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Abstract

Location-based social networks (LBSNs) have been popular
around the world. Some recent studies have focused on us-
ing online/offline social interactions among individuals to
explain social phenomena, strongly demonstrating that data
collected by LBSNs can be utilized to analyze the behavior
of users. However, how structural hole spanners (SHS) be-
have in a LBSN requires more investigation. In this paper,
we crawl the entire social network and all published tips of
Foursquare, a leading LBSN app with more than 60 million
users, using a distributed approach. Based on the crawled
massive user data, we discuss the behavior characteristics of
SHS in demographic, spatiotemporal and linguistic aspects.
We further develop a classification model to accurately iden-
tify SHS and ordinary users based on their behavioral data.
Our model achieved a high classification performance, with
an F1-score of 0.821 and an AUC value of 0.879.

CCS Concepts: « Human-centered computing — Empir-
ical studies in collaborative and social computing.
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1 Introduction

With the advance of mobile computing technologies and
social networking services, location-based social networks
(LBSNs), such as Foursquare [9] [33], Yelp [11] [36] and Di-
anping [8] [13], have blended in well in daily lives and en-
abled exploration of the intersection between physical world
and digital world. Considering the ubiquity of LBSNs and
the abundant data they are continuously collecting, extract-
ing meaningful information about human behavior through
large scale user-generated content (UGC) data has attracted
significant attention from both academia and industry.

LBSNs bridge the gap between the physical world and the
online social networking services. On one hand, LBSNs add
a new dimension to an existing social network and facilitate
the sharing of people’s location-embedded experiences. On
the other hand, LBSNs connect users by the interdependency
derived from their location-tagged media content. The in-
terdependency includes not only that two users co-occur
in the same or similar physical location [34] but also the
knowledge, e.g., common interests, behavior, and activities,
inferred from an individual’s location history and location-
tagged data [39] [26].

Therefore, LBSN has been considered as a vital tool for
extracting knowledge about human behavior from their in-
teraction with the physical world. For example, some exist-
ing studies focused on user similarity/link prediction, ex-
perts/influencers detection and community discovery.

The structural hole theory [4] [20], which clarifies how
people benefit from the positions they are occupying in a
social network and from their social connections, has been
applied to various scenarios of social networks [12] [40].
However, the relationship between the role of SHS and their
online/offline activities requires more study. Our contribu-
tions are two-fold: 1) We provide a comprehensive analysis
of the behavior of SHS in a representative LBSN. We find
out how SHS differ from the ordinary users in demographic,
spatiotemporal and linguistic aspects. 2) We propose a predi-
cation model to detect SHS in LBSNs, which achieves a high
classification performance with an F1-score of 0.821 and an
AUC value of 0.879. To our knowledge, very few existing
studies in LBSNs have discussed human behavior from a
perspective of structural hole theory or predicted SHS using
UGC in LBSNE.

The rest of this paper is structured as follows. We review
the related work in Section 2. We introduce the background
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of the Foursquare network, and the dataset we used for our
study in Section 3. We provide a comprehensive analysis of
the behavior of SHS in Section 4. We discuss our prediction
model in Section 5 and conclude the paper in Section 6.

2 Related Work

Social influence. Social influence is generally related to so-
cial networks [1] [5] [37] and user interactions [17] [21] [29].
The former includes but is not limited to the number of fol-
lowers and PageRank while the latter focuses on the number
of likes, comments, forwards, etc, depicting a user’s social
influence in different ways. Besides individuals, there are
also studies about the social impact of groups [18].

Structural hole theory. Sociology covers well-established
ideas about how positions in social networks benefit the
people who occupy them. For example, the structural hole
theory demonstrates that users acting as intermediaries or
bridges between different communities possess advantages,
since they control the key information diffusion paths [20]. It
points out the connections to different communities in a so-
cial network increase the social capital in competitive areas,
whereas closed networks with homogeneous and repetitive
information do not. According to this theory, when groups
have no direct connections between each other, as if there ex-
its a hole in the social fabric, which is called a structural hole.
An individual who fills it is called a structural hole spanner.
Structural hole theory has been applied to other theories of
social networks [12] [40], as well as various practical sce-
narios, such as business [38], software development [2] and
information diffusion [22].

Location-based social networks. Combining the fea-
tures of social networking and geographic information shar-

ing, LBSNs have long been popular in recent years. [32] [31] [19]

focused on using online social interactions between individ-
uals to explain social phenomena. These studies strongly
indicate that the LBSN data can be used to analyze the be-
havior of user groups. However, there has been very few
discussion about the social behavior of SHS in the context
of LBSN. Our research aims to bridge the gap between cy-
berspace and physical places.

