Vorlesung Telematik

Higher Layer Protocols: TCP/IP and ATM

Xiaoming Fu
Telematics Group
University of Goettingen

Outline

• Network Layer and Internetworking
• The TCP/IP protocol suit
• ATM
• MPLS

Most slides were adopted from Eytan Modiano, MIT; some are adapted from Jim Kurose & Keith Ross "Computer Networking" [2nd ed].

Slide 2

Higher Layers

Virtual link for reliable packets
Application
Presentation
Session
Transport
Network
Data link
Control

Network

dLC
dLC
dLC
dLC

Virtual bit pipe
Virtual link for end to end packet s
Virtual link for end to end messages
Virtual session
Virtual network service

TCP, UDP
IP, ATM

Slide 2

Packet Switching

• Datagram packet switching
 - Route chosen on packet-by-packet basis
 - Different packets may follow different routes
 - Packets may arrive out of order at the destination
 - E.g., IP (The Internet Protocol)

• Virtual Circuit packet switching
 - All packets associated with a session follow the same path
 - Route is chosen at start of session
 - Packets are labeled with a VC# designating the route
 - The VC number must be unique on a given link but can change from link to link
 - Imagine having to set up connections between 1000 nodes in a mesh
 - Unique VC numbers imply 1 Million VC numbers that must be represented and stored at each node
 - E.g., ATM (Asynchronous transfer mode)
Virtual Circuits Packet Switching

- For datagrams, addressing information must uniquely distinguish each network node and session
 - Need unique source and destination addresses
- For virtual circuits, only the virtual circuits on a link need be distinguished by addressing
 - Global address needed to set-up virtual circuit
 - Once established, local virtual circuit numbers can then be used to represent the virtual circuits on a given link: VC number changes from link to link

- Merits of virtual circuits
 - Save on route computation
 - Need only be done once at start of session
 - Save on header size
 - More complex
 - Less flexible

Node 5 table

(3,5) VC13 -> (5,8) VC3
(3,5) VC7 -> (5,8) VC4
(6,5) VC3 -> (5,8) VC7

The TCP/IP Protocol Suite

- Transmission Control Protocol / Internet Protocol
- Developed by DARPA to connect Universities and Research Labs

Four Layer model

<table>
<thead>
<tr>
<th>Applications</th>
<th>Telnet, FTP, email, etc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transport</td>
<td>TCP, UDP</td>
</tr>
<tr>
<td>Network</td>
<td>IP, ICMP, IGMP</td>
</tr>
<tr>
<td>Link</td>
<td>Device drivers, interface cards</td>
</tr>
</tbody>
</table>

TCP - Transmission Control Protocol
UDP - User Datagram Protocol
IP - Internet Protocol

Internetworking with TCP/IP

Encapsulation
Bridges, Routers and Gateways

- A Bridge is used to connect multiple LAN segments
 - Layer 2 routing (Ethernet)
 - Does not know IP address
 - Varying levels of sophistication
 Simple bridges just forward packets
 Smart bridges start looking like routers

- A Router is used to route connect between different networks using network layer address
 - Within or between Autonomous Systems
 - Using same protocol (e.g., IP, ATM)

- A Gateway connects between networks using different protocols
 - Protocol conversion
 - Address resolution

- These definitions are often mixed and seem to evolve!

IP addresses

- 32 bit address written as four decimal numbers
 - One per byte of address (e.g., 155.34.60.112)

- Hierarchical address structure
 - Network ID/Host ID/Port ID
 - Complete address called a socket
 - Network and host ID carried in IP Header
 - Port ID (sending process) carried in TCP header

- IP Address classes:

<table>
<thead>
<tr>
<th>Class</th>
<th>Net ID</th>
<th>Host ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0-127</td>
<td>16</td>
</tr>
<tr>
<td>B</td>
<td>128-191</td>
<td>24</td>
</tr>
<tr>
<td>C</td>
<td>192-223</td>
<td>24</td>
</tr>
<tr>
<td>D</td>
<td>224-239</td>
<td>32</td>
</tr>
</tbody>
</table>

