reconstructed
from the training samples at hand. The proper construction
is typically measured by the construction error, which is the
distance between a test sample z with its reconstructed point
Z. The difference between various methods of this class is
basically their difference in constructing test samples based on
the training data. The decision is also made simple; if the con-
struction error of a test sample is less than a threshold, which
is determined beforehand, then it belongs to the target class,
and it is otherwise outlier. In the following, three well-known
reconstruction-based one-class classifiers are discussed.
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1) Principal Component Analysis: Principal component
analysis (PCA) is a data-transformation technique that can
be applied to cases where data lie on a linear subspace.
The computation for the transformed data is based on the
eigenvalue decomposition of the covariance matrix: The top d
eigenvectors pertaining to the top d eigenvalues span a lower
dimensional space that best represents the overall data.

For OCC, we transformed the target samples into a lower
dimensional space by using PCA. Thus, the training X € Rdxn
is transformed into X € R *nwhere d <« d. For a test sample
z, we need to find its projection Z into the transformed space X
and compute the reconstruction error by finding the distance
between z and Z. The projection of z onto the subspace is
simply as

F=XXTX) X"z = X"Xz

and therefore, the reconstruction error for the test sample z is
computed as

22 ol v _112
e@@)=lz—=zlI" = llz = X' Xz||

where €(z) is the reconstruction error for the test sample z.
If this error is less than a threshold, the sample belongs to the
target class.

2) K-Means: K-means is one of the first techniques in
unsupervised learning, which aims to separate the input data
into a predefined number of clusters, i.e., k. Each clus-
ter is represented by its center; therefore, the outcome of
k-means is k centers of clusters. For OCC, we first cluster
training data into k groups and represent the center of each
cluster by u;,i = 1,2, ..., k. Having k centers from k-means,
the distance of a test sample z from each center is computed.
If the distance of the sample z to only one of k centers is
less than a threshold, then z is said to be a target sample.
Otherwise, if the distances of the sample z to all cluster centers
are larger than the given threshold, it is then an outlier.

3) Autoencoder: An autoencoder is a neural network that is
well-known to learn the data representation. The autoencoder
aims to reproduce the pattern at the input layer in the output
layer. Therefore, the objective function for training this neural
network is the distance between the input and output layers.
For the OCC, the training samples of the target class are
subjected to the autoencoder so that the weights of the neural
network are computed. Then, for a test sample z, the output
of the trained network for the input z is deemed as its recon-
structed point Z, i.e., Z = fae(z), where fie(z) is the output
of the trained autoencoder for the input z. The reconstruction
error for the test sample z is then simply computed as

€)= llz — fae @I

Similar to other methods in this class, if the reconstruction
error is less than a predefined threshold, then the sample
belongs to the target class; otherwise, it is an outlier.

V. FEATURE EXTRACTION

In this section, the features used in this paper to represent
tweets are explained. In total, 86 features are extracted from
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each tweet. Features are classified into three categories: lin-
guistic and content, user, and meta-message. The linguistic
and content features capture synthetic and semantic aspects
of the rumors, the features related to the users and their
social networks are in the user category, and all the features
about tweets metadata fall into the meta-message category.
We deliberately skipped features related to the propagation and
temporal aspects of the tweets as we wanted to identify rumors
as early as possible, and those features are not available during
the initial rumor propagation phase [1]. In Sections V-A-V-C,
we go through each category of features and introduce them.

A. Linguistic and Content Features

The linguistic and content analysis enables us to scrutinize
semantic and syntactic aspects of a tweet. For this research,
we carry out this analysis by extracting features inspired by
the existing literature of the rumor detection regarding both
aspects. Table II lists all the linguistic and content features.
The ones with a diamond (¢) show synthetic features, and the
semantic features are indicated with box ([J) symbol.