3 Dataset

Foursquare [13] [24] [28] has been a leading site for the
combination of location-based services (LBS) and mobile
social networking. Unlike traditional online social networks
(OSNss) such as Facebook [7], all activities on Foursquare
are location-specific with two key functions of conducting
check-ins and leaving tips.

Since most mainstream OSNs apply per-IP address rate
limits, it becomes time and resource consuming to crawl
an entire large-scale OSN. As an alternative, most existing
work [16] [27] [28] only selects a sampled sub-graph for
research which may lead to an incomplete and even biased

Xiaoxin He, Yang Chen

conclusion. To avoid such situation, we crawled the data of
all 62.6 million Foursquare users accelerated by launching
40 crawlers. Each crawler was deployed on a virtual instance
of the Microsoft Azure platform, with a unique IP address.
For each user’s data, we use the official API to conduct the
crawling. Each Foursquare user has a unique numeric ID,
and the IDs are assigned successively. Therefore, we can
register a new Foursquare account to get the maximum ID,
denoted by max_uid. We divide the entire Foursquare ID
space [1,max_uid] evenly into 40 chunks, and each crawler
is responsible for one chunk of IDs.

From August 1 to September 10 in 2015, we crawled all
62.6 million Foursquare users’ profile pages and friend lists.
In addition, we crawled all tips and venues published by the
users. Noted that out of respect for Foursquare users’ privacy,
we only capture publicly visible information.

Based on the crawled friend lists of all Foursquare users,
we modeled the entire Foursquare network using an undi-
rected graph G = (V, E). V is the collection of all Foursquare
users and E is the collection of social relationships between
users. Each node in V represents a user, and each edge in E
represents a social connection. The degree of a node in G
represents the number of friends of the corresponding user.
Thus, we constructed a social graph G with 66,884,764 nodes
and 1,546,131,581 edges.

4 Analysis

In this section, we start with introducing the network con-
straint metric in Section 4.1, then we discuss behavioral dif-
ferences between SHS and ordinary users in the perspective
of descriptive information (Section 4.2), spatial (Section 4.3),
temporal (Section 4.4), and language characteristics (Section
4.5).

4.1 Labeling Structural Hole Spanners

Aiming to understand the behavioral preference of SHS in an
OSN, we need a yardstick for determining them. In this study,
the constraint metric was adopted to distinguish SHS from
the ordinary users. Constraint was proposed by Burt [4] to
measure the network closure which describes the degree to
which a node in the network is directly or indirectly con-
nected with other nodes. The more connected with other
contacts, the stronger constraint a node will have. [30] [35]
also use it to reflect the constraints between relationships.
The calculation of constraint is as follows.

e Calculate the time and energy P;; that i spends on j

proportional of all of his time and energy:

o alijl+aljd]
Y sum(ali, k] + alk, i])

k+#i,Vke N (1)
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Figure 1. Distribution of the constraint.

e Calculate the constraint degree C;; between node i and
node j:

Cij = (Pij+ ) PigPg))* q#iq#]j (2)
q
e Calculate the constraint metric C;; of node i:
Ci=),Cy (3)
J

Due to the large scale of nodes and edges of Foursquare’s
social graph, we randomly select 100 thousand nodes and
calculate their constraints. And we do not consider isolated
nodes in our study. The distribution of the constraints is
presented in Figure 1. We sorted users by their constraints
ascending. The top x% are labeled as SHS and the rest are
labeled as ordinary users. We define the rest of users as
ordinary users. It is worth mentioning that we also observe
that the different thresholds of x will not affect the overall
analysis results. For the sake of brevity, we use x = 10 by
default unless specified.

4.2 Descriptive information

In this subsection, we discuss how SHS differ in gender, the
number and length of tips and the tips with photos.

Gender. The number of male users is significantly higher
than that of female users, with a ratio of 1.92. As for the user
group of SHS, such difference is even more striking with a
ratio of 2.7, while the ordinary users have a ratio of 1.91.

The number of tips. Foursquare users publish 3.33 tips
on average while the average number of the tips published
by SHS is 5 times more than that of ordinary users.

The length of tips. For the whole group of users, each
tip is comprised of 22 words on average. But for the group of
SHS, they tend to post longer tips, approximately 1.7 times
longer than the group of ordinary users.