Class D is for multicast traffic

Host Names

- Each machine also has a unique name
- Domain name System: A distributed database that provides a mapping between IP addresses and Host names
- E.g., 134.76.81.12 => www.ifi.informatik.uni-goettingen.de
Internet Standards

- Internet Engineering Task Force (IETF)
 - Development on near term internet standards
 - Open body
 - Meets 3 times a year
- Request for Comments (RFCs)
 - Official internet standards
 - Available from IETF web page: http://www.ietf.org

The Internet Protocol (IP)

- Routing of packet across the network
- Unreliable service
 - Best effort delivery
 - Recovery from lost packets must be done at higher layers
- Connectionless
 - Packets are delivered (routed) independently
 - Can be delivered out of order
 - Re-sequencing must be done at higher layers
- Current version: V4
- Next generation: V6
 - Add more addresses (40 byte header!)
 - Ability to provide QoS and better security

Header Fields in IP

<table>
<thead>
<tr>
<th>1</th>
<th>4</th>
<th>8</th>
<th>16</th>
<th>32</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ver</td>
<td>Header length</td>
<td>type of service</td>
<td>Total length (bytes)</td>
<td></td>
</tr>
<tr>
<td>16-bit identification</td>
<td>Flags</td>
<td>13-bit fragment offset</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TTL</td>
<td>Protocol</td>
<td>Header checksum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Source IP Address</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Destination IP Address</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Options (if any)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note that the minimum size header is 20 bytes; TCP also has 20 byte header

IP HEADER FIELDS

- Vers: Version # of IP (current version is 4)
- HL: Header Length in 32-bit words
- Service: Mostly Ignored
- Total length: Length of IP datagram
- ID: Unique datagram ID
- Flags: NoFrag, More
- FragOffset: Fragment offset in units of 8 Octets
- TTL: Time to Live in "seconds" or Hops
- Protocol: Higher Layer Protocol ID #
- HDR Cksum: 16 bit 1's complement checksum (on header only!)
- SA & DA: Network Addresses
- Options: Record Route, Source Route, TimeStamp
A gateway fragments a datagram if length is too great for the next network (fragmentation required because of unknown paths).

Each fragment needs a unique identifier for the datagram plus an identifier for its position within the datagram.

In IP, the datagram ID is a 16-bit field counting datagrams from a given host.

- Fragment offset field gives the starting position of the fragment within the datagram in 8-byte increments (13-bit field).
- Length field in the header gives the total length in bytes (16-bit field).
- A flag bit denotes the last fragment in the datagram.
- IP reassembles fragments at the destination and throws them away if one or more is too late in arriving.

Routing table at each node contains information for each destination, including the next hop router to which the packet should be sent.

- Not all destination addresses are in the routing table.
- Use default router if necessary.
- Routers do not compute the complete route to the destination but only the next hop router.
- IP uses distributed routing algorithms such as RIP and OSPF.

In a LAN, the "host" computer sends the packet to the default router, which provides a gateway to the outside world.

Class A and B addresses allocate too many hosts to a given network.

Subnet addressing allows us to divide the host ID space into smaller "sub networks." This simplifies routing within an organization and reduces the number of routing tables.

- 32-bit subnet "mask" is used to divide the host ID field into subnets.
 - "1" denotes a network address field.
 - "0" denotes a host address field.

<table>
<thead>
<tr>
<th>Class B Address</th>
<th>Subnet ID</th>
<th>Host ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>140.252</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1111111111111111</td>
<td>11111111</td>
<td>00000000</td>
</tr>
</tbody>
</table>
Classless inter-domain routing (CIDR)

- Class A and B addresses allocate too many hosts to an organization while class C addresses don’t allocate enough.
 - This leads to inefficient assignment of address space.
- Classless routing allows the allocation of addresses outside of class boundaries (within the class C pool of addresses).
 - Allocate a block of contiguous addresses.
 - E.g., 192.4.16.1 - 192.4.32.155
 - Bundles 16 class C addresses.
 - The first 20 bits of the address field are the same and are essentially the network ID.
 - Network numbers must now be described using their length and value (i.e., length of network prefix).
- Routing table lookup using longest prefix match.
- Notice similarity to subnetting - “supernetting”

Dynamic Host Configuration (DHCP)

- Automated method for assigning network numbers.
 - IP addresses, default routers.
- Computers contact DHCP server at Boot-up time.
- Server assigns IP address.
- Allows sharing of address space.
 - More efficient use of address space.
 - Adds scalability.
- Addresses are “least” for some time.
 - Not permanently assigned.

