Data Link Layer: Reliable Data Transmission

Xiaoming Fu

Telematics group
University of Göttingen, Germany

Data Link Layer

- Reliable transmission of packets over a link
 - Framing: determine the start and end of packets
 - Error detection and correction (see first part)
 - Automatic Repeat ReQuest (ARQ)
 - PPP
- Sharing a broadcast channel: multiple access
 - Channel partitioning: TDMA, FDMA, CDMA
 - Random access: Aloha, CSMA, CSMA/CD
 - Taking turns: Token Ring, Token Bus
 - LAN examples: Ethernet and Wireless LAN
- Interconnection devices (self-learning)
 - Hubs, bridges, switches, and routers

Credits:
- Eytan Modiano, MIT
- James Kurose & Keith Ross: Computer Networking (2nd Ed.), Addison-Wesley, 2002

Framing

Q: What is the lowest layer in the OSI model speaks sort of "protocol"?

010100111010100100101010100111000100

Q: Where is the DATA?

A: Framing techniques (synchronization at data link layer) are needed: protocol
 - Method 1: Character oriented framing
 - Method 2: Length counts
 - Method 3: Bit oriented protocols (flags)

Character Based Framing

Frame

- SYN is synchronous idle
- STX is start text
- ETX is end text
- Standard character codes such as ASCII and EBCDIC contain special communication characters that cannot appear in data
- Entire transmission is based on a character code
Issues with Character Based Framing

- Character code dependent
 - How do you send binary data?
- Frames must be integer number of characters
- Errors in control characters are messy

NOTE: Primary Framing method from 1960 to ~1975

Length field approach (DECNET)

- Use a header field to give the length of the frame (in bits or bytes)
 - Receiver can count until the end of the frame to find the start of the next frame
 - Receiver looks at the respective length field in the next packet header to find that packet’s length
- Length field must be \(\log_2(\text{Max Size Packet}) + 1 \) bits long
 - This restricts the packet size to be used
- Issues with length counts
 - Difficult to recover from errors
 - Resynchronization is needed after an error in the length count

Fixed Length Packets (e.g., ATM)

- All packets are of the same size
 - In ATM networks all packets are 53 Bytes
- Requires synchronization upon initialization
- Issues:
 - Message lengths are not multiples of packet size
 - Last packet of a message must contain idle fill (efficiency)
 - Synchronization issues
 - Fragmentation and re-assembly is complicated at high rates

Bit Oriented Framing (Flags)

- A flag is some fixed string of bits to indicate the start and end of a packet
 - A single flag can be used to indicate both the start and the end of a packet
- In principle, any string could be used, but appearance of a flag must be prevented somehow in data
 - Standard protocols use the 8-bit string 01111110 as a flag
 - Use 01111111...1110 (<16 bits) as abort under error conditions
 - Constant flags or 1's is considered an idle state
- Thus 0111111 is the actual bit string that must not appear in data
- INVENTED ~ 1970 by IBM for SDLC (synchronous data link protocol)
BIT STUFFING (Transmitter)

- Used to remove flag from original data
- A 0 is stuffed after each consecutive five 1's in the original frame

![Stuffed bits diagram]

- Why is it necessary to stuff a 0 in 011110?
 - If not, then 011110111 -> 0111101111111 -> 0111101111
 - How do you differentiate at the receiver?

DESTUFFING (Receiver)

- If 0 is preceded by 01111 in bit stream, remove it
- If 0 is preceded by 011111, it is the final bit of the flag.

Example: Bits to be removed are underlined below

1001111101001111101100111110

flag

Framing Errors

- All framing techniques are sensitive to errors
 - An error in a length count field causes the frame to be terminated at the wrong point (and makes it tricky to find the beginning of the next frame)
 - An error in DLE, STX, or ETX causes the same problems
- An error in a flag, or a flag created by an error causes a frame to disappear or an extra frame to appear
- Flag approach is least sensitive to errors because a flag will eventually appear again to indicate the end of a next packet
 - Only thing that happens is that an erroneous packet was created
 - This erroneous packet can be removed through an error detection technique
- Error detection & correction: Parity check, Cyclic Redundancy Check (CRC)

