
Twittering by Cuckoo – Decentralized and Socio-Aware
Online Microblogging Services

Tianyin Xu∗,‡, Yang Chen∗, Xiaoming Fu∗, Pan Hui†
∗ Institute of Computer Science, University of Goettingen, Goettingen, Germany

‡ State Key Lab. for Novel Software and Technology, Nanjing University, Nanjing, China
† Deutsche Telekom Laboratories/TU-Berlin, Berlin, Germany

{tianyin.xu, yang.chen, fu}@cs.uni-goettingen.de, pan.hui@telekom.de

ABSTRACT
Online microblogging services, as exemplified by Twitter,
have become immensely popular during the latest years.
However, current microblogging systems severely suffer from
performance bottlenecks and malicious attacks due to the
centralized architecture. As a result, centralized microblog-
ging systems may threaten the scalability, reliability as well
as availability of the offered services, not to mention the high
operational and maintenance cost.
This demo presents a decentralized, socio-aware microblog-

ging system named Cuckoo. The key aspects of Cuckoo’s
design is to take advantage of the inherent social relations
while leveraging peer-to-peer (P2P) techniques in order to
provide scalable, reliable microblogging services. The demo
will show these aspects of Cuckoo and provide insights on the
performance gain that decentralization and socio-awareness
can bring for microblogging systems.

Categories and Subject Descriptors: C.2.4 [Computer-
Communication Networks]: Distributed Systems – Distributed
Applications

General Terms: Design, Performance, Implementation

Keywords: Microblogging Services, Online Social Network-
ing, Peer-to-Peer Systems

1. INTRODUCTION
With the phenomenal success of Twitter-like Internet ser-

vices, microblogging has emerged as a new, popular com-
munication utility in the latest years. Twitter, the most
successful microblogging service launched in October 2006,
has attracted more than 41.7 million users as of July 2009
[3] and its userbase is still growing fast. Unlike the previous
weblogging services, microblogging services commonly rely
on the opt-in publish-subscribe (pub-sub) model. The basic
operation of the pub-sub model is “follow”. Being a follower
means that the user will receive all the microblogs1 from the
one he follows (named followee). A user can follow anyone,
and the one being followed need not follow back. Based on
the pub-sub model, microblogging services do not require
users to explicitly poll information sources, but automati-
cally deliver micro-news to users.

1
In this paper, we use “microblog”, “micro-content”, “micro-news”,

“status”, “update” interchangeably.

Copyright is held by the author/owner(s).
SIGCOMM’10, August 30–September 3, 2010, New Delhi, India.
ACM 978-1-4503-0201-2/10/08.

On the other hand, microblogging is more than feed read-
ers for its online social network features. The offered services
include helping people to maintain personal profiles, to dis-
cover potential acquaintances, to find interesting topics, etc.
Thus, social links in microblogging also reflect users’ real-life
social relations. According to [2], Twitter users can be clas-
sified into different social identities, such as broadcasters and
miscreants. Broadcasters include celebrities and news media
that have huge numbers of followers. For example, cnnbrk
(CNN Breaking News) in Twitter has over 2.97 million fol-
lowers but only follows 28 users. Miscreants try to contact
everyone and hope that someone can follow back.

Current microblogging systems depend on centralized ar-
chitectures, where user clients repeatedly request centralized
servers for newest micro-contents no matter whether there is
a new update. Such polling-style requests are blind, sticky
and superfluous, placing heavy bandwidth burdens on both
service providers and user clients. Currently, centralized mi-
croblogging services suffer severely from performance bottle-
necks (e.g., Twitter’s rate limit2) and single points of fail-
ure (e.g., Twitter’s not rare “over capacity” errors3). More-
over, the centralized services are quite vulnerable to service
blocking as well as malicious attacks (e.g., DoS attacks4).
Thus, decentralized solutions are desired to relieve the bur-
den while improving the robustness, so as to achieve high
scalability, reliability and availability of the offered services.

In this demo, we present Cuckoo, a decentralized and
socio-aware online microblogging system. Our objective is
to demonstrate (1) how Cuckoo’s decentralized architecture
helps microblogging systems to save the bandwidth costs, to
remove single points of failure, and to resist service block-
ing and malicious attacks, while performing equally well or
even better than its conventional centralized ilks; (2) how
Cuckoo’s socio-awareness helps the whole system to balance
the load, to assist micro-news dissemination, and to reduce
the response latency. The demo will show the performance
gain that the two key aspects of Cuckoo’s design can bring.

2. CUCKOO IN A NUTSHELL
This section briefly introduces some relevant design ratio-

nales of Cuckoo. More details can be found in [6].
Decentralization. Cuckoo is built on a hybrid overlay

structure, in that it utilizes P2P techniques to reduce band-
width and storage consumption for the server side. The un-

2
Twitter currently has the rate limit that only allows 150 requests

per hour for normal users.
3
In June 2008, as many as 3% of page requests in Twitter yielded

“over capacity” errors [5].
4
In August 2009, Twitter did be crippled by DDoS attack [1].