Address Resolution Protocol

- IP addresses only make sense within IP suite.
- Local area networks, such as Ethernet, have their own addressing scheme.
 - To talk to a node on LAN one must have its physical address (physical interface cards don’t recognize their IP addresses).
- ARP provides a mapping between IP addresses and LAN addresses.
- RARP provides mapping from LAN addresses to IP addresses.
- This is accomplished by sending a “broadcast” packet requesting the owner of the IP address to respond with their physical address.
 - All nodes on the LAN recognize the broadcast message.
 - The owner of the IP address responds with its physical address.
- An ARP cache is maintained at each node with recent mappings.

Routing in the Internet

- The internet is divided into sub-networks, each under the control of a single authority known as an Autonomous System (AS).
- Routing algorithms are divided into two categories:
 - Interior protocols (within an AS).
 - Exterior protocols (between AS’s).
- Interior Protocols use shortest path algorithms (more later).
 - Distance vector protocols based on Bellman-Ford algorithm.
 - Nodes exchange routing tables with each other.
 - E.g., Routing Information Protocol (RIP).
 - Link state protocols based on Dijkstra’s algorithm.
 - Nodes monitor the state of their links (e.g., delay).
 - Nodes broadcast this information to all of the network.
 - E.g., Open Shortest Path First (OSPF).
- Exterior protocols route packets across AS’s.
 - Issues: no single cost metric, policy routing, etc.
 - Routes often are pre-computed.
 - Example protocols: Exterior Gateway protocol (EGP) and Border Gateway protocol (BGP).
IPv6

- Effort started in 1991 as IPng
- Motivation
 - Need to increase IP address space
 - Support for real-time application - "QoS"
 - Security, Mobility, Auto-configuration
- Major changes
 - Increased address space (6 bytes)
 - Support for QoS via Flow Label field
 - Simplified header
- Most of the reasons for IPv6 have been taken care of in IPv4
 - Is IPv6 really needed?
 - Complex transition from V4 to V6

Network Address Translation (NAT)

- Insufficient IP addresses for many organizations
 - IPv6: but most applications run over IPv4
 - "Transient" solution: NAT
 - Only one address can allow for a large amount of hosts
- Need to maintain a mapping <port #, private IP address> at NAT gateways
- NAT pros & cons
 - advantages: no need to be allocated range of addresses from ISP; can change a device's address without notifying outside world; can change ISP without changing local devices' addresses; local devices are not addressable from outside
 - Controversial:
 - Routers should only process up to layer 3 (violates the "end2end" argument)
 - Address shortage should be instead resolved by IPv6

User Datagram Protocol (UDP)

- Transport layer protocol
- Delivery of messages across network
- Datagram oriented
 - Unreliable
 - No error control mechanism
 - Connectionless
 - Not a "stream" protocol
- Max packet length 65K bytes
- UDP checksum
 - Covers header and data
 - Optional
 - Can be used by applications
- UDP allows applications to interface directly to IP with minimal additional processing or protocol overhead
UDP header format

- IP Datagram
 - IP header
 - UDP header
 - Data

 - 16 bit source port number
 - 16 bit destination port number
 - 16 bit UDP length
 - 16 bit checksum
 - Data

- The port numbers identify the sending and receiving processes
 - I.e., FTP, email, etc.
 - Allow UDP to multiplex the data onto a single stream

- UDP length = length of packet in bytes
 - Minimum of 8 and maximum of $2^{16} - 1 = 65,535$ bytes

- Checksum covers header and data
 - Optional, UDP does not do anything with the checksum

