Fast Reroute in MPLS

Henning Peters
hpeters@math.uni-goettingen.de

Mathematische Fakultät
Institut für Informatik
Georg-August Universität Göttingen

Advanced Topics in Computer Networks
Instructor: Dr. Xiaoming Fu
1. Juli 2005, SS 2005
Outline

- Introduction to failure recovery in a MPLS network
- Short overview about MPLS
- MPLS-based failure recovery
- Fast Reroute techniques
- Bandwidth-Sharing problem with Fast Reroute
- Conclusion
- Discussion
What’s the situation?

- A wants to communicate with B
- Communication data traverses MPLS network
- MPLS = Multi-Protocol Label Switching
What’s the situation?

- MPLS is a forwarding technique that relies on packet tags (labels) instead of IP routing
- routing decision is made only once at ingress edge LSR (Label Switched Router)
- further LSRs forwards the packets without routing table lookup
Why MPLS?

- MPLS decouples IP packet forwarding from information carried in IP packet header
 - original intention:
 - make routers faster \Rightarrow switching instead of routing
 - other benefits:
 - traffic engineering
 - virtual private networks (VPN)
 - guaranteed bandwidth service (QoS)
 - layer 2 transport, migration path for carriers

MPLS decouples IP packet forwarding from information carried in IP packet header.

- original intention:
 - make routers faster \Rightarrow switching instead of routing
- other benefits:
 - traffic engineering
 - virtual private networks (VPN)
 - guaranteed bandwidth service (QoS)
 - layer 2 transport, migration path for carriers
What’s this talk about?

- how to recover from data link failures in a MPLS network in tens of milliseconds?
History

- MPLS: Multi Protocol Label Switching
- MPLS evolved from prior technologies:
 - 1994: Toshiba’s Cell-Switched Router
 - 1996: CISCO’s tag switching
 - 1996: IBM’s ARIS
 - 1996: Ipsilon’s IP switching
- 1997: IETF MPLS Working Group formed
- 1999: first MPLS deployments
- 2001: first MPLS RFCs released
- 2005: MPLS is widely recognized and used by carriers, several MPLS RFCs are on standards track or just became RFC standard documents
How does MPLS work?

- when a packet enters a MPLS network, it is classified/labeled by the ingress edge LSR
- the classification can be done by an IP target address routing table lookup
- ⇒ no further routing decision necessary on LSP
- LSPs are established via RSVP-TE (ReSerVation Protocol with Traffic Engineering Extensions) or LDP (Label Distribution Protocol)
- failure detection through keep-alive messages every 10 ms
- MPLS might fall back to IP routing if an error occurs
Label Stack Encoding / RFC 3032

- encoding specified for PPP/LAN data links
- other data links specify own encoding scheme
- labels can be stacked ⇒ enables tuneling

Figure: label format specification
in case of a failure, packets have to be somehow handled to reach their destination

at which layer shall recovery mechanisms apply?
Motivation for MPLS-Based Recovery

▶ “The most important is its ability to increase network reliability by enabling a faster response to faults than is possible with traditional Layer 3 (or IP layer) approaches alone while still providing the visibility of the network afforded by Layer 3.” (RFC 3469 - Framework for MPLS-based Recovery)

▶ layer 3 rerouting is too slow

▶ layer 3 rerouting does not provide bandwidth protection to specific flows

▶ lower-layer rerouting might be too wasteful to resources

▶ rerouting ability of lower layers might be too coarse

▶ establishing interoperability of protection mechanisms between LSRs from different vendors
Main Objectives

- traffic engineering practices should be applicable
- restoration times that are sufficiently fast for the end user application
- maximize network reliability/availability
- minimize the number of single points of failure
- protect traffic at various granularities
- minimize the loss of data and packet reordering during recovery operations
- preserve the constraints on traffic after switchover
How to recover from link failure?

- how to recover from link failure quickly?
- calculate alternative paths is time-consuming
- solution: pre-planning backup paths
Pre-planning backup LSPs

- backup LSP will become active when failure occurs
- ⇒ Fast Reroute / Protection Switching
Fast Reroute / Protection Switching

- mechanisms to protect links with fast recovery support
- rely on pre-planning and establishment of backup paths
- in case of failure, rerouting packets around failure on previously established backup LSPs
- and/or: signal failure to upstream LSR to let them do the rerouting
- there are two modes of operation recently discussed: detour and facility
Detour Backup Technique 1/2

LSP between LSR6 and LSR10
Detour Backup Technique 2/2

- usage of MPLS label stack
- separate backup tunnel for every backed up LSP (one-to-one backup)
- to protect an LSP that traverses N nodes fully, there could be as many as N-1 detours
- high level of redundancy
Facility Backup Technique 1/2

- LSP (yellow) between LSR1 and LSR5
- LSP (blue) between LSR6 and LSR10
Fast Reroute in MPLS

Facility Backup Technique 2/2

- usage of MPLS label stack
- one tunnel can protect several LSPs
- better scalability than detour
- more cost-effective than detour
Common Disadvantages

- packets might arrive out of order
- a packet might travel up to three times the distance between ingress and egress router in a failure case
- MPLS-based recovery can’t overcome failure signaling ⇒ slower than lower-layer recovery
- additional complexity added to MPLS
Bandwidth-Sharing Problem

- LSPs may have bandwidth allocations
- backup LSPs may also have to guarantee the service level compliance
- restoration capacity efficiency (ratio of restoration capacity and service capacity) has to be optimized
- in general, multiple LSP share a common link
- ⇒ a failure causes multiple LSPs to fail simultaneously
Basic Approach for Bandwidth-Sharing Problem

- Ps: primary LSP
- $Pr(k)$: backup LSP for node k
- (1) Ps’s and $Pr(k)$’s immediate downstream node should differ from each other.
- (2) The required bandwidth associated with different $Pr(k)$ of Ps should be shared if they share a common link.
- (3) Backup LSPs from different service LSPs should share bandwidth on common links if their protected service path failure points are not subject to simultaneously failure.
- (4) Enough bandwidth must be reserved on all links in the network such that for any link/node failure, there is enough bandwidth to restore all affected service LSPs.
- (5) Total bandwidth reserved for restoration over all links should be minimized.
Conclusion

- adding recovery mechanisms at MPLS layer seems to be a good location
- pre-planning backup paths enables MPLS to recover from failures within tens of milliseconds
- using label stacking to maintain bypass tunnels is a scalable and cost-effective failover solution
- pre-planned backup paths decrease service capacity
- restoration capacity efficiency has to be optimized in a MPLS Fast Reroute network
Thank you for your attention!

Discussion