Outline

- General
 - What to Protect
 - Where to Put the Protection
 - Host and Network Based Security
- Cryptography
 - Symmetric Crypto Systems, DES
 - Asymmetric Crypto Systems, RSA
- Authentication
- Integrity
 - Digital Signature
- Key Distribution, Certificates
- Access Control: firewalls
- Email Security, PGP
- Security of the Web and Transport Layer (SSL/TLS)
- IPSec

Security Concerns

Confidentiality: only sender, intended receiver should “understand” message contents
- sender encrypts message
- receiver decrypts message

Authentication: sender, receiver want to confirm identity of each other

Message Integrity: sender, receiver want to ensure message not altered (in transit, or afterwards) without detection

Access and Availability: services must be accessible and available to users
Friends and enemies: Alice, Bob, Trudy

- well-known in network security world
- Bob, Alice (lovers!) want to communicate “securely”
- Trudy (intruder) may intercept, delete, add messages

Who might Bob, Alice be?

- ... well, real-life Bobs and Alices!
- Web browser/server for electronic transactions (e.g., on-line purchases)
- on-line banking client/server
- DNS servers
- routers exchanging routing table updates
- other examples?

There are bad guys out there!

Q: What can a “bad guy” do?
A: a lot!
- eavesdrop: intercept messages
- actively insert messages into connection
- impersonation: can fake (spoof) source address in packet (or any field in packet)
- hijacking: “take over” ongoing connection by removing sender or receiver, inserting himself in place
- denial of service: prevent service from being used by others (e.g., by overloading resources)

more on this later......

Where to Put the Protection?
Host/OS Based Security

- Key idea: protect the DATA
 - End hosts are in control of data
 - Users are in control of end hosts
 - Users can and often will do dumb things, + hijackers!
 - Result: very difficult to protect all hosts

- Approaches:
 - OS software integrity (most attacks on non-patched OS)
 - user-level access control (AAA, tokens)
 - block unneeded services (finger, ftp, DNS)
 - path encryption via IPsec
 - device-level access control (MAC, IP, DNS) in servers, routers, Ethernet switches
 - e.g., host firewalling (such as TCP wrappers, IP chains)

Network Based Security

- Should augment host based security
- Useful for:
 - Protecting groups of users from others
 - Prohibiting certain types of network usage
 - Controlling traffic flow
- Difficult to inspect traffic
 - encryption can hide bad things
 - Tunneling (eg., NAT) can mislead you

Outline

- General
 - What to Protect
 - Where to Put the Protection
 - Host and Network Based Security
- Principles of Cryptography
 - Symmetric Crypto Systems, DES
 - Asymmetric Crypto Systems, RSA
- Authentication
- Integrity
 - Digital Signature
- Key Distribution, Certificates
- Access Control: firewalls
- Email Security, PGP
- Security of the Web and Transport Layer (SSL)
- IPSec

The language of cryptography

symmetric key crypto: sender, receiver keys identical
public-key crypto: encryption key public, decryption key secret (private)
Symmetric key cryptography

substitution cipher: substituting one thing for another
- monoalphabetic cipher: substitute one letter for another

plaintext: abcdefghijklmnopqrstuvwxyz
ciphertext: mbvckzasdfghjklpoluytrewq

E.g.: Plaintext: bob. i love you. alice
ciphertext: nkn. s gktc wky. mgsbc

Symmetric key crypto: DES

DES: Data Encryption Standard
- US encryption standard [NIST 1993]
- 56-bit symmetric key, 64-bit plaintext input
- How secure is DES?
 - DES Challenge: 56-bit-key-encrypted phrase (“Strong cryptography makes the world a safer place”) decrypted (brute force) in 4 months
 - no known “backdoor” decryption approach
- making DES more secure:
 - use three keys sequentially (3-DES) on each datum
 - use cipher-block chaining

Symmetric key crypto: DES

E.g.: Plaintext: bob. i love you. alice
ciphertext: nkn. s gktc wky. mgsbc

64-bit key (56-bits + 8-bit parity)
- 16 rounds

Initial permutation
16 identical “rounds” of function application, each using different 48 bits of key
Final permutation

Each Round

DES operation
Public Key Cryptography

Symmetric-key cryptography
- requires sender, receiver know shared secret key
- Q: how to agree on key in first place (particularly if never "met")?