Transmission Control Protocol (TCP)

- Transport layer protocol
- Reliable transmission of messages
- Connection oriented
- Stream traffic
- Must re-sequence out of order IP packets
- Reliable
 - ARQ mechanism
 - Notice that packets have a sequence number and an ack number
 - Notice that packet header has a window size (for Go Back N)
- Flow control mechanism
 - Slow start
 - Limits the size of the window in response to congestion

Basic TCP operation

- At sender
 - Application data is broken into TCP segments
 - TCP uses a timer while waiting for an ACK of every packet
 - Un-ACK’d packets are retransmitted
- At receiver
 - Errors are detected using a checksum
 - Correctly received data is acknowledged
 - Segments are reassembled into their proper order
 - Duplicate segments are discarded
- Window based retransmission and flow control

TCP header fields

<table>
<thead>
<tr>
<th>Source port</th>
<th>Destination port</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 bit</td>
<td>32 bit</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sequence number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Request number</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data Offset</th>
<th>Reserved</th>
<th>Control</th>
<th>Window</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Check sum</th>
<th>Urgent pointer</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Options (if any)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Data</th>
</tr>
</thead>
</table>
TCP header fields

- Ports number are the same as for UDP
- 32 bit SN uniquely identify the application data contained in the TCP segment
 - SN is in bytes!
 - It identify the first byte of data
- 32 bit RN is used for piggybacking ACK's
 - RN indicates the next byte that the received is expecting
 - Implicit ACK for all of the bytes up to that point
- Data offset is a header length in 32 bit words (minimum 20 bytes)
 - Used for error recovery (ARQ) and as a flow control mechanism
 Sender cannot have more than a window of packets in the network simultaneously
 - Specified in bytes
 - Window scaling used to increase the window size in high speed networks
- Checksum covers the header and data

TCP error recovery

- Error recovery is done at multiple layers
 - Link, transport, application
- Transport layer error recovery is needed because
 - Packet losses can occur at network layer
 - E.g., buffer overflow
 - Some link layers may not be reliable
- SN and RN are used for error recovery in a similar way to Go Back N at the link layer
 - Large SN needed for re-sequencing out of order packets
- TCP uses a timeout mechanism for packet retransmission
 - Timeout calculation
 - Fast retransmission

TCP timeout calculation

- Based on round trip time measurement (RTT)
 - Weighted average
 \[\text{RTT}_{\text{AVE}} = a \times \text{RTT}_{\text{measured}} + (1-a) \times \text{RTT}_{\text{AVE}} \]
- Timeout is a multiple of RTT AVE (usually two)
 - Short Timeout would lead to too many retransmissions
 - Long Timeout would lead to large delays and inefficiency
- In order to make Timeout be more tolerant of delay variations it has been proposed (Jacobson) to set the timeout value based on the standard deviation of RTT
 \[\text{Timeout} = \text{RTT}_{\text{AVE}} + 4 \times \text{RTT}_{\text{SD}} \]
- In many TCP implementations the minimum value of Timeout is 500 ms due to the clock granularity

Fast Retransmit

- When TCP receives a packet with a SN that is greater than the expected SN, it sends an ACK packet with a request number of the expected packet SN
 - This could be due to out-of-order delivery or packet loss
- If a packet is lost then duplicate RNs will be sent by TCP until the packet it correctly received
 - But the packet will not be retransmitted until a Timeout occurs
 - This leads to added delay and inefficiency
- Fast retransmit assumes that if 3 duplicate RNs are received by the sending module that the packet was lost
 - After 3 duplicate RNs are received the packet is retransmitted
 - After retransmission, continue to send new data
- Fast retransmit allows TCP retransmission to behave more like Selective repeat ARQ
 - Future option for selective ACKs (SACK)
TCP congestion control

- TCP uses its window size to perform end-to-end congestion control
 - More on window flow control later
- Basic idea
 - With window based ARQ the number of packets in the network cannot exceed the window size (CW)
 \[\text{Last byte sent (SN) - last byte ACK'd (RN)} \leq \text{CW} \]
- Transmission rate when using window flow control is equal to one window of packets every round trip time
 \[R = \frac{\text{CW}}{\text{RTT}} \]
- By controlling the window size TCP effectively controls the rate

