

Georg-August-Universität
Göttingen
Institut für Informatik

ISSN
Nummer

1611-1044
IFI-TB-2007-03

Technischer Bericht

An Experimental Analysis of Joost Peer-to-Peer VoD
Service

Jun Lei, Lei Shi and Xiaoming Fu

Technische Berichte
des Instituts für Informatik

an der Georg-August-Universität Göttingen
15. October 2007

Georg-August-Universität Göttingen
Zentrum für Informatik

Lotzestraße 16-18
37083 Göttingen
Germany

Tel. +49 (5 51) 39-1 44 14
Fax +49 (5 51) 39-1 44 15
Email office@informatik.uni-goettingen.de
WWW www.informatik.uni-goettingen.de

1

An Experimental Analysis of Joost Peer-to-Peer
VoD Service

Jun Lei, Lei Shi and Xiaoming Fu
Computer Networks Group, University of Göttingen, Germany

{lei,shi,fu}@cs.uni-goettingen.de

Abstract— Most of the current Video-on-Demand (VoD) sys-
tems rely on content distribution networks or some local stream-
ing proxies. While these traditional systems offer a means
for media delivery and streaming, they also pose a significant
performance challenge in terms of scalability and service delay
as the number of clients increases. To solve this issue, peer-to-
peer (P2P) technologies have been applied to support the VoD
systems. Joost is one of such systems for distributing TV shows
or other forms of video over the Internet. However, like Skype in
its early stage, the mechanisms behind Joost are still unrevealed.

The main purpose of this paper is therefore to study the
underlying Joost architecture and its key components, and
analyze its media streaming behaviors and peer management
mechanisms through close investigations on Joost network traffic.
With three envisioned typical scenarios we have further studied
the Joost performance in terms of locality awareness, bandwidth
capacity and VoD functionalities. Based on extensive experiments,
we infer that Joost is a server-assisted peer-to-peer VoD system.
It mainly relies on a set of delicate infrastructure nodes (e.g.
content servers) for video distribution. To our best knowledge,
this paper is the first comprehensive analytical and performance
study on commercial P2P VoD services.

Index Terms— Peer-to-peer (p2p), Video-on-demand (VoD), Per-
formance measurement

I. I NTRODUCTION

In the recent few years, IPTV has gained a tremendous
popularity in the operators and users as well as a lot of
attention from the research community. For residential users,
IPTV is often provided in conjunction with Video-on-Demand
(VoD) and may be bundled with Internet services such as
VoIP. Traditionally, when a client user selects a program, a
point-to-point unicast connection is established betweenhis
(or her) decoder (akaset top box) and delivering media server,
which lacks efficiency and scalability. Most of the current
VoD services mainly rely on content distribution networks
(CDNs) [20] or some local streaming proxies to increase
system scalability and to alleviate the delay experienced by
end users. However, their system performance and deployment
become a key challenge as the number of clients increases.
Especially, if a flash crowd [15] occurs, servers can be easily
overloaded. The similar phenomenon occurs when a web site
catches the attention of a large number of people, and gets an
unexpected volume and possibly overloading surge of traffic.
To address this issue, peer-to-peer technologies have been
employed to support VoD services. Joost [1], created by N.
Zennström and J. Friis, co-founders of Skype [29] and Kazaa
[23], is one of such systems for distributing TV shows or other
forms of video over Internet using P2P TV technologies.

We choose Joost as the target for the study of Peer-to-
peer VoD services due to the following reasons. Firstly, as
one of the earliest and best-known commercial peer-to-peer
VoD products, Joost has the potential to become popular fol-
lowing a successful story of Skype. It offers high-quality and
comprehensive VoD services, for instance, the current version
(Beta 1.0) supports an instant on-demand video without any
need for additional set top box. Furthermore, it is provided
as a freeware without releasing source code, although it is
known to be built on top of several open software such as
Mozilla/xulrunner [21]. These facts may provide us some
means to understand some particular behaviors of Joost clients,
however, except for the limited knowledge of the used open
software, the underlying P2P architecture and detailed mech-
anisms/techniques used in Joost, like when Skype was new,
are still unrevealed. Getting deep insights into various aspects
of Joost has been challenging because the Joost architecture
and many technologies it uses are proprietary. In particular, in
order to understand its performance, we had to collect a large
amount of data and analyze media streaming behaviors and
peer management behaviors.