1) Syntactic Features: For the syntactic layer, some of
the frequently used features are the number of words and
characters and frequency of punctuation marks. Some context
flavored features are the number of uppercase and lowercase
characters and the number of capital words as some studies
shown capital letters are the sign of rumor-prone tweet. There
are other features regarding grammatical roles of the words
in a sentence, such as frequency of first/second/third person
pronouns and frequency of part-of-speech (POS) tags. POS
explains what grammatical role a word plays in a sentence.
Here, we consider 19 types of POS tags and count the
frequency of every tag in each tweet.

There are three other syntactic features that are recently
proposed by Vosoughi et al. [39]: number of abbreviations,
average word complexity, and sentence complexity. The num-
ber of abbreviations counts how many abbreviations are used
in a tweet. To count them, we first made a list, including
2622 abbreviations using online dictionaries > and Crystal’s
book on the language used on the Internet [40], and then
check tweets against this list.> The average word complexity
is estimated by the average length of words in a tweet. For
example, the tweet [ just tried cooking popcorn with four
mobile phones its a lie I tell you A LIE has 17 words
containing 1, 4, 5, 7, 7, 4, 1,6, 6, 3, 1, 3, 1, 4, 3, 1, and
3 characters, respectively. The average word complexity is,
therefore, 3.5. The sentence complexity of a tweet is estimated
by the depth of its dependence parse tree. We used Stanford
CoreNLP to generate dependence tree.

2) Semantic Features: To study the semantic layer, one of
the most common approaches scholars adopt is capturing the
emotions, attitude, or mood conveyed by a piece of text. For
measuring such semantic proxies, in this paper, we borrow
relevant features suggested in the literature, such as tone,
subjectivity, polarity, and number of positive and negative

2http://www.netlingo.com/category/acronyms.php
3The list of abbreviations is publicly available in this
http://bit.1ly/2Bxim4e.

address:

TABLE II

L1ST OF FEATURES EXTRACTED FROM CONTENT OF TWEETS. FEATURES
WITH DIAMOND (¢) AND Box ([J) SYMBOL ARE SYNTACTIC AND
SEMANTIC FEATURES, RESPECTIVELY

List of linguistic & content features

& Number of question marks in a tweet [33], [42]

¢ Number of exclamation marks in a tweet [33], [42]
& Number of characters in a tweet [33]

© Number of words in a tweet

& Number of uppercase letters in a tweet [33], [42]
¢ Number of lowercase letters in a tweet [33]

& Number of capital words in a tweet

¢ Average word complexity in a tweet [39]

<& Number of first person pronoun in a tweet [33], [43]
& Number of second person pronoun in a tweet [33]
& Number of third person pronoun in a tweet [33]
Number of vulgar words in a tweet [39]

¢ Number of abbreviations in a tweet [39]

O Number of emoticons in a tweet [39]

O Number of emojis in a tweet

O Polarity of a tweet [5], [44]

O Subjectivity of a tweet

O Tone of a tweet

O Positive words score of a tweet

O Negative words score of a tweet

¢ Frequency of POS tags in a tweet [45]

O Frequency of NER tags in a tweet

0O Opinion and insight score [39]

O Anxiety score [31]

O Tentativeness score [39]

O Certainty score

O Sentence complexity [39]

words. There are also features inspired by the rumor literature,
such as anxiety score, tentativeness score, opinion and insight
score, certainty score, and number of vulgar words as many
of the rumors emerge at the time of uncertainty and are not
communicated with a decent and formal language.

For anxiety, tentativeness, opinion, and certainty scores,
we used Linguistic Inquiry and Word Count (LIWC).* LIWC
is a tool for analyzing the cognitive and psychological theme
of text documents [41]. For vulgar words, we made a col-
lection using online dictionaries,’ including 1585 terms and
checked each tweet against this collection.® The other features
with high potential in capturing feelings are the number of
emoticons and the number of emojis.” Both these pictographs
indicate different types of feelings via a tiny figure which
sometimes need many words to be described. The other feature
is frequency of named-entity-recognition (NER) tags. NER
is a technique to identify and segment the named entities
and categorize them under various predefined classes (e.g.,
organization, place, and people). Here, we consider 17 types
of NER tags and count the frequency of every tag in each
tweet.