Tips with photos. Ordinary users seldom post tips with
photos and only 5 out of 1,000 posts are with photos. How-
ever, for SHS, 3 out of 100 posts are with photos, which is
five times higher compared with the ordinary users.
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Figure 2. Posting of a day and a week.

4.3 Spatial Characteristics

To analysis the spatial characteristic of SHS, we discuss in
terms of the venue category, venue country and travel dis-
tance in this subsection.

Venue category. All activities on Foursquare are location-
specific. Posts, the primary form of UGC on Foursquare, are
tagged with according venues which can be divided into
several categories, such as food, entertainment, and nightlife
spot. To measure a user’s diversity of physical mobility, we
calculate the entropy of venue category. Specifically, we
consider a user’s posting as a discrete random event and the
entropy of venue category can be used to characterise the
uncertainty of user mobility. The larger the entropy is, the
more random and less predicable a user’s movement is.

The average entropy of venue category is 0.23. When the
top 1% and top 10% users are labeled as SHS, the entropy of
venue category is 4.44 times and 4.41 times of that of ordinary
users, respectively. When the proportion of SHS arises, such
trend always holds. Therefore, we believe that compared
with ordinary users, SHS are more likely to explore different
categories of places, instead of repeatedly visiting the same
category of places.

Venue country. In addition to the entropy of venue cat-
egory, a similar pattern persists at the national level. The
entropy of venue country for the whole dataset is 0.03, while
for the group of SHS is 0.10. Therefore, from the aspect of
venue country, we again validate that SHS own more diver-
sity in trajectory.

Travel distance. Travel distance refers to the mean dis-
tance between the venues where a user’ two adjacent posts
were published. For the entire dataset, the travel distance
was 94.37 km. But for SHS, they tend to travel for a longer
distance with average travel distance of 224 km, 242 km and
250 km respectively when top 1%, 5% and 10% are labeled as
SHS, consistently higher than the 93 km, 86 km and 77 km
of ordinary users.

4.4 Temporal Characteristics

For temporal factors, we consider the daily/weekly variation
in posting and the post interval.

Within a day. We use timestamps to observe how users’
posting varies within a day. We first convert the timestamp
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Figure 3. Design of the prediction model.

to local time to get the pattern of users’ posts over 24 hours
of a day. Then we divide 24 time slots and count the number
of posts in each of them, as shown in Figure 2a. Again, we
use entropy to measure the randomness of the posting time.
Compared with ordinary users, SHS show more uncertainty
about the time they post, with an entropy 3 times higher
than others. Unlike posting at a regular time, their posting
is an act more casual and flexible.

Within a week. As shown in Figure 2b, Friday is most
popular, followed by Saturdays and Thursdays. Our result
suggests that the peak of SHS at Friday (and Thursday) is
less striking and the engagement on other days is slightly
higher than ordinary users. That is to say, the participation
of SHS in Foursquare is less influenced by the coming of
weekend.

Post interval. Post interval is the mean time interval
between each of the two adjacent posts. Considering there
are users have never posted or only posted once, we fill their
post interval with the maximum time interval we calculated.
A shorter post interval is observed in the group of SHS in
comparison of the group of ordinary users.

4.5 Language Characteristics

Since Foursquare is a world-wide LBSN, the corpus is made
up of 45 different languages, with English, Indonesian and
Spanish taking up the top 3. In order to facilitate the research
but with representative, we selected English language as a
subset from the data set for further study.

Vocabulary. People habitually convey their ideas through
a set of own-style dictionaries. We first did natural language
processing on all English posts, such as removing punctua-
tion, converting to lowercase, and word segmentation. We
then calculated the number and the entropy of words used
by a user. The ordinary users have unique words of 45 and a
entropy of 0.87 while SHS have 108 and 2.9, respectively.

Sentiment. To gain a deeper understanding of the seman-
tics, especially the sentiment, we use Linguistic Inquiry and
Word Count (LIWC) analyzer to categorise words according
to their emotions into positive, negative, worried, angry and

sad. Then we calculate the entropy of emotional words. As
we label more users (1%,5%, and 10%) with low constraint as
SHS, SHS consistently have a much greater entropy of emo-
tion words in the aforementioned five types of sentiment.

Upper word. People occasionally use words in upper case
with purposes. In Foursquare, every one of five posts contains
a word in upper case and the frequency of upper-case word
of SHS is slightly above the average with a ratio of 1.19.

5 Prediction Model

Nowadays, many popular OSNs, such as Facebook, allow a
user to hide his or her friend list. And the inaccessible to
the entire social graph information hinders the third-party
application providers from determining whether a user is a
SHS. Therefore, as an alternative, we proposed a supervised
learning-based prediction model to identify SHS in LBSNs
using their online/offline data. We introduce our system
design in Section 5.1, experiment in Section 5.2 and feature
importance study in Section 5.3.