In this paper, we first raise some questions about the
Joost system and seek to answer them through numerous
experiments:

• What is the Joost architecture?What are the key com-
ponents in such an architecture? Which functions are
performed by these components? How these functions
can be achieved?

• How are the characteristics of Joost network traffic?
Which kind of protocols does Joost use? What is the
fraction of outgoing and incoming data traffic? What is
the fraction of network traffic that a peer receives is
control traffic?

• What are the characteristics of peer behaviors?At what
rates does a peer download from and upload to its part-
ners? How are the partnerships different for a University
LAN client and a DSL residential client?

• How are the Peer-to-Peer technologies used in Joost?
How does the peer selection performed in Joost? During
the peer selection, has Joost considered locality? Whether
heterogeneity is considered? How about the fairness of
contribution? Has Joost considered peer adaption during
dynamic changes?

• How does Joost provide the VoD services?Which kind of
the VoD functions provided? What is the media streaming

2

behavior? How does the peer management involve in
these services?

• How about the performance with different network con-
ditions? How about the performance of high capacity
nodes, if they can offer high network access speed?
If the Joost client suffers from low, unstable network
conditions, will the performance dramatically degrade?

The rest of the paper is organized as follows. In Sec-
tion II we give a brief overview of Joost software. Section
III describes the key components of Joost system. Section
IV discusses key Joost functions like installation, bootstrap-
ping, reconnection, channel switching and VoD functionalities.
Based on above studies, we infer the Joost architecture in
Section V. As the performance aspect plays an important role
in P2P VoD user adoption, we envision three typical usage
scenarios and use them to study more closely the behaviors
and performance of locality awareness, bandwidth capacity
and peer management in Section VI. In Section VII we review
related work. Finally, we conclude this paper and plan future
work in Section VIII.

II. JOOST OVERVIEW

The current Joost Beta version (Beta 1.0) runs on Windows
XP, Windows Vista and MAC OS X. It supports 15,000 TV
shows through 250 channels [1].

After registration, each client can log into the Joost system
directly. A Joost client user can select from the channel list
which specific program to watch. If the program is completely
new to the client, it may take up to 20 seconds to really start
the program. Most likely, the time is required for requesting
contents from other peers and preparing downloading. Other-
wise, the program will start immediately after selection since
content can be directly fetched from the local video cache seen
in Section III.

Moreover, the Joost client can browse the channel list and
add selected channels into “My Channel” list that is a favorite
channel list for client’s convenience. It usually takes 7-9
seconds to switching the channels.

III. K EY COMPONENTS OFJOOST SOFTWARE

According to our following experiments, during its oper-
ation a Joost client performs one or more of the following
actions: listen on particular ports for incoming traffic; store
media data into its local cache; maintain a table of other
peers called a host cache; use Advanced Video Codec (AVC);
determine if it is behind a NAT or firewall; and functions
required by additional features, such as instant messaging.
This section discusses the key components involved in these
actions.

A. Ports

During the installation and bootstrapping, Joost client con-
tacts some HTTP/HTTPS servers initially. It will be further
described in Section IV.

Upon the first initialization, the Joost client (JC) randomly
chooses a port number through which the JC can subsequently

communicate with other peers and Joost servers. Such a port
(noted asJC P) is usually some high port (e.g. 57929). Once
the port number is determined during the first run, subsequent
media transactions will always use this port no matter the JC
restarts or reboots. Besides, the Joost client listens on this port
for incoming requests from other peers. To send media data
to other Joost clients, the JC also uses this port.

In April 2007, port number 4166 was assigned by the
Internet Assigned Numbers Authority (IANA) [16] as the
official TCP and UDP port used for Joost. Since then, all media
data and some of the control messages (e.g. peer management)
are sent through 4166 from Joost servers (seen Section V for
detailed information). Looking into the specific port number
facilitates our following experiments.

To summarize the above analysis, the different ports used
in Joost network traffic are depicted in Table 1.

TABLE I: Ports

Protocol Joost Server Joost Client Super Node
HTTP 80 HTTP port
HTTPS 443 HTTPS port

TCP 4166 JC P 4166
UDP 4166 JC P 4166

Here, super nodeis not a Joost Client, but a delicately
deployed entity mainly for peer management and peer lookup
purposes in Joost, as described in Section V.