B. User Features

User analysis enables us to investigate the credibility of
Twitter accounts. In this paper, we carry out this analysis via

4http://liwc.wpengine.com/compare-dictionaries/

5https://Www.noswearing.com/dictionary and
~biglou/resources/

OThe list of vulgar terms is publicly available at http://bit.ly/2CtO4Rz

TThe list of emoticons is publicly available at http://bit.ly/2EDDhG2.

https://www.cs.cmu.edu/
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TABLE III
FEATURES THAT WERE EXTRACTED FROM USER PROFILE

List of user features

Profile description (binary)

[33], [5], [44], [46]

Verified account (binary) [33], [5], [46], [42]
Number of Statuses [5], [46], [33], [1]
Influence [5], [46], [33], [44], [1]
Number of following [5], [46], [44], [1]
User role

Total likes

Account age (day) [33]

Protected account (binary)

Profile location (binary)

Profile picture (binary)

Profile URL (binary)

Average follow speed

Average being followed speed

Average like speed

Average tweet speed

Screen name length

Number of digits in screen name

extracting features related to the account holders and their
social network. Table III indicates the list of user features in
this paper. Some of the simplest binary user features that are
extensively alluded in literature are profile description, profile
picture, profile URL, and verified account. These features are
all about the account holder itself, while there are features
regarding friendship network of account holders, such as num-
ber of followings, influence,® average follow speed,” average
being followed speed, and user role. User role measures the
ratio of followers to followees for a user. A user with a
high follower-to-followee ratio is a broadcaster. Conversely,
a user with a low follower-to-followee ratio is considered as
a receiver. There are other features for user analysis regarding
the user activity, such as number of statuses, total likes,
average like speed, and average tweet speed. Moreover, two
features are borrowed from social bot detection literature that
deals with the screen name of the user: screen name length
and number of digits in screen name.

C. Meta-Message Features

As with the linguistic and content analysis, in the
meta-message feature category, a unit of analysis is tweet
itself; however, here, the focus is on tweet metadata,
not its textual content. Table IV demonstrates the list of
meta-message features in this paper. We carry out the mes-
sage analysis by extracting the basic message features that
are frequently mentioned in the literature, such as number
of hashtags and number of mentions. There are also some
features regarding credibility of the message, such as tweet
URL that checks whether a message contains a URL or not,
number of multimedia that counts the number of multimedia
(video or image) evidence accompanying the message, and
geotagged tweet that checks whether the user is willing to
left any trace about her location or not. Additionally, there

8In some studies, it is called the number of followers.
9All the average speed features are calculated by dividing the value of
feature by the account age.
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TABLE IV
FEATURES THAT WERE EXTRACTED FROM TWEET METADATA

List of meta-message features

Number of hashtags in a tweet [3]

Number of mentions in a tweet [33], [3]

Tweet URL (Binary) [33]

Number of multimedia in a tweet [5], [46], [44]
Number of likes [44]

Number of retweets [5], [46]

Tweet creation time (second)

Geotagged tweet (binary)

are features respecting the tweet exposure network: number
of likes and number of retweets as whenever someone likes
or retweets a tweet, the tweet appears in all of her followers’
timeline.

VI. EXPERIMENT

In this section, we first explain the details of the experi-
mental setup, then report the results of our experiments, and
interpret them from three different perspectives.

A. Experimental Setup

As we discussed in Section III, designing an experiment for
the binary classification and OCC is quite similar. Both need
feature extraction, training and test data sets, and performance
score to evaluate them. For training and test sets, in this
paper, we use two renowned publicly available data sets (see
Table V): Zubiaga [4] and Kwon [1] data sets. We refer to
these data sets as the Zubiagaset and Kwonset, respectively.
They are quite renowned in this field and have been appeared
in several research studies [47]-[50]. They cover a wide vari-
ety of topics, including disaster, health, and politics, to name
but a few. They are among the few publicly available data sets
in this field.!