Public-key cryptography
- radically different approach (Diffie-Hellman76, RSA78)
- sender, receiver do not share secret key
- public encryption key known to all
- private decryption key known only to receiver

![Diagram of public key cryptography]

plaintext message:
Bob's public key
K_B

Encryption algorithm:
K_B(m)

Ciphertext:

Decryption algorithm:
K_B^-1(K_B(m))

plaintext:
m = K_B^-1(K_B(m))

Public key encryption algorithms

Requirements:

1. need K_B^-1 and K_B such that

 \[K_B(K_B^{-1}(m)) = m \]

2. given public key K_B it should be impossible to compute private key K_B^-1

RSA: Rivest, Shamir, Adelson algorithm

RSA: Choosing keys

1. Choose two large prime numbers p, q. (e.g., 1024 bits each)
2. Compute n = pq, z = (p-1)(q-1)
3. Choose e (with evn) that has no common factors with z (e, z are "relatively prime").
4. Choose d such that ed-1 is exactly divisible by z (in other words: ed mod z = 1).
5. Public key is (n, e). Private key is (n, d).

Bob’s public key
K_B

Bob’s private key
K_B^-1
RSA: Encryption, decryption

0. Given \((n,e)\) and \((n,d)\) as computed above
1. To encrypt bit pattern, \(m\), compute
 \[c = m^e \mod n \] (i.e., remainder when \(m^e\) is divided by \(n\))
2. To decrypt received bit pattern, \(c\), compute
 \[m = c^d \mod n \] (i.e., remainder when \(c^d\) is divided by \(n\))

\[m = (m^e \mod n)^d \mod n \]

Outline

- General
 - What to Protect
 - Where to Put the Protection
- Host and Network Based Security
- Cryptography
 - Symmetric Crypto Systems, DES
 - Asymmetric Crypto Systems, RSA
 - Authentication
 - Integrity
 - Digital Signature
 - Key Distribution, Certificates
 - Access Control: firewalls
 - Email Security: PGP
 - Security of the Web and Transport Layer (SSL)
 - IPSec

Authentication

Goal: Bob wants Alice to “prove” her identity to him

Protocol ap1.0: Alice says “I am Alice”

Failure scenario??

Authentication

Goal: Bob wants Alice to “prove” her identity to him

Protocol ap1.0: Alice says “I am Alice”

in a network, Bob can not “see” Alice, so Trudy simply declares herself to be Alice
Authentication: another try

Protocol ap2.0: Alice says "I am Alice" in an IP packet containing her source IP address

Failure scenario??

Protocol ap2.0: Alice says "I am Alice" in an IP packet containing her source IP address

Trudy can create a packet "spoofing" Alice's address

Authentication: another try

Protocol ap3.0: Alice says "I am Alice" and sends her secret password to "prove" it.

Playback attack: Trudy records Alice's packet and later plays it back to Bob

Authentication: another try

Protocol ap3.0: Alice says "I am Alice" and sends her secret password to "prove" it.
Authentication: yet another try
Protocol ap3.1: Alice says “I am Alice” and sends her encrypted secret password to “prove” it.

Failure scenario??

Authentication: another try
Protocol ap3.1: Alice says “I am Alice” and sends her encrypted secret password to “prove” it.

record and playback still works!

Authentication: yet another try
Goal: avoid playback attack
Nonce: number (R) used only once -in-a-lifetime

ap4.0: to prove Alice “live”, Bob sends Alice nonce, R. Alice must return R, encrypted with shared secret key

Alice is live, and only Alice knows key to encrypt nonce, so it must be Alice!