B. Video Codecs

Joost claims to use “an H.264 codec for video encodings
(aka AVC, aka MPEG-4 Part 10, aka ISO/IEC 14496-10)
called CoreAVC, created by CoreCodec” [22]. However, in our
experiments we did not observe H.264 as shown in Figure 1.
We conjecture that RTP dynamic (payload type: 96-127) is the
codec H.264 (payload type: 99) for Joost video encoding as the
freely available analyzers we found were unable to distinguish
it. Furthermore, it was observed that Joost used G.711, G.726,
G.728, G.729, G.723.1 and GSM for audio codecs (Figure 1),
which allow frequencies between 8,000-90,000 Hz to pass
through. These codecs have been developed by ITU-T [17].
We conjecture that Joost followed the RTP specification [31]
for the implementations.

C. Local Video Cache

A JC for Windows XP users stores the media data in
its local cache as “anthillcache” atSystem Disk(e.g. C:)\\
Documents and Settings\< XP user>\Application Data\Joost\
anthill\anthill cache. For Windows Vista users, local cache
is stored in System Disk:\\uers\<Vista User>\AppData\
Roaming\Joost\anthill. Joost claims that just like a “Skylib”
(Skype library) enabling voice and chat services on the P2P
layer, Joost runs on a media streaming library the company
has nicknamed “Anthill”. Here, Anthill [26] is an agent-based
peer-to-peer system to support the media distribution services.
A brief overview of Anthill is shown in Appendix.

The cache size depends on which and how long programs
have been played. Each time a new program is chosen, the size

3

Fig. 1: Example of protocols used in Joost system.

of the cache will automatically increase. In our experiment, it
was more than2 GB. Therefore, we believe that user’s system
resources will be significantly occupied if the JC continuesto
watch different channels.

If we assume that the local cache did completely store the
played video, the JC should watch the old program directly
from the local cache. However, when we had disabled the
Internet connection, the program surprisingly stopped, even if
the particular program has been watched 1 minute ago. We
guess that although some media data have been stored locally,
it still requires a kind of codec from the remote server or a
encryption key (e.g. AES key) authorized by the Joost server
to access the video file. To prove these conjectures, we made
additional experiments.

We launched a new channel and at that moment, the local
cache was empty. After the whole channel was watched, the
size of cache file grew up to 1.7 GB and the average download
speed was518 kbps. If we turned off the JC and restarted it,
the download speed was dramatically dropped down to11 kbps
when the same channel was watched. Moreover, the size of
local cache increased only5.88% during the second watching
time.

D. Host Cache

Similar to what was observed in the Skype analysis [29]
and [30], host cache is a list of Joost super nodes IP address
and port pairs that JC builds and refreshes periodically. The
JC for Windows XP stores the host cache as an XML file
“shared.xml” inSystem Disk:\\Documents and Settings\<XP
User>\Application Data\Joost\anthill. A Joost client for
Windows Vista stores it in System Disk:\\users\<Vista
User>\AppData\ Roaming\Joost\anthill.

E. NAT and Firewall

We detected that a random port was configured at the
first login time and kept in use for the subsequent media
transmission. As video packets are sent over UDP (as shown
in Section V), we conjecture that Joost uses a modified STUN
[19] protocol to determine the type of firewall and NAT it may

behind, similar to what was observed in [29]. The NAT and
firewall traversal related information is stored in theshare.xml
file.

More information related with STUN is stated in Appendix.

F. Additional Features

Joost utilizes widgets to provide some additional function-
alities, among which the most notably one is a channel-based
chat room. Based on this feature, clients are able to talk to
each other in real-time when watching the same channel.

Furthermore, it is possible for clients to create a private
channel by dragging the video to the show bar.

Since during our experiments there was only a limited
number of Joost users, it was hard to experience a compre-
hensive set of these additional features. Thus, the rest of this
paper focuses on the primary features as described in previous
sections.

IV. JOOST FUNCTIONS

All the experiments were performed for Joost version Beta
1.0. Joost was installed on Windows XP and Windows Vista
machines. The Windows XP was Intel Pentium Dual-Core
1.73 GHz processor with 1.00 GB RAM. The Windows Vista
was equipped with AMD Althon X64 processor with 1.00 GB
RAM.

