
Latency-Aware Data Partitioning for Geo-Replicated
Online Social Networks

Lei Jiao, Tianyin Xu∗, Jun Li+, Xiaoming Fu
University of Goettingen, ∗U.C. San Diego, +University of Oregon

{jiao, fu}@cs.uni-goettingen.de, tixu@cs.ucsd.edu, lijun@cs.uoregon.edu

1. INTRODUCTION
Large-Scale Online Social Networks (OSNs) usually em-

ploy data replication across multiple datacenters in multiple
geo-locations to ensure high availability and performance [1].
The de facto method for data replication in current OSNs
(e.g., Facebook) is full replication which enables each geo-
distributed datacenter to maintain one copy of all the data.
The full replication method can simply achieve the best per-
formance but poses high overhead for storage and mainte-
nance (e.g., synchronization). Firstly, full replication leads
to linear storage growth with the increasing of datacenter
deployment, which is of poor scalability. Secondly, the data
replicas across all the locations requires synchronization, re-
sulting in large inter-datacenter WAN traffic which is very
expensive. The ideal solution is to partition user data across
multiple datacenters, making each geo-distributed datacen-
ter to maintain one partition of the whole data set. Un-
fortunately, partitioning OSN data by tradition graph algo-
rithms is known to be very difficult due to the high inter-
connection and inter-dependency within the OSN data [2].
Besides, geo-partitioning goes beyond the traditional graph
partitioning problems because the user-perceived latency is
a critical Quality-of-Service (QoS) issue to be considered.
On the other hand, it is becoming easier and easier to de-

ploy geo-distributed online services with the prevalence of
cloud computing infrastructures. Nowadays, startups and
enterprises can easily deploy their own OSN services in dif-
ferent geographical locations by paying for the usage of geo-
distributed cloud utilities (e.g., Amazon EC2). This kind of
business pattern raises the important question: How to par-
tition OSN user data across multiple geo-distributed clouds
(or datacenters) at the minimum monetary cost, while sat-
isfying each user’s QoS requirements?
In this paper, we try to answer this challenging ques-

tion by proposing TAMER, a latency-aware data partition-
ing method for geo-replicated OSNs. TAMER uses a Two-
step mAtching-and-MERging algorithm to minimize mainte-
nance cost with the QoS guarantee in terms of user-perceived
latency. We show that TAMER outperforms both the ran-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Middleware Posters 2011 December 12th, 2011, Lisbon, Portugal.
Copyright 2011 ACM 978-1-4503-1073-4/11/12 ...$10.00.

dom method which randomly distributes data to different
clouds and the greedy method which always places a user’s
data onto the closest cloud to the user. Note that the ran-
dom method is the de facto method of data partitioning
in current distributed database systems, e.g., MySQL, Dy-
namo, Cassandra. Our primary results show that TAMER
saves up to 36% of the cost compared with the greedy method,
and up to 45% compared with the random method.

2. THE GEO-PARTITIONING MODEL
We use the social graph to model users and their social

relations. In the social graph, each vertex represents a user,
and each edge represents the social relation between two con-
nected users. Each vertex is associated with a value which
represents the maintenance cost of the corresponding user.
The cost is calculated as the sum of the storage cost (i.e., the
storage required to hold the user’s data) and the bandwidth
cost (i.e., the traffic required to inform the user’s neighbors
of new updates). Moreover, each user is also associated with
a vector containing the IDs of candidate partitions. Here we
use partition to refer to the cloud(s) in one geo-location. The
candidate partitions are those partitions that can satisfy the
user’s latency requirement. Given a latency requirement, the
OSN provider is able to get the users’ candidate partition
set based on measurement or calculation (e.g., network co-
ordinates). In this case, the latency requirement is said to
be satisfied as long as each user’s data is placed on any one
of partitions in this user’s vector.

3

[1, 3, 7]

[2, 5, 8]

[2, 3, 5]

[1, 3, 4]

[2, 3, 8] [1, 4, 5]

[1, 2, 4]

2

7

6

4

8

1 5

A

C B

D

E

F

G

H

[1, 2, 5]

Figure 1: The graph representation of the model

Fig. 1 gives an example of the graph-based model. User A
has the vector [1, 2, 4] which indicates that A’s data should
be assigned to one of Partition 1, 2, and 4 to satisfy A’s
latency requirement. Suppose that we want to partition
all the data into two partitions, and the final partitioning is
shown in Fig. 1. In this case, the cost equals to 6+2+7 = 15,
where 6 is the traffic sent from user E to the left partition,

2 is the traffic sent from user D to the right partition, and
7 is the traffic from user C to the right partition.
Given a social graph, the goal of TAMER is to find the

optimal partitioning where the inter-partition cost is mini-
mized and each vertex is placed on one of its candidate par-
tition. Note that we omit the storage cost for all the vertices
in the model. In this paper, we assume that users have the
same storage cost in the case like Twitter which only retain
≈ 3000 recent tweets for each user. Under this assumption,
counting the storage cost only adds a constant to each vertex
value, which would not change the final partition solution.

3. TAMER: TWO-STEP PARTITIONING
Taking the huge size of social graphs into consideration,

it is computationally expensive to seek for global optimal
because it usually requires ranking all the vertices or all the
edges (e.g., [3]). As a result, we turn to visit each vertex in
a random order. TAMER is a two-step partitioning method
including matching (Step 1) and merging (Step 2). We de-
scribe TAMER as follows.