In the first data set, Zubiaga et al. [4] used Twitter Stream-
ing API to collect tweets in two different situations: 1) break-
ing news that is likely to spark multiple rumors and 2) specific
rumors that are identified a priori. Tweets are collected from
five cases of breaking news. Given the large volume of tweets
in the early stages of the data collection, they only sampled the
tweets that provoked a high number of retweets. Then, they
manually annotated the tweets as either rumor or non-rumor.
In total, they collected 6425 tweets, including 4023 non-rumor
and 2402 rumor tweets.

In the second data set, Kwon et al. [1] made a list of popular
rumors by searching fact-checking websites. They also made
another list for non-rumors by searching for notable events
from news media outlets. Then, they crawled one of the largest
and near-complete repositories of Twitter to collect tweets
relevant to the list of rumors and non-rumors. In total, they
identified 140910 tweets for 111 events (44394 tweets from
60 rumors and 96516 tweets from 51 non-rumors). To the
best of our knowledge, Kwon data set is the biggest publicly
available data set in this field to date.

10There are other large data sets in this field [2], [39], but they are either
not publicly available [39] or cannot be used for any purposes except for the
validation of the original study [2].
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TABLE V

STATISTICAL INFORMATION REGARDING ZUBIAGA [4]
AND KWON [1] DATA SETS

Zubiagaset Kwonset
Number of tweets 6,425 140,910
Number of rumours 2,402 44,394
Number of non-rumour 4,023 96,516
Description Based on five events  Based on 111 events

After preparing the data sets, the next step is feature extrac-
tion in which every tweet is represented by 86 features. Then,
the one-class classifier must be trained. This is the only distinct
step of OCC compared to the binary classification. Unlike
the binary classification that needs both classes for training,
we train the one-class classifier with one class only. In the
rumor detection problem, this means that training a binary
classifier needs both rumor and non-rumor while one-class
classifier is trained only by rumor. To test the performance of
one-class classifiers, we follow the same evaluation approach
as the binary classification and test the classifier with both
rumor and non-rumor (see Table VI).

To get more reliable results on the data sets, we use
k-fold cross validation. In this technique, the rumor data set is
partitioned into k bins of equal size, and then, we perform k
separate learning experiments by picking k — 1 folds of rumor
data set for the training and one remaining fold along with
non-rumor class for the test in each experiment. In the end,
the average performance of the k experiments is reported as
the performance of the model. In this paper, we repeat k-fold
cross validation for k = 3, 5, 10 to show the sensitivity of the
models’ performance to the training sample size.

For the classifier selection, we consider seven classifiers
belonging to three OCC paradigms, including Gaussian clas-
sifier as a density estimation method, one-class support vector
machine (OCSVM), SVDD, and KNN as boundary meth-
ods, and K-means, PCA, and autoencoder as reconstruction
methods. For parameters tuning and sensitivity analysis over
the model hyper-parameters, we use a grid search technique
and measure the models’ performance regarding the differ-
ent combinations of hyper-parameters. In kernel-based meth-
ods, namely, SVDD and OCSVM, we used the radial basis
function (RBF) as it was suggested and used in many of
rumor detection works [6]. To apply the selected algorithms,
we used MATLAB and Python. The OCSVM is implemented
in scikit-learn (a python machine learning library) [51], and
the rest of the algorithms come with MATLAB PRTools [52]
package.

From the implementation point of view, in the
above-mentioned programming libraries and packages,
the methods that are essentially using kernel or distance
matrix are not well suited for relatively large data sets.
We tried to tackle this issue by establishing a powerful
computer system to perform the experiments; however,
it could not manage to run SVDD over Kwonset. Therefore,
we decided to perform SVDD experiments by subsampling
the Kwonset.

We report the model performance via precision, recall,
and Fl-score. Precision is the fraction of correctly retrieved

instances that are relevant, while recall is the fraction of
relevant documents that are retrieved. F1-score is the harmonic
mean of precision and recall [53]. We also assess the models’
efficiency by measuring the execution time of the experiments
in both data sets.

