Efficient Routing in PAN and Sensor Networks

Niklas Steinleitner
Email: steinlei@math.uni-goettingen.de

Telematics Group
Institute for Informatics
University of Göttingen, Germany
Presenting Papers

Efficient Routing in PAN and Sensor Networks
(P. Trakadas, Th. Zahariadis, S. Voliotis, Ch. Manasis)

A Novel Route Update Design for Wireless Sensor Networks
(Xuhui Hu, Yong Liu, Myung J. Lee, Tarek N. Saadawi)

Both appeared in
Table of Content

- Routing Problems in ad hoc networks

- Routing algorithms classification

- Overview of most important routing algorithms for ad-hoc networks

- Classify them to their relevancy and efficiency, when applied to PANs and sensor networks
 - The 2nd paper, "ERUP" is also classified into one of these categories
Routing Problems

- selecting the optimal path

- broken-down to the selection of the optimal neighbouring (or next hop)

- prevents loops

- Link failure recovery
Generally routing algorithms classification (1)

- **Proactive Routing algorithms**
 - calculates proactively consistent and up-to-date routing information
 - store that information in routing tables
 - periodically or on-demand exchanged
 - by network topology changes
 - propagate update messages throughout the network

- **Reactive Routing algorithms**
 - calculates routing information only when data is ready to be transmitted
 adopting a lazy routing approach
 - calculated path is considered valid as long as the destination is reachable or
 until the route is no longer needed
Generally routing algorithms classification (2)

- Proactive Routing Algorithms
 - Destination-Sequenced Distance-Vector (DSDV)
 - Wireless Routing Protocol (WRP)
 - Fisheye State Routing (FSR)
 - Hierarchical State Routing (HSR)

- Reactive Routing Protocols
 - Signal Stability Adaptive Routing (SSR)
 - Temporally Ordered Routing Algorithm (TORA)
 - Ad Hoc On-Demand Distance Vector Routing (AODV)
 - Efficient Route Update Protocol (ERUP)
Destination-Sequenced Distance-Vector (DSDV)

- Proactive, table-driven
- Based on Bellman-Ford Routing (distance-vector-algorithm)
- Maintains in each node
 - routing table
 - the number of hops
 - sequence number
- Sends
 - periodically the full routing table (“full dump”)
 - by changes the modified entries (“incremental update”)
- update packet contains an unique sequence number
 - transmitter assigns this SN
 - receiver selected highest SN (otherwise route with best cost metric is selected)
- Advantage / Disadvantage
 - In fast changing networks, like sensor networks, the number of incremental packets increases rapidly, then full dumps are preferred
 - In relative stable networks like Wireless PAN, incremental updates are sent to avoid extra traffic
 - Requires bidirectional links to operate
Wireless Routing Protocol (WRP)

- Proactive, table-driven
- Maintains in each node:
 - the Distance table
 - the Routing table
 - Link Cost table
 - and a Message Retransmission List
- Periodically or by link status changes:
 - exchange routing tables with their neighbours using update messages
 - in case of no changes, sends an idle “Hello” message
- By receiving an update message:
 - modifies its distance table
 - Acknowledge message is returned to the source
- Message Retransmission List contains information which of its neighbour has not acknowledged its update message
Fisheye State Routing (FSR)

- Proactive, table-driven algorithm

- enhances the Global State Routing (GSR) algorithm (a similar approach to DSDV)

- But lowers updating overheads and enables network scaling with large number of nodes

- Update information about the near (neighbouring) nodes sent more frequently than information about far nodes to reduce the packet size

- Near is defined by a radius, which is expressed as the number of Hops to the node

- Quality of the routing information decreases with each further node
Fisheye State Routing (FSR)

Precision of the information in FSR decreases to the edge
Hierarchical State Routing (HSR)