A. Installation

One Joost server was involved in installation phase: lux-
backend-lo-1.joost.net (89.251.4.75). The client sent a HTTP
1.1 GET request to this Joost server and downloaded a SQLite
[28] file (zelos2.sqlite) which is the initial channel list.See
Appendix for complete messages.

This channel list is stored inSystem Disk:\\Program
files\Joost\defaults\profile\zelos2.sqlite, currently fixed to
1.35 MB size and 33 channels). Clearly, SQLite is used for the
Joost channel database management, which is a self-contained,
embeddable, zero configuration SQL database engine. Fig-
ure 20 shows a snapshot of the initial Joost channel list.

At that moment, the local cache, node identity and the
listening port number through which the client will communi-
cate with other peers were not yet configured. We found that
there was no local cache file, no share.xml file in which node
identity and port would be configured. In this paper, we use
the term of peer and client interchangeably.

B. Bootstrapping

Totally, three Joost servers and two Joost super nodes were
responsible for the bootstrapping procedure, by which the
listening port was configured and the channel list was updated
(System Disk:\\ Documents and Settings\<XP User>\ Ap-
plication Data\Joost\Profiles*.default\zelos2.sqlite, 1.76 MB,
45 channels).

Firstly, the JC communicated with lux-www-lo-2.joost.net
server (89.251.2.85) over HTTPS. We conjecture that it is
a kind of tracker server. In case the newcomer contacts the
tracker, it will receive some available super node addresses

4

and possibly some content server addresses. Then, a HTTP
GET request was sent to lux-www-lo4.joost.net (89.251.2.87)
server for getting the latest software version. See the Appendix
for the detailed message exchanges.

Besides, the lux-backend-lo-1.joost.net server (the same
server involved in the installation) was also involved in boot-
strapping the client by sending packets over HTTPS.

Finally, JC started to contact some of Joost super nodes, for
instance, lid-snode-1-eth0.joost.net (89.251.0.16), lid-snode-2-
eth0.joost.net (89.251.0.17) and lux-snode-1-bond0.joost. net
(89.251.4.71), possibly to obtain the list of other available
clients and begin transacting video contents. Before long,the
running JC has already started communicating with other peers
besides Joost severs.

Figure 2 shows the throughput of above three Joost servers
during bootstrapping. At the very beginning, the tracker server
(lux-www-lo-2.joost.net) helped bootstrapping the new client.
Clearly, after a short period the tracker server was not involved
in the subsequent communication. Then, the backend server
(lux-backend-lo-1.joost.net) appeared and continuouslysent a
large amount of data to the client, we guess, in order to update
the channel list. At some point of the bootstrapping procedure,
the version server (lux-www-lo4.joost.com) checked the ver-
sion of Joost software.

0
 5
 10
 15
 20
 25
 30
 35

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

S
er

ve
r

T
hr

ou
gh

pu
t (

bi
t/s

)

Relative Time During Bootstrapping (second)

 Tracker Server

 Backend Server

 Version Server

Fig. 2: Joost server throughput during bootstrapping.

C. Reconnection

We restarted the JC and attempted to observe the peer
behaviors during client reconnection. The above-mentioned
initialization process occurred again with two exceptions. One
is that the version server might not appear if the interval
was short and the other exception is the port number that
was negotiated when first connecting to the Joost network
was stored in the share.xml file and reused. If the version
server really appeared, checking software version used HTTPS
instead of HTTP.

Furthermore, the JC attempted to communicate with peers
from which it has downloaded content previously. This was
done by sending some small UDP probe (64 bytes) to other
clients, which in turn would reply with another small UDP
probe (64 bytes). Afterwards, media data was continuously
downloaded from some connected clients.

D. Channel Switching

During our experiments, Joost classified the channels into 13
categories: Explore, My Channels, What’s popular, Cartoons
& Animation, Comedy, Documentary, Drama, Entertainment,
Film, Lifestyle, Music, News, and Sports & Games. All the
selected and viewed channels are kept in the “My Channels”.
Thus, there are two possibilities to switch the channels. Ifthere
are no selected channels in “My Channels”, the client needs
to firstly browse the channels and then choose one. Otherwise,
the client can just pick one channel from the “My Channels”.
The second option is much faster than the former one because
channel browsing takes a long time.