Automatic Repeat ReQuest

- When the receiver detects errors in a packet, how does it let the transmitter know to re-send the corresponding packet?
- Systems which automatically request the retransmission of missing packets or packets with errors are called ARQ systems.
- Three common schemes
 - Stop & Wait
 - Go Back N
 - Selective Repeat
Pure Stop and Wait Protocol

- Problem: Lost Packets
 - Sender will wait forever for an acknowledgement
- Packet may be lost due to framing errors

Efficiency of stop and wait

Let $S =$ total time between the transmission of a packet and reception of its ACK

Let $D_{TP} =$ transmission time of the packet

$E[X] =$ $S + TO*P/(1-P)$, Efficiency $= D_{TP}/E[X]$

Where,

- $TO = D_{TP}$ in a full duplex system
- $TO = S$ in a half duplex system

Stop and wait in the presence of errors

Let $P =$ the probability of an error in the transmission of a packet or in its acknowledgment

$S = D_{TP} + 2D_p + D_{TA}$

$TO =$ the timeout interval

$X =$ the amount of time that it takes to transmit a packet and receive its ACK. This time accounts for retransmissions due to errors

$E[X] =$ $S + TO*P/(1-P)$, Efficiency $= D_{TP}/E[X]$

Where,

- $TO = D_{TP}$ in a full duplex system
- $TO = S$ in a half duplex system

Go Back N ARQ (Sliding Window)

- Stop and Wait is inefficient when propagation delay is larger than the packet transmission time
 - Can only send one packet per round-trip time
- Go Back N allows the transmission of new packets before earlier ones are acknowledged
- Go back N uses a window mechanism where the sender can send packets that are within a “window” (range) of packets
 - The window advances as acknowledgements for earlier packets are received
Features of Go Back N

- Window size = N
 - Sender cannot send packet \(i+N\) until it has received the ACK for packet \(i\)
- Receiver operates just like in Stop and Wait
 - Receive packets in order
 - Receiver cannot accept packet out of sequence
 - Send RN = \(i+1\) ACK for all packets up to and including \(i\)
- Use of piggybacking
 - When traffic is bi-directional RN's are piggybacked on packets going in the other direction
 - Each packet contains a SN field indicating that packet's sequence number and a RN field acknowledging packets in the other direction

Go Back N ARQ

- The transmitter has a "window" of N packets that can be sent without acknowledgements
- This window ranges from the last value of RN obtained from the receiver (denoted SN\(_{min}\)) to SN\(_{min}+N-1\)
- When the transmitter reaches the end of its window, or times out, it goes back and retransmits packet SN\(_{min}\)

Let SN\(_{min}\) be the smallest number packet not yet ACKed
Let SN\(_{max}\) be the number of the next packet to be accepted from the higher layer (i.e., the next new packet to be transmitted)

Go Back N: Sender Rules

- SN\(_{min}\) = 0; SN\(_{max}\) = 0
- Repeat
 - If SN\(_{min}\) < SN\(_{max}\) + N (entire window not yet sent)
 Send packet SN\(_{max}\) + 1;
 - If packet arrives from receiver with RN > SN\(_{max}\)
 - If SN\(_{max}\) = SN\(_{min}\) (there are still some unacknowledged packets) and sender cannot send any new packets
 Choose some packet between SN\(_{min}\) and SN\(_{max}\) and re-send it
- The last rule says that when you cannot send any new packets you should re-send an old (not yet ACKed) packet
 - There may be two reasons for not being able to send a new packet
 Nothing new from higher layer
 Window expired (SN\(_{min}\) = SN\(_{max}\) + N)
- No set rule on which packet to re-send

Receiver Rules

- RN = 0;
- Repeat
 - When a good packet arrives, if SN = RN
 Accept packet
 Increment RN = RN + 1
 - At regular intervals send an ACK packet with RN
 Most DLCs send an ACK whenever they receive a packet from the other direction
 Delayed ACK for piggybacking
 - Receiver reject all packets with SN not equal RN
 - However, those packets may still contain useful RN numbers
 Selective repeat: retransmit only those packets that are actually lost (due to errors)
Example of Go Back 7 ARQ

Note that packet RN-1 must be accepted at B before a frame containing request RN can start transmission at B.