B. Results and Discussion

In this section, we report and discuss the results of the
experiments. To this end, we first make a baseline analysis by
comparing the results of the experiments with the baseline of
each data set. Then, we measure the impact of training sample
size on the models’ performance. After that, we evaluate the
impact of hyper-parameters in each model. Then, we report
the models’ performance in different feature categories, and
finally, we assess the models’ execution time in each data set.

1) Baseline Analysis: In this section, we study the perfor-
mance of one-class classifiers in comparison with baselines
in both operational data sets. In the first baseline, Zubiaga
et al. [4] proposed a rumor identification classifier using
CRF with fivefold cross validation, and in the second one,
Kwon et al. [1] applied a random forest with threefold cross
validation. Both baselines use Fl-score, precision, and recall
to report classifiers’ performance. For the baseline analysis,
we replicate the same conditions as the original studies;
therefore, for the Zubiagaset and Kwonset, we perform the
experiments in fivefold and threefold cross validation, respec-
tively. We also report the classifiers’ performance with the
same metrics as the original studies.

Table VII demonstrates the precision, recall, and F1-score of
classifiers in both data sets along with the results of baselines.
Based on Table VII, in the Zubiagaset, KNN, k-means, and
SVDD outperform baseline with the Fl-score of 74.30%,
64.73%, and 63.54%, respectively. In the Kwonset, all seven
one-class classifiers achieve better F1-score than the baseline
and thus outperform it.

In terms of precision and recall, in the Zubiagaset baseline,
precision is better than recall. This is another way around for
the one-class classifiers on the same data set, which means that
recall is higher than precision in one-class classifiers. On the
other hand, in the Kwonset, baseline precision and recall are
almost equal, while precision is slightly higher than recall in
one-class classifiers.

Compared to baseline, in the Zubiagaset, one-class classi-
fiers can identify more rumors but with less precision. There-
fore, it is highly likely to identify the bigger fraction of rumors
as well as mislabeling the bigger fraction of non-rumors as
rumor when we use one-class classifiers in the Zubiagaset.
Repeating the same comparison in the Kwonset results in the
same number of identified rumors by one-class classifiers but
with higher precision. This means that it is highly likely to
identify the same fraction of rumors but with less mistaken
flags when we use one-class classifiers in Kwonset.

We can infer that one-class classifiers often outperform
baselines’ binary classifiers or achieve to their close proximity
in spite of the fact that one-class classifiers are trained in the
absence of non-rumor samples.

2) Training Sample Size Impact: In this section, we analyze
the impact of training sample size on the performance of the
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TABLE VI
CONFUSION MATRIX FOR OCC [12]

Object from target class

Object from outlier class

Classified as a target object
Classified as an outlier object

True positive, TT
False negative, F'—

False positive, F' T
True negative, T~

TABLE VII

BASELINE ANALYSIS ON THE ZUBIAGASET AND KWONSET [1], [4]. WE COULD NOT APPLY SVDD ON THE WHOLE KWONSET SINCE THE STANDARD
SOLVER OF SVDD DOES NOT SUIT THE LARGE-SCALE DATA SETS. WE TACKLED THIS PROBLEM BY SUBSAMPLING THE TRAINING SET AND
EXPERIMENT WITH A SUBSET OF THE ORIGINAL DATA SET

Zubiagaset Kwonset

PR RE F1 PR RE F1
Autoencoder | 48.61% 77.90% 59.86% || 97.31% 90.14%  93.59%
Gaussian 3833% 87.80% 53.36% || 95.69% 90.03%  92.77%
K-means 53.82% 81.20% 64.73% || 96.11% 90.08%  93.00%
KNN 69.20%  80.20% 74.30% || 98.19% 90.11%  93.98%
SVDD 51.78%  8220%  63.54% || 95.20% 91.21% 93.16%
OCSVM 13.08% 5130% 20.85% || 95.99% 88.24% 91.95%
PCA 41.38%  90.20%  56.73% || 96.99% 90.03%  93.38%
Baseline [ 66.7% 55.6% 60.7% ][ 89% 90% 89.5%

classifiers. To this end, we measure the performance of dif-
ferent one-class algorithms with k-fold cross validation when
k € {3,5, 10}. Since Fl-score combines precision and recall,
we use it to represent classifiers performance. Fig. 6 shows
how changing the training sample size affects classifiers’
performance. It constitutes of two subfigures that represent
the performance changes in each data set correspondingly.