Authentication: ap5.0
ap4.0 requires shared symmetric key
• can we authenticate using public key techniques?

ap5.0: use nonce, public key cryptography

Bob computes $K_A(K_A(R)) = R$
and knows only Alice could have the private key, that encrypted R such that $K_A(K_A(R)) = R$
Man-in-the-middle attack: Trudy poses as Alice (to Bob) and as Bob (to Alice)

Difficult to detect:
1. Bob receives everything that Alice sends, and vice versa (e.g., so Bob, Alice can meet one week later and recall conversation)
2. Problem is that Trudy receives all messages as well!

Outline
- General
 - What to Protect
 - Where to Put the Protection
 - Host and Network Based Security
- Cryptography
 - Symmetric Crypto Systems, DES
 - Asymmetric Crypto Systems, RSA
- Authentication
- Integrity
 - Digital Signature
 - Key Distribution, Certificates
 - Access Control: firewalls
 - Email Security PGP
 - Security of the Web and Transport Layer (SSL)
 - IPSec

Message Integrity Approaches
- Digital signature using RSA
 - Special case of a message integrity where the code can only have been generated by one participant
 - Compute signature with private key and verify with public key
- Keyed MD5
 - Sender: $m + MD5(m + k) + E(k, private)$
 - Receiver
 - Receives random key using the sender’s public key
 - Applies MD5 to the concatenation of this random key and message
- MD5 with RSA signature
 - Sender: $m + E(MD5(m), private)$
 - Receiver
 - Decrypts signature with sender’s public key
 - Compares result with MD5 checksum sent with message

Digital Signatures
Cryptographic technique analogous to handwritten signatures.
- Sender (Bob) digitally signs document, establishing he is document owner/creator.
- Verifiable, nonforgeable: recipient (Alice) can prove to someone that Bob, and no one else (including Alice), must have signed document
Digital Signatures

Simple digital signature for message m:
- Bob signs m by encrypting with his private key K_B, creating "signed" message, $K_B(m)$

Bob's message, m

Dear Alice

Oh, how I have missed you. I think of you all the time! ... (blah blah blah)

Bob

Bob's private key K_B

$K_B(m)$

Bob's message, m, signed (encrypted) with his private key K_B

Digital Signatures (more)

- Suppose Alice receives msg m, digital signature $K_B(m)$
- Alice verifies m signed by Bob by applying Bob's public key K_B to $K_B(m)$ then checks $K_B(K_B(m)) = m$.
- If $K_B(K_B(m)) = m$, whoever signed m must have used Bob's private key.

Alice thus verifies that:
- Bob signed m.
- No one else signed m.
- Bob signed m and not m'.

Non-repudiation:
- Alice can take m, and signature $K_B(m)$ to court and prove that Bob signed m.

Outline

- General
 - What to Protect
 - Where to Put the Protection
 - Host and Network Based Security
- Cryptography
 - Symmetric Crypto Systems, DES
 - Asymmetric Crypto Systems, RSA
- Authentication
- Integrity
- Digital Signature
- Key Distribution, Certificates
- Access Control: firewalls
- Email Security, PGP
- Security of the Web and Transport Layer (SSL/TLS)
- IPSec

Trusted Intermediaries

Symmetric key problem:
- How do two entities establish shared secret key over network?

Solution:
- trusted key distribution center (KDC) acting as intermediary between entities

Public key problem:
- When Alice obtains Bob's public key (from web site, e-mail, diskette), how does she know it is Bob's public key, not Trudy's?

Solution:
- trusted certification authority (CA)
Key Distribution Center (KDC)

- Alice, Bob need shared symmetric key.
- KDC: server shares different secret key with each registered user (many users)
- Alice, Bob know own symmetric keys, K_{A-KDC}, K_{B-KDC} - for communicating with KDC.