1) Channel Browsing:Since the initial channel list was
downloaded from the lux-backend-lo-1.joost.net, we conjec-
ture that this server is also responsible for the channel man-
agement, such as channel list downloading and updating.

We traced the network utilization of the backend server
when the client browsed the channels. In Figure 3, the column
represents the network utilization (in bit/s) during the channel
browsing. Between time40 − 60 seconds there was a large
amount of the traffic and at exactly that time, we browsed
the channels. If we selected a certain category and stopped
browsing, the utilization dramatically dropped and was kept
stable. Figure 4 depicts that compared with the channel
browsing the network utilization between60 and120 seconds
was relatively low. This indicates that the channel list was
dynamically downloaded from the server.

Fig. 3: Browsing Channels.

60 80 100 120

Fig. 4: Stop Browsing in Certain Category.

2) Switching Channels:We observed that at the moment
of channel switching the JC contacted firstly with some super

5

nodes. These super nodes IP addresses and ports have been ob-
tained from the tracker server (lux-www-lo-2.joost.net) during
the initialization. For example, the JC contacted lid-snode-2-
eth0.joost. net (89.251.0.17) and lux-snode-1-bond0.joost.net
(89.251.4.71) over UDP. From these super nodes, the JC may
obtain some address lists including related content servers
and possibly some other clients who were watching the same
channel but ahead of this particular client. Once the JC re-
ceived such a list, it attempted to contact them by immediately
sending UDP requests. At the same time, other super nodes
continued to send the client available address lists. When the
selected channel started playing, the JC periodically exchanged
messages with these super nodes over UDP. We believe that the
super nodes are responsible for redirecting clients to content
servers or peers during channel switching. Moreover, they
periodically exchange messages with clients, possible forthe
purpose of peer management or acquiring keying materials to
eventually watch the video stream.

In the current version of Joost, the function of local video
buffer is not supported. That is, when the client pauses the
video it stops downloading. There are some claims that Joost
should have a small amount of buffer in order to avoid the
stuttering and temporary freezes [22]. However, observing
from the fact that most of users frequently switch channels,
the current solution may save resources in case of short-term
switching as it does not maintain local buffers.

E. VoD Functionalities

Unlike file sharing or live media streaming, each JC is
more “selfish” in the sense that it only cares about contents
after its current playing position, which is often different
from other peers. The peer can only download from those
whose playback positions are ahead, or from who have already
watched the program. Instead, itself can help peers which join
later. However, as each Joost client can change its playback
position at any time, which differs from many other P2P
streaming systems, it becomes difficult to optimize the overall
VoD system. For example, the “rarest-first” strategy [10] in
BitTorrent is not applicable here.

As a result, the VoD aspect attracted our particular interests.
After repeating several experiments, we come up with the
following conclusions.

First, in Joost system each media file was broken down
into fixed-time chunks and each chunk is encrypted. During
our experiments, if the fast forward interval was smaller than
5 seconds the JC may continuously play without waiting.
However, if the interval is large it took5 − 10 seconds to
start playing. To illustrate our observation, we suppose that
each media file is divided into multiple 10-second play time
chunks, but the exact size of the chunk is unknown. As
shown in Figure 5, each chunk includes an anchor which is a
dedicated marker for encrypted media data similar to I-frame
in MPEG [9]. When a seek is triggered in a client (i.e., control
bar is moved to a backward position), the client will always
search for the closest anchor in the local video cache if it is
already downloaded. Otherwise, it firstly sets a new anchor
and requests new data from other peers.

Chunk

anchor anchor

anchor
Fast forward

Back ward anchor
Seek

t (second)

10s Seek

Current
Position

Requesting
data

Fig. 5: On-demand Video Functions.

Second, if the JC drags the control bar into any specific
position, it communicates with one of the super nodes, for
example, lid-snode-2-eth0.joost.net (89.251.0.17) or lid-snode-
1-eth0. joost.net (89.251.0.16) in all our experiments.

To prove that those super nodes support VoD functionalities,
we traced the first super node during the periodic (every 20
seconds) actions of “fast forward” (10-minute period of video)
within the same program. As shown in Figure 6, each time
the JC dragged the control bar, there was a large amount
of traffic sent from the super node. Otherwise, the traffic
from the super node was quite low compared to the “fast
forward period”. By analyzing the traced data, we found that
UDP was used to carry the traffic and the average received
packet size was137 bytes and the average size of sent packets
was 141 bytes (all below150 bytes). Therefore, we suppose
that these packets are only used for control, not for media
transmission. Furthermore, we conjecture that the updated
lists, which contains information about peers having already
received the on-demand contents, are encoded in these packets.