Effect Of Window Size

- The window size is the number of bytes that are allowed to be in transport simultaneously

Length of a bit (traveling at 2/3C)

<table>
<thead>
<tr>
<th>Bit Rate</th>
<th>Distance</th>
<th>Bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>300 bps</td>
<td>415 miles</td>
<td>7 bits</td>
</tr>
<tr>
<td>3.3 kbps</td>
<td>38 miles</td>
<td>79 bits</td>
</tr>
<tr>
<td>56 kbps</td>
<td>2 miles</td>
<td>1.5 kbits</td>
</tr>
<tr>
<td>1.5 Mbps</td>
<td>438 ft.</td>
<td>36 kbits</td>
</tr>
<tr>
<td>150 Mbps</td>
<td>4.4 ft.</td>
<td>3.6 Mbits</td>
</tr>
<tr>
<td>1 Gbps</td>
<td>8 inches</td>
<td>240 Mbits</td>
</tr>
</tbody>
</table>

Dynamic adjustment of window size

- TCP starts with CW = 1 packet and increases the window size slowly as ACK’s are received
 - Slow start phase
 - Congestion avoidance phase
 - Slow start phase
 - During slow start TCP increases the window by one packet for every ACK that is received
 - When CW = Threshold TCP goes to Congestion avoidance phase
 - Notice: during slow start CW doubles every round trip time
 Exponential increase!
 - Congestion avoidance phase
 - During congestion avoidance TCP increases the window by one packet for every window of ACKs that it receives
 - Notice that during congestion avoidance CW increases by 1 every round trip time
 Linear increase!
- TCP continues to increase CW until congestion occurs
Reaction to congestion

- Many variations: Tahoe, Reno, Vegas
- Basic idea: when congestion occurs decrease the window size
- There are two congestion indication mechanisms
 - Duplicate ACKs - could be due to temporary congestion
 - Timeout - more likely due to significant congestion
- TCP Reno - most common implementation
 - If Timeout occurs, CW = 1 and go back to slow start phase
 - If duplicate ACKs occur CW = CW/2 stay in congestion avoidance phase

Understanding TCP dynamics

- Slow start phase is actually fast
- TCP spends most of its time in Congestion avoidance phase
- While in Congestion avoidance
 - CW increases by 1 every RTT
 - CW decreases by a factor of two with every loss
 - "Additive increase / Multiplicative decrease"

TCP Error Control

- Original TCP designed for low BER, low delay links
- Future versions (RFC 1323) will allow for larger windows and selective retransmissions
Impact of transmission errors on TCP congestion control

- TCP assumes dropped packets are due to congestion and responds by reducing the transmission rate
- Over a high BER link dropped packets are more likely to be due to errors than to congestion
- TCP extensions (RFC 1323)
 - Fast retransmit mechanism, fast recovery, window scaling

TCP releases

- TCP standards are published as RFC's
- TCP implementations sometimes differ from one another
 - May not implement the latest extensions, bugs, etc.
- The de facto standard implementation is BSD
 - Computer system Research group at UC-Berkeley
 - Most implementations of TCP are based on the BSD implementations SUN, MS, etc.
- BSD releases
 - 4.2BSD - 1983
 - First widely available release
 - 4.3BSD Tahoe - 1988
 - Slow start and congestion avoidance
 - 4.3BSD Reno - 1990
 - Header compression
 - 4.4BSD - 1993
 - Multicast support, RFC 1323 for high performance

The TCP/IP Suite

The TCP/IP Suite is a suite of protocols that work together to provide end-to-end communication services. It is named after its two main components: Transmission Control Protocol (TCP) and Internet Protocol (IP). The suite includes many other protocols, such as User Datagram Protocol (UDP), Domain Name System (DNS), Hypertext Transfer Protocol (HTTP), Secure Shell (SSH), and many others.