Q: How does KDC allow Bob, Alice to determine shared symmetric secret key to communicate with each other?

```
K_{A-KDC}(A, R1)  \rightarrow  K_{B-KDC}(A, R1)
```

Alice and Bob communicate: using R1 as session key for shared symmetric encryption.

Certification Authorities

- Certification authority (CA): binds public key to particular entity, E.
- E (person, router) registers its public key with CA.
 - E provides “proof of identity” to CA.
 - CA creates certificate binding E to its public key.
 - certificate containing E’s public key digitally signed by CA = CA says “this is E’s public key”

Bob's public key

Digital signature

CA's private key

CA's public key

Certificate authority

When Alice wants Bob’s public key:
- gets Bob’s certificate (Bob or elsewhere).
- apply CA’s public key to Bob’s certificate, get Bob’s public key.

Bob's public key

CA's public key

Certificate authority

CA's private key
A certificate contains:
- Serial number (unique to issuer)
- Info about certificate owner, including algorithm and key value itself (not shown)
- Info about certificate issuer
- Valid dates
- Digital signature by issuer

Outline
- General
 - What to Protect
 - Where to Put the Protection
 - Host and Network Based Security
- Cryptography
 - Symmetric Crypto Systems, DES
 - Asymmetric Crypto Systems, RSA
- Authentication
- Integrity
 - Digital Signature
 - Key Distribution, Certificates
- Access Control: firewalls
 - Email Security PGP
 - Security of the Web and Transport Layer (SSL/TLS)
- IPSec

Firewalls
- Isolates organization’s internal net from larger Internet, allowing some packets to pass, blocking others.

Firewalls: Why
- Prevent denial of service attacks:
 - SYN flooding: attacker establishes many bogus TCP connections, no resources left for “real” connections.
- Prevent illegal modification/access of internal data.
 - E.g., attacker replaces CIA’s homepage with something else
- Allow only authorized access to inside network (set of authenticated users-hosts)
 - Two types of firewalls:
 - Application-level
 - Packet-filtering
Packet Filtering

- **internal network connected to Internet via router firewall**
- **router filters packet-by-packet**, decision to forward/drop packet based on:
 - source IP address, destination IP address
 - TCP/UDP source and destination port numbers
 - ICMP message type
 - TCP SYN and ACK bits

Example 1: block incoming and outgoing datagrams with IP protocol field = 17 and with either source or dest port = 23.
- All incoming and outgoing UDP flows and telnet connections are blocked.

Example 2: Block inbound TCP segments with ACK=0.
- Prevents external clients from making TCP connections with internal clients, but allows internal clients to connect to outside.

Example Firewall: ipchains

```
-A input -s 192.168.0.0/255.255.0.0 -d 0.0.0.0/0.0.0.0 -j DENY
-A input -s 172.0.0.0/255.0.15.255 -d 0.0.0.0/0.0.0.0 -j DENY
-A input -s 10.0.0.0/255.0.0.0 -d 0.0.0.0/0.0.0.0 -j DENY
-A input -s 224.0.0.0/224.0.0.0 -d 0.0.0.0/0.0.0.0 -j DENY
-A input -s 0.0.0.0/0.0.0.0 -d a.b.c.d/255.255.255.255 -p 6 -j ACCEPT
-A input -s 0.0.0.0/0.0.0.0 -d a.b.c.d/255.255.255.255 22:22 -p 6 -j ACCEPT
-A input -s 0.0.0.0/0.0.0.0 -d a.b.c.d/255.255.255.255 1024:65535 -p 6 ! -y -j ACCEPT
```