By comparing classifiers’ performance with different cross
validations, we can observe two different patterns: perfor-
mance gain and performance loss by the growth of the training
sample size. In the Zubiagaset, except SVDD and OCSVM,
the other classifiers’ performance improves as the training
sample size increases. In the Kwonset, all the classifiers but
autoencoder and SVDD experience performance enhancement
when the training sample size grows.

Despite the heterogeneous impact of training sample size on
the classifiers’ performance, the difference between the highest
and lowest performances in 10 out of 14 classifiers is less
than 2%. This means that our models show a high level of
robustness against training sample size alteration.

3) Hyper-Parameters Impact: In this section, we discuss
the sensitivity of the models to the hyper-parameters value.
We look at the classifiers hyper-parameters in each of the data
sets and between them. Table VIII summarizes the classifiers
hyper-parameters and their valid range. Each classifier has two
hyper-parameters which we change them within their valid
range.

Fig. 7 shows the classifiers Fl-score regarding different
combinations of hyper-parameters. For each classifier, two
heatmaps are used to represent the performance space in
both Zubiagaset and Kwonset. In the heatmaps, darker colors
represent higher performance.

As shown in Fig. 7, for each classifier (in both data sets),
the best performance is achieved when the target-class error is
in the vicinity of its lowest value. Some of the classifiers, such
as Gaussian and KNN, are indifferent to the second hyper-
parameter, which for instance in the case of KNN, it does not
matter how many neighbors are selected; however, for some

others, it is not the case and the best performance depends
on both hyper-parameters. For example, in OCSVM, the best
performance is achieved when the kernel parameter has a small
value or autoencoder performs better when the number of
hidden units is higher. By an inter-data set analysis, we can
see that classifiers pursue a similar hyper-parameters’ pattern
in both data sets. This means that the high and low levels
of performance for a classifier are achieved in similar areas
in hyper-parameter space. We have also observed that SVDD
is almost indifferent to its hyper-parameters and perform
similarly in different combinations of hyper-parameters.

4) Classifiers Performance: In this section, we report and
discuss the results of the experiments in different feature cate-
gories. Fig. 8 shows the performance metrics of the one-class
classifiers on two data sets for different feature categories.
Fig. 8 consists of two panels representing the performance
scores in different data sets. Each panel is also composed of
three parts that display the performance of different feature
categories in terms of F1-score, precision, and recall. We first
report classifiers’ performance in the Zubiagaset where all
features are considered. Then, we go through Kwonset and
report one-class classifiers performance when all features are
present. Finally, we investigate the synergy between the feature
categories in both data sets.

As shown in Fig. 8 (left), among the one-class classifiers
that are trained on the Zubiagaset with full features, KNN
has the highest Fl-score. It also has the highest precision and
lowest recall among the same group of classifiers. SVDD has
the second-highest Fl-score and precision, while it outper-
forms other classifiers. Although SVDD has the best recall
and second best precision, KNN’s high precision compensates
its low score in recall and gives it the highest Fl-score. After
KNN and SVDD, the next one-class classifiers with the highest
F1-score are K-means, autoencoder, PCA, and Gaussian. The
lowest performance belongs to OCSVM, which delivers the
poor Fl-score of 28% by 81% recall and 17% precision.

The experiments on the Kwonset are also shown in Fig. 8
(right). In this set of experiments, we could not apply SVDD
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Fig. 6. Impact of training sample size on the performance of classifiers in the Zubiagaset and Kwonset.