- Proactive algorithm
- Partitions the network nodes into multi-layer clusters
- In each cluster one node is cluster-parent
- Cluster-parents are organized into a higher-level of clusters and so forth
- Generating a tree-like hierarchy
- Some nodes belong to more than one cluster and are called gateways
- Each node has a network address (gateways more than one)
- If routing information is modified
 - Each node broadcasts information in their cluster
 - Cluster-parent forwards to all neighbouring cluster-parents
 - Which in return flood the information to their lower layers
Signal Stability Adaptive Routing (SSR)

- Now we start with the first reactive routing protocol in discussion
- SSR calculates a route between two nodes based on the stronger connectivity, which is calculated as the signal strength and stability of the nodes
- Maintains two tables
 - A Signal Stability Table (SST), stores the signal strength of neighbouring nodes
 - A Routing Table (RT), stores recent routes
- Routing in SSR is split in two internal protocols
 - Dynamic Routing Protocol (DRP), administers SST
 - Static Routing Protocol (SRP), administers RT
- Routing Steps
 - Received and processed by the DRP
 - DRP updates SST and forwards the packets to the SRP
 - SRP looks up the destination in the RT
 - In case of a valid entry it forwards the packets
 - Otherwise, it initiates a route-search
Signal Stability Adaptive Routing (SSR), cont’d

- If a node receives a route-request packet, it forwards the packet to the next hop only if
 - the packet is received over a channel with stronger signal strength
 - and has not been previously processed
- The destination node sends a route-reply message back to the initiator, in acceptance that the first packet arrived over the shortest path
- Based on this route-reply message, routes along the path update their routing tables
Temporally Ordered Routing Algorithm (TORA)

- Reactive protocol, highly adaptive, distributed and scalable algorithm
- Based on the concept of link reversal
- presupposes same time base on all nodes
- TORA has three basic functions
 - Route creation
 - Route maintenance
 - Route erasure
- This functionality is available with help from three control packets
 - query (QRY) : creates the paths
 - update (UPD) : used for path finding and path maintenance
 - clear : used for path erasure
- Advantages / Disadvantages
 - TORA is the most elegant and complicated approach for solving Routing Problems
 - TORA creates a couple of alternative ways to destination
 - In large, fast changing networks TORA is worse than other protocols
 - Overhead in case of reconfiguration after link failure
Ad Hoc On-demand Distance Vector Routing (AODV)

- Simple Reactive algorithm
- Improves table driven DSDV
- Instead of maintaining a list of tables, AODV minimizes the number of broadcasts by creating routes on demand
- Based only on symmetric bi-directional links
- If route required
 - broadcasts route-request packets (RREQ) to neighbours and so on
 - records the visited nodes in packet
 - destination chooses the shortest path and sends reply packet (RREP)
 - intermediate nodes enter route into their routing tables
- On link failure or source changes, the algorithm is re-initiated (RERR)
Ad Hoc On-demand Distance Vector Routing (AODV)

Example of AODV route creation
Efficient Route Update Protocol (ERUP)

- Based on AODV
- Combines routing with power saving
- Route update divided in two steps
 - Node along old route broadcast locally a Route Discovery Region packet (RDR)
 - That defines the spreading area of Route Request packets (RRQ)
 - Source node released RRQ, only nodes within RDR can rebroadcast RRQ
- So update activities are confined to a narrow strip exactly covering the old route
- Makes discovery overhead very small
- New Route mostly overlaps the old route
- Each node sends a warning signal when its power falls down
- Source initiate the route update process, when
 - 70% nodes along the path have sends warnings
 - A “powerful” node enters an active route
 - A node is out of order
Summary
Summary, cont’d

- presented the most important algorithms for PAN and sensor networks
- gave a short overview of their functionality, their problems and their solutions
- for the most protocols there are only laboratory setups,
 they are never/rarely tested in the real world

- none of these protocols covers all applications
 they all have their advantages and their disadvantages, for example
 - some protocols required bidirectional links
 - other only can used for sensor or PAN networks
 - or can only for relative stable networks
 - ...

The final selection should be based on the specific network application!
Thank you for your interest!