derlying P2P overlay network combines both structured and
unstructured overlays. For providing location services and
improving availability, Cuckoo organizes user clients into a
structured overlay. We employ Pastry [4] as the structured
overlay infrastructure. The 128-bit nodeId can be generated
according to the sequential userId (e.g., Twitter userId). In
this case, a user can find any online user in O(log(N)) steps.
For disseminating micro-news, Cuckoo clients with same in-
terests (i.e., following same celebrities or being interested
in same topics) form unstructured overlays based on gos-
sip protocol. With the unstructured overlays, micro-news
can be propagated to all the subscribers with high probabil-
ity. On the other hand, the dedicated servers from service
providers still hold resources like user profiles and statuses as
before, while serving as backup servers to guarantee avail-
ability. Thus, Cuckoo does not exclude service providers
from their architectural framework.
Socio-Awareness. In microblogging services, a user has

one or several of the following social relations: friend, neigh-
bor, follower, and followee. Friend is the reciprocate social
link between two users, which indicates that the two users
are acquaint with each other and willing to help each other.
Neighbor refers to the relationship between users with same
interests. Follower and followee are the most common one-
way connections. A Cuckoo client maintains these social in-
formation and takes advantage of social relations. The basic
idea is (1) each node and its friends make up the virtual
node via request redirection, i.e., friends help each other to
balance load and improve availability; (2) normal users di-
rectly push microblogs to their followers5; (3) for propagat-
ing micro-news from broadcasters or celebrities like cnnbrk,
gossip-based push between neighbors are put into use.

3. DEMO SCENARIOS
Demo Setup. In this demo, we run Cuckoo in the site

network connected to the Internet. We deploy Cuckoo us-
ing 3 netbooks, each of which runs several Cuckoo applica-
tions. Each Cuckoo application represents a user of Twitter.
These Cuckoo applications make up the Cuckoo microblog-
ging system. We require that each Cuckoo application can
access Twitter via Internet. Here, we choose Twitter just
to demonstrate that Cuckoo is compatible for most current
microblogging systems because Cuckoo does not require any
functionality or modification on the server side. One de-
sign guideline of Cuckoo is to help microblogging service
providers but not bury them (i.e., losing user community).
Cuckoo Use Cases. Cuckoo is easy to use. It pro-

vides the basic functions of microblogging services includ-
ing “tweet” (i.e., publishing a microblog) and “follow”. The
main user interface can be seen in Fig. 1. After login with
username and password, the user can receive the microblogs
from all his followees in time ordered by the timeline.
Bandwidth and Traffic Saved. We demonstrate that

Cuckoo’s decentralized architecture significantly saves the
bandwidth and traffic consumed by the bandwidth & traf-
fic analyzer. The analyzer measures the real-time traffic
from/to other peers compared with the traffic from/to the
server for fetching/disseminating micro-contents. Fig. 1
shows the interface of the incoming traffic analyzer, the red
curve and blue curve represent the traffic from peers and
servers respectively. We will see that most micro-news can

5
It is reported in [5] that 90% users in Twitter have less than 100

followers and half of Twitter users have 10 or fewer followers.

Figure 1: Cuckoo’s user interface and analyzers: the
left part is the user’s timeline-based wall, the upper
right part is the bandwidth & traffic analyzer and
the lower right one is the dissemination analyzer.

be fetched via peer collaboration, while only some inactive
users’ microblogs have to be retrieved from the server. Note
that the sum of the two kinds of traffic is still much less than
the corresponding traffic in centralized architecture, because
user clients in Cuckoo no longer need to request the server
blindly and frequently.

Dissemination Effect. We also demonstrate Cuckoo’s
socio-aware dissemination in terms of propagation coverage,
i.e., the percentage of online followers that successfully re-
ceive the disseminated micro-news. Fig. 1 shows the dis-
semination analyzer that uses bar chat to illustrate the per-
centage of contacted followers, followers that receive the mi-
croblogs, current online followers over all the user’s follow-
ers for each micro-content dissemination process. Through
this scenario, we show how Cuckoo applications disseminate
their microblogs according to their social relations (i.e., fol-
lower/followee relations and neighbor relations). We also
show that high propagation coverage can be achieved via
neighbors’ mutual assistance.

4. CONCLUSION
Cuckoo is a decentralized, socio-aware microblogging sys-

tem that is more scalable and reliable than current central-
ized equivalents. The motivation of Cuckoo derives from the
fact that current microblogging systems severely suffer from
performance bottlenecks and single points of failure, and is
quite vulnerable to service blocking and malicious attacks.

The demo illustrates Cuckoo’s design rationale, architec-
ture as well as some technical and practical considerations.
At the same time, we will demonstrate how to use Cuckoo
and most importantly, the performance gain that the design
of Cuckoo could bring for microblogging services.

5. REFERENCES
[1] CNET News. Twitter crippled by denial-of-service attack.

[2] B. Krishnamurthy, P. Gill, and M. Arlitt. A Few Chirps about
Twitter. In Proc. of WOSN, 2008.

[3] H. Kwak, C. Lee, H. Park, and S. Moon. What is Twitter, a
Social Network or a News Media? In Proc. of WWW, 2010.

[4] A. Rowstron and P. Druschel. Pastry: Scalable, decentralized
object location and routing for large-scale peer-to-peer
systems. In Proc. of Middleware, 2001.

[5] D. R. Sandler and D. S. Wallach. Birds of a FETHR: Open,
decentralized micropublishing. In Proc. of IPTPS, 2009.

[6] T. Xu, Y. Chen, J. Zhao, and X. Fu. Cuckoo: Towards
Decentralized Socio-Aware Online Microblogging Services and
Data Measurements. In Proc. of HotPlanet, 2010.