Fig. 6: VoD functionality

V. JOOST ARCHITECTURE

Based on the above observations, we deduced the basic
architecture of the Joost system. As depicted in Figure 7,
there are five different types of servers, Joost super nodes
and Joost clients. Obviously, there are other servers taking
charge of added value services, for example, instant chat
service. Because the fundamental functions are our focus,
these additional servers have been removed from the figure.

In the following section, the server architecture, Joost super
nodes and protocols used in the Joost network traffic will be
described in detail.

6

Joost
Client

Lux-www-lo2.joost.net

Tracker server

version Server

Lux-www-lo-4. joost.net

Initialization phase

Backend Server

Lux-backend-lo-1. joost.net

Super node

Joost
Client

Media distribution

Content Server

Joost clients

Graphics Server

lux-backend-13-bond0.joost.net
Graphics

Server

lux-backend-14-bond0.joost.net

Super node

Backend Server

Lux-backend-lo-1. joost.net

Fig. 7: Joost Architecture.

A. Server Architecture

Five types of servers are participating in the Joost architec-
ture as seen in Figure 9, respectively, version server, tracker
server, backend server, channel graphics server and content
server.

The lux-www-lo4.joost.net server is the version server that
is responsible for checking the current version of the software.
When the JC is crashed, this server is also responsible for the
error reports.

During the initialization, lux-www-lo2.joost.net takes
charge of sending the initial peer list that includes some of
the super nodes and content servers. After that, the tracker
server will not appear in any of the other stages (e.g. channel
browsing, switching). Such a server is not responsible for
browsing program, nor for channel switching. Its only job is
to keep track of its membership and helps bootstrapping new
peers. In the later stage, this server does not appear since peer
communication can continue without the tracker.

The client sends HTTPS request to lux-backend-lo-
1.joost.net, the backend server, that performs channel list
management (e.g. updating, downloading) and load balancing.
Switching channel will cause significant traffic, which can be
observed in Section IV. Besides, it periodically (every one
minute,81 kb traffic) communicates with the client.

The detailed message flow is shown in Figure 8.

JC
Backend

server
Tracker
server

Version
server Super node

TCP 3-way
handshake
HTTP GET

TCP 3-way
handshake

HTTP 200 OK

HTTPS

HTTPS

TCP 3-way
handshake

TCP 3-way
handshake
HTTP GET

HTTP 200 OK

UDP

installation

First
initialization

Fig. 8: Installation and First Initialization Message Flow.

Later, we realized that the channel management is actually
not performed by a single server, but a server cluster. That is,
the lux-backend-lo-1.joost.net server answers for controlling
channel requests and keeping load balance among cluster
servers, whereas other cluster servers are only responsible for a
certain task (e.g. channel graphs downloading). See Appendix
for the complete messages. For instance, there was a server,
lux-backend-13-bond0.joost.net (4.251.4.153) from which the
JC downloaded the channel graphs instead of from the main
control server.

Especially, when the control server is heavily overloaded,
some of the channel list updating and channel graph download-
ing actions will be taken over by other cluster servers. Another
task of the backend server is providing searching services for
channels or specific contents.

The last type of Joost server is the content server. Joost
did distributedly deploy a serious number of content servers
over the network. During our experiments, we observed the
following server sites:

• 4.71.105.0/24 (sna-Itsnode-x-bondx-x.joost.net)
• 4.71.174.0/24 (IPsoft)
• 212.187.185.0/24 (Icy-Itsnode-x-bondx-x.joost.net)

Here,x varies from0 to 10. The first and third IP address
site is owned by Level 3 Communication INC [24] which has
been selected by Joost to support on demand Internet TV. Since
July 24, 2007, Level 3 provides Joost with network solutions
including high speed Internet access and co-location services
in North America and Europe [24]. The second IP space group
belongs to IPsoft service provider in New York.

B. Super Node

Different from other P2P networks (e.g. Skype) or over-
lay multicast solutions [7], these nodes are only used for
controlling and helping new peers find contributing peers.
They are not responsible for relaying/forwarding media data
to other peers. It is quite efficient and reasonable since peer
management is split from the media distribution, which not
only eases the management but also improves the efficiency
of transmission. Differently, if a super node in Skype leaves
ungracefully, all the other peers relying on it will be unavoid-
ably affected.