Step 1: Matching. For each vertex visited, we match it
with its adjacent vertex which shares some candidate parti-
tion(s) and has the maximal cost. The goal of this step is
to save the cost between one-hop neighbors to a large ex-
tent. Once matched, the two vertices are combined into a
new vertex which can only be put on the common candi-
date partitions shared by the two old vertices. We repeat
this procedure until there is no one-hop neighbors sharing
candidate partitions, or until the size of the graph reaches
some pre-defined threshold. Once two vertices are matched,
the cost between the new vertex and its neighbors has to be
updated correspondingly.

Step 2: Merging. For each vertex visited, we merge any
two of its neighbors into a new vertex if they share com-
mon candidate partitions. By doing this, the cost between
the visited vertex and the merged two vertices are saved,
because after merging (i.e., the two vertices are put in the
same candidate partition set), the visited vertex only needs
to send the traffic to the merged vertices once instead of
sending it twice to these two vertices respectively. This pro-
cess is also repeated with similar termination conditions and
cost update operations as in Step 1.

After the two steps, there is no one-hop nor two-hop neigh-
bor sharing a common candidate partition, i.e., every vertex
in the smallest coarsened graph is free to be placed on any
one of its candidate partitions without impacting the cost.

4. DATA COLLECTION AND PROCESSING
We crawled Twitter during March to April 2010 using

Breadth First Search (BFS) as the graph search algorithm.
We collected 3,117,553 users with 23,883,149 social links
(i.e., social relations) in total. For each user in the dataset,
we have his or her profile, tweets, the follower list and the
followee list. Among all the users, 1,157,425 users provide
geographic information (i.e., locations) in their profiles. We
filter out the users outside USA based on the database of
US Board on Geographic Names. Then, we use the Google
Maps services to convert all the USA user locations into
the [latitude, longitude] pairs. Afterwards, we extract the
largest connected component of 329,235 users with 4,666,092
social relations, which are adopted as the input of TAMER
for evaluation. Regarding to the cost, we use the total traf-

Closest Random3 Random5 TAMER3 TAMER5
0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
or

m
al

iz
ed

 C
os

t

Graph Partitioning Mechanisms

Figure 2: Normalized
cost comparison

1st 2nd 3rd 4th 5th
0

10

20

30

40

50

60

70

80

90

100

C
D

F
of

 U
se

r P
ro

po
rti

on
 (%

)

The Rank of Cloest Parition(s)

 TAMER3
 Random3
 TAMER5
 Random5

Figure 3: User data dis-
tribution upon clouds

fic volume (i.e., the total number of tweets) of each user in
February 2010. For geo-locations of the clouds, we select
10 locations all across USA which are real-world cloud loca-
tions of different cloud service providers. Finally, according
to the [latitude, longitude] pairs of users and clouds, it is
straightforward to calculate “close” clouds for each user.

5. PRIMARY EVALUATION RESULTS
We compare TAMER with two other partitioning meth-

ods: the random method and the greedy method. The for-
mer is the de facto method that randomly distributes each
user’s data on one of the candidate clouds, while the latter
simply places each users’ data on his or her closest cloud.
For TAMER and the random method, we consider the can-
didate clouds as the closest 3 and 5 out of all the 10 clouds.
The result is shown in Fig. 2. We define normalized cost
as the quotient of standard cost dividing the real cost of
each case, where the standard cost is the cost of the greedy
method. As shown in Fig. 2, for the 3 closest and 5 closest
cases, TAMER saves 4% and 36% of the cost compared with
the greedy method (“Closest” in Fig. 2), and saves 14%, 45%
of the cost compared with the random method.

It is obvious that the greedy method can provide the best
user experience because each user’s data is placed on the
closest cloud to the user. However, this is achieved by paying
the considerable cost. One goal of TAMER is to discuss
the trade-off between the cost that service providers have to
pay and the user experience that the service can provide. We
show in Fig. 3 that, given users’ QoS requirements, TAMER
can provide better user experience as a whole compared with
the random method, the de facto standard, while reducing
the cost significantly.

Taking TAMER5 vs. Random5 in Fig. 3 as an example,
we can see that there are 67% of total users whose data are
placed on one of the closest 3 clouds (out of 5) with TAMER,
while there are 60% of total users in the random method,
i.e., TAMER places more users’ data on their closer clouds
which indicates better Quality of Experience (QoE) of users,
compared with the random method.

6. REFERENCES
[1] S. Agarwal, J. Dunagan, N. Jain, S. Saroiu, A. Wolman, and H.

Bhogan. Volley: Automated Data Placement for
Geo-Distributed Cloud Services. In Proc. of NSDI, 2010.

[2] J. M. Pujol, V. Erramilli, G. Siganos, X. Yang, N. Laoutaris, P.
Chhabra, and P. Rodriguez. The Little Engine(s) That Could:
Scaling Online Social Networks. In Proc. of SIGCOMM, 2010.

[3] A. Abou-Rjeili and G. Karypis. Multilevel Algorithms for
Partitioning Power-Law Graphs. In Proc. of IPDPS, 2006.