5.1 System Design

Figure 3 presents the design of the prediction model. We
roughly divided our system into five components: dataset
preparation, feature extraction, model training, model eval-
uation and prediction. As described in Section 3, our data
records user profiles, tips, venues, and friends. After clean-
ing and analysing the data, we extract features from users’
location-centered data. In the part of model training, 90%
of data is used as the training and validation set and the
remaining 10% is used as the test set, feeding into various
traditional machine learning algorithms. We evaluate the
performance of different models and discuss the importance
of different sets of features.

5.2 Experiment

We first randomly and respectively select 6,246 samples from
positive and negative samples. After that we extract 19 fea-
tures in accordance to the analysis in Section 4 and divide
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Table 1. Experiment results of different models.

Model Parameters Precision Recall F1-Score AUC
Random Forest class_weight=balanced, max_depth=5, min_samples_split=7 0.777 0.765  0.770 0.766
XGBoost booster=gbtree, gamma=0.1, max_depth=8, lambda=2, 0.78 0.868  0.821 0.879
eta=0.001, subsample=0.7, min_child_weight=3
LightBoost max_depth=5, learning_rate=0.05, num_leaves=500 0.781 0.748  0.763 0.770
CatBoost eval_metric=AUC, depth=6, 12_leaf reg=1, learning_rate=0.1  0.769 0.761  0.765 0.766
NaiveBayes default 0.828 0.647  0.725 0.757
SVM gamma=auto 0.770 0.807  0.787 0.783

Table 2. SHAP-base feature importance study.

rank feature Shapley values
1 time entropy (day) 180.722
2 post count 74.477
3 word entropy 69.299
4 post length 34.952
5 post interval 26.638
6 time entropy (week) 26.024
7 venue category entropy 21.936
8 travel distance 18.73

9 negative word entropy  13.892
10 uppercase word entropy  12.796

Table 3. Evaluation on different feature subsets.

Category Precision  Recall F1-Score =~ AUC
all 0.78 0.868 0.821 0.879
descriptive 0.750 0.816 0.779 0.775
spatial 0.761 0.774 0.766 0.767
temporal  0.779 0.776 0.776 0.784
language 0.779 0.768 0.772 0.776

them into four categories: descriptive information, spatial,
temporal, and language features. Then we use several pop-
ular supervised machine learning models, including Ran-
dom Forest [3], XGBoost [6], LightGBM [15], CatBoost [25],
NaiveBayes [14], and Support Vector Machine(SVM) [10].
For simplicity and convenience, we do not use deep learning.
For each model, we apply 10-fold cross-validation for the
evaluation and use grid search to find the best parameters
(Table 1).

There is no significant difference in the performance among
models (Table 1). XGBoost has the highest score of AUC
(0.879), closely followed by SVM (0.783). These decent per-
formances indicate that the features extracted are competent
in distinguishing SHS from a group of people.

5.3 Feature importance

Among these selected features, we use SHAP [23], a game
theoretic approach to explain the output of machine learning
models, to gain better understanding of the importance of
features from different categories. SHAP connects optimal
credit allocation with local explanations using the classic
Shapley values from game theory and their related exten-
sions. Features with large Shapley values are considered to
be important. We summarise the top ten most important
features in Table 2, two from the category of descriptive
information, two from spatial features, three from tempo-
ral and three from language features. In other words, all
categories of features contribute to the model’s prediction.

We validate our conclusion by using each category inde-
pendently for training. As we can see in Table 3, using only
one category can achieve a comparable prediction perfor-
mance to the original model.

6 Summary

To our knowledge, very few existing studies in LBSNs have
discussed human behavior from a perspective of structural
hole theory or predicted SHS using UGC in LBSNs. In this
work, we regard SHS as a novel entry point to excavate
valuable knowledge from massive data from LBSNs. We find
out how SHS differ from others in descriptive information,
spatiotemporal and linguistic characteristics. On top of that,
we build a supervised machine learning-based prediction
model to accurately distinguish between SHS and ordinary
users based on their behavioral data. Our model achieved a
high classification performance and also maintained a good
performance when using only one category of features.

As future work, we will further improve the predication
model to detect SHS with large scale of data. Moreover, we
will consider applying the proposed model in other real-
world LBSNs, which paves the way to develop novel physical
and digital knowledge for urban computing.
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