TABLE VIII
CLASSIFIERS HYPER-PARAMETERS AND THEIR VALID RANGE.

Classifiers Hyper-parameters Valid range
Autoencoder FRACREJ: Fraction of target objects rejected FRACREJ € (0,1)
N: Number of hidden units {ili € N, < datapoints}
Gaussian FRACRE]J: Error on the target class FRACREJ € (0,1)
R: Regularization parameter R € (0,1)
K-means FRACRE]J: Error on the target class FRACREJ € (0,1)
K: Number of clusters {ili € N,i < datapoints}
KNN FRACREIJ: Error on the target class FRACREJ € (0,1) {i]¢ € N, ¢ < datapoints}
K: Number of neighbors FRACREJ € (0,1)
SVDD FRACRE]J: Error on the target class FRACREJ € (0,1)
P: Inverted kernel parameter
OCSVM v: Regularization parameter ve(0,1)
~: Kernel parameter
PCA FRACRETJ: Error on the target class FRACREJ € (0,1)
N: Number of PCA components {ili € N,i < featurespumber}

on the whole Kwonset since the standard solver of SVDD does
not suit the large-scale data sets. We tackled this problem by
subsampling the training set and conduct the experiment on a
subset of the original data set. For the rest of the classifiers,
despite the long execution time, the experiments were finished
and produced expected outcomes. In the Kownset, all full
features trained classifiers achieve a high level of Fl-score
that is obtained by a high level of precision and recall. The
performance of one-class classifiers is very close to each other,
in such a way that the difference between maximum and min-
imum of Fl-score, precision, and recall is less than 1%. The
high level of both precision and recall means that one-class
classifiers could identify most of the rumors with a high level
of precision.

Last but not least, by considering Fig. 8, one can simply
realize that the synergy of all features from the three categories

is positive based on F1-score. In particular, the F1-score of the
autoencoder, Gaussian, K-means, KNN, SVDD, OCSVM, and
PCA based on all features is superior to the F1-score obtained
by training with individual feature categories only. However,
this superiority is more significant in some classifiers, for
instance, SVDD in the Zubiagaset or Gaussian in Kwonset.
In some of the experiments, such as the KNN trained by the
linguistic features on the Zubiagaset, recall is higher compared
to the training with all features, but its precision is also lower,

which results in the overall lower Fl-score.
5) Classification Speed: The other metric to assess and

compare the classifiers is their speed. To measure the classi-
fication speed, we gauge the execution time of classification,
which means the average time of training and test for one
iteration of k-fold cross validation. Fig. 9 shows the execution
time of classifiers across the Kwonset and Zubiagaset. We use
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a log-log diagram due to the substantial difference between
the execution times.

In both data sets, Gaussian, K-means, and PCA are the
fastest classifiers. The execution time of the other classifiers
varies in both data sets. In the Zubiagaset, SVDD is the slowest
model, while in Kwonset, KNN has the longest execution time.

It is worth mentioning that due to the scalability problem in
the MATLAB SVDD package, we use a subset of Kwonset
for SVDD. In the Zubiagaset, after SVDD, autoencoder, KNN,
and OCSVM are the slowest classifiers. In Kwonset, the next
three classifiers with the longest execution time are OCSVM,
autoencoder, and SVDD.
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VII. CONCLUSION

In this paper, we studied the binary rumor classification
pitfall by addressing the long-standing and unnoticed concept
of “non-rumor.” Non-rumor is a term coined by computer
scientists when they formulated rumor detection as a binary
classification problem. There is neither a clear definition nor a
consensus among scholars for this pseudo-concept. Some stud-
ies imply that rumor and non-rumor are complementary con-
cepts; in other words, non-rumor is any piece of information
that cannot get rumor label. In some other work, non-rumor
is considered as factual information. This ambiguity and lack
of consensus about the definition of non-rumor has influenced
data annotation, which eventually diminished the quality of
classification. It also impacts the data annotation in a way
that a tweet may take the non-rumor label as it is a piece
of information from a credible news source, while in another
research, a tweet may take the same label because it is not a
rumor.