RETRANSMISSION BECAUSE OF ERRORS FOR GO ACK 4 ARQ

Note that the timeout value here is take to be the time to send a full window of packets.
Note that entire window has to be retransmitted after an error.

RETRANSMISSION DUE TO FEEDBACK ERRORS FOR GO BACK 4 ARQ

When an error occurs in the reverse direction the ACK may still arrive in time. This is the case here where the packet from B to A with RN=2 arrives in time to prevent retransmission of packet 0.
Packet 2 is retransmitted because RN = 4 did not arrive in time, however it did arrive in time to prevent retransmission of packet 3.
Was retransmission of packet 4 and 5 really necessary?
Strictly no because the window allows transmission of packets 6 and 7 before further retransmissions. However, this is implementation dependent.

EFFECT OF LONG FRAMES

Long frames in feedback direction slow down the ACKs.
This causes a transmitter with short frames to wait or go back.
Notice again that the retransmission of packets 3 and 4 was not strictly required because the sender could have sent new packets within the window.
Again, this is implementation dependent.
Notes on Go Back N

- Requires no buffering of packets at the receiver
- Sender must buffer up to N packets while waiting for their ACK
- Sender must re-send entire window in the event of an error
- Packets can be numbered modulo M where M > N
 - Because at most N packets can be sent simultaneously
- Receiver can only accept packets in order
 - Receiver must deliver packets in order to higher layer
 - Cannot accept packet i+1 before packet i
 - This removes the need for buffering
 - This introduces the need to re-send the entire window upon error
- The major problem with Go Back N is this need to re-send the entire window when an error occurs. This is due to the fact that the receiver can only accept packets in order

Popular DLCs

- Older protocols (used for modems, e.g., xmodem) used stop and wait and simple checksums
- HDLC, LAPB (X.25), and SDLC are almost the same
 - HDLC/SDLC developed by IBM for IBM SNA networks
 - LAPB developed for X.25 networks
 - They all use bit oriented framing with flag = 01111110
 - They all use a 16-bit CRC for error detection
 - They all use Go Back N ARQ with N = 7 or 127 (optional)

Another DLC: Point-to-Point Protocol (PPP)

PPP Overview

- one sender, one receiver, one link: easier than broadcast link:
 - no Media Access Control (MAC)
 - no need for explicit MAC addressing
 - e.g., dialup link, ISDN line
- error detection (no correction)
- connection liveness: detect, signal link failure to network layer
- Error recovery, flow control, data re-ordering all relegated to higher layers!

PPP Data Frame

- Flag: delimiter (frame)
- Address: does nothing (only one option)
- Control: does nothing; in the future possible multiple control fields
- Protocol: upper layer protocol to which frame delivered (eg, PPP-LCP, IP, IPCP, etc)
- Info: upper layer data being carried
- Check: cyclic redundancy check for error detection
Byte Stuffing

- “data transparency” requirement: data field must be allowed to include flag pattern <01111110>
 - Q: is received <01111110> data or flag?

- Sender: adds (“stuffs”) extra <01111110> byte after each <01111110> data byte
- Receiver:
 - two 01111110 bytes in a row: discard first byte, continue data reception
 - single 01111110: flag byte

PPP Data Control Protocol

Before exchanging network-layer data, data link peers must
- configure PPP link (max. frame length, authentication)
- learn/configure network layer information
 - for IP: carry IP Control Protocol (IPCP) msgs (protocol field: 8021) to configure/learn IP address

Homework (Not Mandatory)

1. Understand CRC:
 A) For the generator string G=110011 and data string M=11100011 find the CRC and the transmitted string T. (Since G is 6 bits long, r=5, and the CRC should be 5 bits long)
 B) Suppose G=1001 and the received T=1010101, did any transmission errors occur?
 C) Suppose G=101 and the received T=1100110, did any transmission errors occur?
 D) Suppose G=1011 and M=10010 Give the shift register implementation of the CRC generator and show the register sequence for generating the CRC with the above value of M.

2. Review all reliability mechanisms provided by DLC. Understand synchronization, ARQ by examples
3. Understand other concepts: packet v.s. circuit switching, layered architectures, connection-oriented v.s. connectionless services, protocols, multiplexing