Asynchronous Transfer Mode (ATM)

- 1980’s effort by the phone companies to develop an integrated network standard (BISDN) that can support voice, data, video, etc.
- ATM uses small (53 Bytes) fixed size packets called “cells”
 - Why cells?
 - Cell switching has properties of both packet and circuit switching
 - Easier to implement high speed switches
 - Why 53 bytes?
 - Small cells are good for voice traffic (limit sampling delays)
 - For 64Kbps voice it takes 6 ms to fill a cell with data
- ATM networks are connection oriented
 - Virtual circuits
ATM Reference Architecture

- Upper layers
 - Applications
 - TCP/IP
- ATM adaptation layer
 - Similar to transport layer
 - Provides interface between upper layers and ATM
 - Break messages into cells and reassemble
- ATM layer
 - Cell switching
 - Congestion control
- Physical layer
 - ATM designed for SONET
 - SONET (Synchronous optical network)
 - TDMA (Time Division Multiple Access) transmission scheme with 125 μs frames

ATM Cell format

<table>
<thead>
<tr>
<th>ATM Cell</th>
<th>5 Bytes</th>
<th>48 Bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Header</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ATM Adaptation Layer (AAL)

- Virtual circuit numbers (notice relatively small address space)
 - Virtual channel ID
 - Virtual path ID
- PTI - payload type
- CLP - cell loss priority (1 bit)
 - Mark cells that can be dropped
- HEC - CRC on header

VPI/VCI

- VPI identifies a physical path between the source and destination
- VCI identifies a logical connection (session) within that path
 - Approach allows for smaller routing tables and simplifies route computation

ATM HEADER CRC

- ATM uses an 8 bit CRC that is able to correct 1 error
- It checks only on the header of the cell, and alternates between two modes
 - In detection mode it does not correct any errors but is able to detect more errors
 - In correction mode it can correct up to one error reliably but is less able to detect errors
- When the channel is relatively good it makes sense to be in correction mode, however when the channel is bad you want to be in detection mode to maximize the detection capability

ATM Backbone

- Use VPI for switching in backbone
- Use VCI to ID connection within private network
ATM Service Categories

- **Constant Bit Rate (CBR)** - e.g. uncompressed voice
 - Circuit emulation
- **Variable Bit Rate (rt-VBR)** - e.g. compressed video
 - Real-time and non-real-time
- **Available Bit Rate (ABR)** - e.g. LAN interconnect
 - For bursty traffic with limited BW guarantees and congestion control
- **Unspecified Bit Rate (UBR)** - e.g. Internet
 - ABR without BW guarantees and congestion control

ATM service parameters (examples)

- Peak cell rate (PCR)
- Sustained cell rate (SCR)
- Maximum Burst Size (MBS)
- Minimum cell rate (MCR)
- Cell loss rate (CLR)
- Cell transmission delay (CTD)
- Cell delay variation (CDV)

- Not all parameters apply to all service categories
 - E.g., CBR specifies PCR and CDV
 - VBR specifies MBR and SCR

- Network guarantees QoS provided that the user conforms to his contract as specified by above parameters
 - When users exceed their rate network can drop those packets
 - Cell rate can be controlled using rate control scheme (leaky bucket)

Flow control in ATM networks (ABR)

- ATM uses resource management cells to control rate parameters
 - Forward resource management (FRM)
 - Backward resource management (BRM)

- RM cells contain
 - Congestion indicator (CI)
 - No increase Indicator (NI)
 - Explicit cell rate (ER)
 - Current cell rate (CCR)
 - Min cell rate (MCR)

- Source generates RM cells regularly
 - As RM cells pass through the networked they can be marked with CI=1 to indicate congestion
 - RM cells are returned back to the source where CI = 1 => decrease rate by some fraction
 - CI = 1 => increase rate by some fraction
 - ER can be used to set explicit rate

End-to-End RM-Cell Flow

At the destination the RM cell is “turned around” and sent back to the source
ATM Adaptation Layers

- Interface between ATM layer and higher layer packets
- Four adaptation layers that closely correspond to ATM's service classes
 - AAL-1 to support CBR traffic
 - AAL-2 to support VBR traffic
 - AAL-3/4 to support bursty data traffic
 - AAL-5 to support IP with minimal overhead
- The functions and format of the adaptation layer depend on the class of service.
 - For example, stream type traffic requires sequence numbers to identify which cells have been dropped.