Example Firewall: Cisco Router Filters

```
access-list 100 deny ip 192.168.0.0 0.0.255.255 any
access-list 100 deny ip 172.0.0.0 0.15.255.255 any
access-list 100 deny ip 10.0.0.0 0.255.255.255 any
access-list 100 deny ip 0.0.0.0 0.255.255.255 any
access-list 100 deny ip 127.0.0.0 0.255.255.255 any
access-list 100 deny ip 224.0.0.0 31.255.255.255 any
access-list 100 deny ip 1.2.0.0 0.0.255.255 any
access-list 100 deny tcp any host 1.2.3.4 eq domain
access-list 100 permit tcp any host 1.2.3.4 eq radius
access-list 100 deny udp any host 1.2.3.4 eq radius
access-list 100 deny ip any 1.2.0.0 0.0.255.255
access-list 100 deny ip any any
```
Application gateways

- Filters packets on application data as well as on IP/TCP/UDP fields.
- **Example:** allow select internal users to telnet outside.
 1. Require all telnet users to telnet through gateway.
 2. For authorized users, gateway sets up telnet connection to dest host. Gateway relays data between 2 connections
 3. Router filter blocks all telnet connections not originating from gateway.

Limitations of firewalls and gateways

- **IP spoofing:** router can’t know if data “really” comes from claimed source
- if multiple app’s. need special treatment, each has own app. gateway.
- client software must know how to contact gateway.
 - e.g., must set IP address of proxy in Web browser
- filters often use all or nothing policy for UDP.
- tradeoff: degree of communication with outside world, level of security
- many highly protected sites still suffer from attacks.

Outline

- General
 - What to Protect
 - Where to Put the Protection
 - Host and Network Based Security
- Cryptography
 - Symmetric Crypto Systems, DES
 - Asymmetric Crypto Systems, RSA
- Authentication
- Integrity
 - Digital Signature
- Key Distribution, Certificates
- Access Control: firewalls
- **Email Security, PGP**
- Security of the Web and Transport Layer (SSL)
- IPSec

Secure e-mail

- Alice wants to send confidential e-mail, m, to Bob.

Alice:
- generates random symmetric private key, K_s
- encrypts message with K_s (for efficiency)
- also encrypts K_s with Bob’s public key
- sends both $K_s(m)$ and $K_B(K_s)$ to Bob.
Secure e-mail

Alice wants to send confidential e-mail, \(m \), to Bob.

Bob wants to decrypt and recover \(K_S \).

Alice uses her private key to decrypt and recover \(K_S \).

\[K_B(m) \] uses \(K_S \) to decrypt \(K_S(m) \) to recover \(m \).

Secure e-mail (continued)

Alice wants to provide sender authentication message integrity.

Alice digitally signs message.

\[m \rightarrow K_B(\text{Signature}) \]

Alice sends both message (in the clear) and digital signature.

Pretty good privacy (PGP)

Internet e-mail encryption scheme, de-facto standard.

Uses symmetric key cryptography, public key cryptography, hash function, and digital signature as described.

Provides secrecy, sender authentication, integrity.

Inventor, Phil Zimmerman, was target of 3-year federal investigation.

A PGP signed message:

---BEGIN PGP SIGNED MESSAGE---
Version: PGP 5.0
Charset: noconv
Hash: SHA1
Bob: My husband is out of town tonight. Passionately yours,
Alice
---BEGIN PGP SIGNATURE---
Hash: SHA1
yHJRHhGJGhgg/12EpJ+lo8gE4vB3mqJ+6n7G6m5Gw2
---END PGP SIGNATURE---
Outline

- General
 - What to Protect
 - Where to Put the Protection
- Host and Network Based Security
 - Authentication
 - Integrity
- Cryptography
 - Symmetric Crypto Systems, DES
 - Asymmetric Crypto Systems, RSA
- Web Security
 - authentication: basic, digest
 - often supplemented by cookies
 - access control via network addresses
 - multi-layered:
 - SHTTP (secure HTTP) = just for HTTP (shttp://)
 CommerceNet, Mosaic
 - SSL (? TLS) = generic for TCP (https://)
 implementation: SSLeay
 IP security: host-to-host