To summarize, Joost super nodes perform the following
three basic functions in most cases.

• After bootstrapping JCs first contact super node, which
directs clients to available peers. Peers are either JCs or
Joost content servers.

• For on-demand video functions, super nodes periodi-
cally exchange some small UDP packets with clients.
We believe that these UDP packets are used for peer
management, such as keep-alive probing.

• Additionally, channel switching requires the JC to talk to
the super node. At that time, super node most likely helps
it finding available peers to fetch the new media data.

C. Protocols

Figure 9 depicts the main protocols used in the Joost system.

7

Protocol Functionality Packet Size
UDP Video distribution

Content Probe (peer to peer)
Channel Switching (peer <-> super node)

1104 Bytes
~ 64 bytes
< 1000 bytes

HTTPS Administrative management
Client -> Server
Server -> Client

64 bytes
<=1518 bytes

HTTP Software version
Client -> Server
Server -> Client
Channel management
Client -> Server
Server -> Client

~64 bytes
< 500bytes

~ 64 bytes
<= 1518 bytes

Fig. 9: Main protocols used in the Joost system.

As shown in Figure 9, all video packets are encoded in UDP
and the size is exactly 1104 bytes. It is observed that JC uses
the negotiated port number (JC P) with other clients. Be-
sides the media transmission, peers frequently negotiatedeach
other by sending UDP probes (64 bytes). During the channel
switching, peers contact the super nodes by exchanging UDP
packets.

There are occasionally some TCP packets sent between the
super node and the JC. We suppose that these TCP packets are
only used to probe whether the JC is still alive. Furthermore,
we tracked the UDP and TCP utilization under three different
environments in Figure 10. The utilization of TCP/UDP with
wireless and DSL connections are almost the same. However,
for university LAN connected node, TCP utilization is much
higher (10%) than other two cases. The reason causes such a
result is still unclear, however, we guess that Joost provides a
mechanism to avoid TCP congestion in wireless or low speed
connections.

0
 50
 100
 150
 200

0

20

40

60

80

100

P
er

ce
nt

ag
e

of
 P

ro
to

co
l U

til
iz

at
io

n

Time (minutes)

 UDP (Wireless)

 TDP (Wireless)

 UDP (DSL)

 TCP (DSL)

 UDP (University LAN)

 TCP (University LAN)

Fig. 10: UDP vs. TCP utilization.

HTTP is used for checking the software version and channel
updating during bootstrapping and initialization stages.It
appears when the JC browses the channel as well since the
channel graphs and list are real-time downloaded from the
server.

Differently, HTTPS is used for the administrative manage-
ment which includes checking software version, channel list
updating, obtaining tracker during reconnection and service
management. For example, when the JC searches for a specific

channel during browsing, such a request will be sent to the
backend server over HTTPS.

VI. M EASUREMENTMETHODOLOGY

So far, we obtained the Joost architecture and described
some of its functions. However, some of the mechanisms
behind Joost are still unknown, such as, the locality awareness,
peer selection and bandwidth capacity. In this section, we
designed three typical scenarios to investigate them.

A. Experimental Conditions

We used three test machines: two Windows XP SP2 ma-
chines and one Windows Vista machine. Our test location was
in Germany.

The Windows Vista node is equipped with AMD Athlon
X2 64 processor, 160G hard drive, and 1.00 GB RAM. One
Windows XP machine is equipped with Intel Pentium Duo-
Core 1.73 processor with 1.00 GB RAM. The other Windows
XP machine is Pentium 4 2.00GHz with 1.00 GB RAM. Each
machine has a 10/100 Mbps Ethernet Card and additionally,
the second Windows XP test node was integrated with Intel
Wireless WiFi compliant wireless LAN (802.11a/g/n).

B. Considered Scenarios

The following three scenarios were considered during our
experiments.

• In the first scenario (100M LAN + 100M LAN), two
Windows XP(WX) nodes were connected to 100 Mbps
full-duplex university LAN and located behind a network
address translator (NAT) and accordingly configured with
non-routable, private IP address.WX1 started first to
choose one channel. After3 minutes,WX2 selected the
same channel.