Each class of service has a different header format (in addition to the 5 byte ATM header)

Example: AAL 3/4

<table>
<thead>
<tr>
<th>ST</th>
<th>SEQ</th>
<th>MID</th>
<th>LEN</th>
<th>CRC</th>
</tr>
</thead>
<tbody>
<tr>
<td>44</td>
<td>4</td>
<td>10</td>
<td>6</td>
<td>10</td>
</tr>
</tbody>
</table>

- ST: Segment Type (1st, Middle, Last)
- SEQ: 4-bit sequence number (detect lost cells)
- MID: Message ID (reassembly of multiple msgs)
- LEN: Length of data in this segment
- CRC: 10 bit segment CRC

- AAL 3/4 allows multiplexing, reliability, & error detection but is fairly complex to process and adds much overhead
- AAL 5 was introduced to support IP traffic
 - Fewer functions but much less overhead and complexity

ATM cell switches

- Design issues
 - Input vs. output queueing
 - Head of line blocking
 - Fabric speed

ATM summary

- ATM is mostly used as a “core” network technology
- ATM Advantages
 - Ability to provide QoS
 - Ability to do traffic management
 - Fast cell switching using relatively short VC numbers
- ATM disadvantages
 - It not IP - most everything was design for TCP/IP
 - It’s not naturally an end-to-end protocol
 - Does not work well in heterogeneous environment
 - Was not design to inter-operate with other protocols
 - Not a good match for certain physical media (e.g., wireless)
 - Many of the benefits of ATM can be “borrowed” by IP
 - Cell switching core routers
 - Label switching mechanisms
Multi-Protocol Label Switching (MPLS)

“As more services with fixed throughput and delay requirements become more common, IP will need virtual circuits (although it will probably call them something else)”

RG, April 28, 1994

Label Switching

- Router makers realize that in order to increase the speed and capacity they need to adopt a mechanism similar to ATM
 - Switch based on a simple tag not requiring complex routing table look-ups
 - Use virtual circuits to manage the traffic (QoS)
 - Use cell switching at the core of the router
- First attempt: IP-switching
 - Routers attempt to identify flows
 - Define a flow based on observing a number of packets between a given source and destination (e.g., 5 packets within a second)
 - Map IP source-destination pairs to ATM VC’s
 - Distributed algorithm where each router makes its own decision
- Multi-protocol label switching (MPLS)
 - Also known as Tag switching
 - Does not depend on ATM
 - Add a tag to each packet to serve as a VC number
 - Tags can be assigned permanently to certain paths

Label switching can be used to create a virtual mesh with the core network

- Routers at the edge of the core network can be connected to each other using labels
- Packets arriving at an edge router can be tagged with the label to the destination edge router
 - “Tunneling”
 - Significantly simplifies routing in the core
 - Interior routers need not remember all IP prefixes of the outside world
 - Allows for traffic engineering
 - Assign capacity to labels based on demand

References

- TCP/IP Illustrated (Vols. 1&2), Stevens
- Computer Networks, 4th ed., Tenenbaum
- Computer networking, 2nd ed., Kurose and Ross
<table>
<thead>
<tr>
<th>Class</th>
<th>Net ID</th>
<th>Host ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class A</td>
<td>0</td>
<td>Host ID</td>
</tr>
<tr>
<td>Class B</td>
<td>1 0</td>
<td>Host ID</td>
</tr>
<tr>
<td>Class C</td>
<td>1 1</td>
<td>Host ID</td>
</tr>
<tr>
<td>Class D</td>
<td>1 1 0</td>
<td>Host ID</td>
</tr>
<tr>
<td>Class E</td>
<td>1 1 1 0</td>
<td>(Reserved for future use)</td>
</tr>
</tbody>
</table>