This lack of consensus on data annotation prevents us
from making a comparison between different classifiers as
they do not annotate (consciously or unconsciously) tweets
consistently. It also makes the classifiers unreliable as there is
no unanimous correct definition for non-rumor, and we do not
know which one is the right definition. Based on the stated
flaws, we reach to the conclusion that the binary classification
with the current approach to non-rumor might not be beneficial
to the computational rumor detection.

To tackle the issue addressed earlier and avoid dealing
with non-rumor, we adopted a novel classification approach
called OCC. This approach goes very well with the special
characteristics of our problem as the classifier is trained by
one class only. Hence, it provides us with an opportunity
to have a classifier for detecting rumor without touching the

mw KNN Il SvDD OCSVM m PCA
10° 10t 10?
Log Execution time (seconds)
Kwonset

controversial area of non-rumor. For the feature extraction,
we took two principles into account, first, to focus on early
available features due to the importance of early detection of
the rumors and, second, to consider features that have already
been suggested as effective features for rumor detection in
social networks.

To evaluate the quality of the proposed approach, we trained
seven one-class classifiers on two major data sets and
compared their performance. We observed that the OCC
approach can recognize rumors with a high level of Fl-score.
In the Zubiagaset, this approach could achieve the Fl1-score
of 74%, and in Kwonset F1-score, this approach reaches 93%.
We extended the experiments to different feature categories
and analyzed the performance of each classifier on individual
feature categories. We observed a positive synergy when
individual feature categories are aggregated. We also studied
the impact of training sample size and hyper-parameters on the
classifiers’ performance. We reported the model performance
in different settings using Fl-score, precision, and recall.
Additionally, to understand the efficiency of the one-class clas-
sifiers, we compared their speed by measuring the execution
time of each classifier.

We can summarize our findings into a few lessons learned.
SVDD performs very well in terms of precision and recall;
however, it is not time and memory efficient. Hence, it is
an ideal one-class classifier for small-sized problems. KNN
performs very well in terms of precision, while its performance
subjected to recall is poor. It is also time and memory
inefficient but not as bad as SVDD. If the data set is not too
large and precision is the main concern, KNN can be the right
choice. The other one-class classifier is autoencoder, which
achieves good results with respect to both precision and recall.
In contrast to SVDD and KNN, it is memory efficient and can
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be executed on a desktop computer even for relatively large
data sets, such as Kwonset. On the other hand, it is time-
consuming, especially when it is a setup with a high number
of hidden units. Therefore, in the case of relatively large
data sets, lack of adequate computational resources, having
a considerable amount of time autoencoder can be a proper
one-class classifier. Gaussian, K-means, and PCA produce
mediocre results with a relatively low level of precision and a
high level of recall in small data sets; however, they are very
fast even in large data sets. Therefore, if the data sets are large,
they are ideal choices.

For the future works, several directions can be built upon
this research. The first one is using more data points for
training the classifier and studying how increasing data points
can affect the performance of the rumor classifiers. How-
ever, due to the expensive procedure of data collection and
annotation (time- and money-wise), a possible way of data
generation would be transfer learning and generative adver-
sarial networks (GANSs). Another avenue for future research
would be a methodological improvement. We observed that
OCSVM performs poorly and excellently, respectively, on the
Zubiagaset and Kwonset, while the rest of the classifiers
show an acceptable level of performance in the Zubiagaset.
Evidently, some OCC algorithms perform brilliantly in some
data sets and poorly on some others. A possible research
suggestion can be applying an ensemble OCC technique for
rumor identification. Another methodological avenue can be
developing an efficient solver for the SVDD technique as it
crashes when the size of the data grows. The current solver
of SVDD is developed by the creators of this method and is
based on MATLAB Optimization Toolbox. The fourth research
direction can be extracting more features influenced by the
literature of rumor psychology as well as features regarding
the context of the rumor.
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