Web Security

- Web vulnerabilities
 - Risks:
 1. revealing private information on server
 2. intercept of client information (credit card records)
 3. information about host = break-in
 4. execute programs, denial of service
 5. server log privacy
 - Information Leakage:
 - Altavista search for etc/passwd
 - directory listings
 - chroot
 - soft links
 - file ownership ≠ local protection
 - web access
 - cgi-bin
- HTTP access control - principles
 - client doesn't know which method
 - client attempts access (GET, PUT, ...) normally
 - server returns HTTP/1.0 401 Unauthorized
 WWW-Authenticate: Basic realm="WallyWorld"
 - realm: protection space
 - client tries again with
 Authorization: Basic base64(user:password)
 - passwords in the clear ≠ not secure
 - repeat cycle on each access
Web Server Access Configuration

For NCSA httpd, Apache?

AuthType Basic

```
AuthName "Private information"
```

```bash
<Limit GET>
order deny,allow
require user hgs
deny from all
allow from.netsc.uiuc.edu
</Limit>
```

Global configuration file access.conf:

```
<Directory /full/path/to/protected/directory>
AuthName name.of.your.server
AuthType Basic
AuthUserFile /usr/local/etc/httpd/conf/passwd
<Limit GET POST>
require user foo
</Limit>
</Directory>
```

Secure sockets layer (SSL)

- transport layer security to any TCP-based app using SSL services.
- Standardized as TLS (Transport Layer Security) used between Web browsers, servers for e-commerce (shttp).
- security services:
 - server authentication
 - data encryption
 - client authentication (optional)

Secure sockets layer (SSL) (continued)

Encrypted SSL session:

- Browser generates symmetric session key, encrypts it with server’s public key, sends encrypted key to server.
- Using private key, server decrypts session key.
- Browser, server know session key
 - All data sent into TCP socket (by client or server) encrypted with session key.

SSL: basis of IETF Transport Layer Security (TLS).
SSL can be used for non-Web applications, e.g., IMAP.
Client authentication can be done with client certificates.

Outline

- General
 - What to Protect
 - Where to Put the Protection
 - Host and Network Based Security
- Cryptography
 - Symmetric Crypto Systems, DES
 - Asymmetric Crypto Systems, RSA
- Authentication
 - Integrity
 - Digital Signature
- Key Distribution, Certificates
- Access Control: firewalls
- Email Security, PGP
- Security of the Web and Transport Layer (SSL)
- IPSec
IPsec: Network Layer Security

- Network-layer secrecy:
 - sending host encrypts the data in IP datagram
 - TCP and UDP segments; ICMP and SNMP messages.
- Network-layer authentication
 - destination host can authenticate source IP address
- Two principle protocols:
 - authentication header (AH) protocol
 - encapsulation security payload (ESP) protocol

 - For both AH and ESP, source, destination handshake:
 - create network-layer logical channel called a security association (SA)
 - Each SA unidirectional.
 - Unique determined by:
 - security protocol (AH or ESP)
 - source IP address
 - 32-bit connection ID

Authentication Header (AH) Protocol

- provides source authentication, data integrity, no confidentiality
- AH header inserted between IP header, data field.
- protocol field: 51
- intermediate routers process datagrams as usual

AH header includes:
- connection identifier
- authentication data: source signed message digest calculated over original IP datagram.
- next header field: specifies type of data (e.g., TCP, UDP, ICMP)

ESP Protocol

- provides secrecy, host authentication, data integrity.
- data, ESP trailer encrypted.
- next header field is in ESP trailer.

- ESP authentication field is similar to AH authentication field.
 - Protocol = 50.

Network Security (summary)

Basic techniques......
- cryptography (symmetric and public)
- authentication
- message integrity
- key distribution
... used in many different security scenarios
- secure email and web
- secure transport (SSL/TLS)
- IPsec