• In the second scenario (100M LAN + 54M WLAN), the
Windows Vista node (WV1) was connected to 1Gbps
university LAN and one Windows XP node (WX1) was
connected to the Gömobile Wireless LAN (54Mbps).
Gömobile is a German radio network providing Internet
access services.WV1 started 20 minutes earlier than
WX1 to play the same channel.

• In Scenario 3 (DSL), oneWX2 test node was connected
to a residential Arcor (a German Telecommunication
company) cable-modem with 1 Mbps of downlink ca-
pacity and 1 Mbps uplink capacity.

In each of the scenario, we used different distinct Joost user
accounts on separate test machines. As stated in Scenario 1,
two Windows XP nodes are physically located next to each
other. Thus, it would be possible thatWX2 receives a large
amount of data fromWX1 since they are located in the same
access network.

In the second case,WV1 can be assumed as the high
capacity node while compared withWX1. If there is any
mechanism in Joost considering the peer’s capacity, it would
be noticed through the second measurement. Besides, though
they are not located in the same local network, they were
geographically neighbors.

8

In the last scenario, it would be interesting to see if
cable-modem connected node (WX2) with lower bandwidth
capacity can still receive high quality video.

C. Measurement Studies

For collecting data, we used Wireshark [6] and Omnipeek
[5] that allows multiple simultaneous capture sessions for
different network adaptors. Since our measurements involved
different network adaptors (e.g. Gigabit Ethernet, 802.11
WLAN), Omnipeek was helpful to capture packets and analyze
traffic under different circumstances. Moreover, it offered a
variety of selection of build-in filters to capture the packets that
satisfied certain criteria. For example, it was easy to collect
data with specific IP address, protocol or port number, which
has also been proved in the following measurements.

Tools like MaxMind [25] and WhereIsIP [32] were used
to perform reverse country, city and ISP lookups for an IP
address when Omnipeek failed to return a DNS PTR record.

1) Scenario 1 (100M LAN + 100M LAN):Within this
measurement, we totally collected about14.4 GB of data, over
a 3-day period (7.0GB from one test node and7.4GB from
the second). By analyzing the data, we found the following
facts.

Video Distribution
In the beginning, neither of them relayed any traffic for

the other. More specifically, most of their data came either
from the other peers, especially from European Countries (e.g
Finland, France), or from Joost owned media servers.

After a certain while,WX2 started to receive data from
WX1 but not much (3.3%, 10.5 MB). After 3-day experi-
ments, we analyzed the collected data from both test nodes.
However, although the two test nodes were watching the same
channel and also geographically and topologically locating
near each other,WX2 only received 1.3% of the data from
WX1 (96.2 MB out of approximately 7.4 GB). This may
be caused by two possible reasons: (1) locality has been
considered in the initial peer selection, and is adaptive to
dynamic changes (e.g. new peer joining); (2) network locality
and topological locality have not been taken into consideration.
However, the first hypothesis does not hold sinceWX1 did
not send data to any other peer in the access network where
WX2 and WX1 were located. Therefore, we conclude that
Joost has not considered the network locality or topological
locality during peer selection.

Channel Switching
In the end of the experiment,WX1 switched to a new

channel andWX2 still continuously received data from it
about 0.03% of the data (2.22 MB). It provides the evidence
that there is a local cache for storing the old programs.
Otherwise, it is impossible forWX2 to receive data after
WX1 switched to a different program.

2) Scenario 2 (100M LAN + 54M WLAN):In the second
measurement, we collected4.0 G data over a 24 hour period
(2.0 G for each test node). Through analysis, we found the
following facts.

For WV1, the quality of video playback was good. After
analyzing the network traffic, we found that the most of the

data came from Joost content servers. Among the top19

most contributed peers, there were9 (9 out of 19) peers
belonging to Joost. From these content servers,WX1 received
21.62% (432.5 MB out of 2.0 GB). Of all other 10 most
contributed peers, except for one from Japan and two from
United Kingdom, the rest of the peers came from other
European countries (3 from Germany). The European peers
except for that from UK contributed only57.2 MB (2.85%),
whereas the peer from Japan alone sent9.62% data (192.4

MB). The rest of the data (70%) came from other over 500
peers, however, neither of them contributed significantly.

With the wireless connection, the quality of on-demand
video was good as seen inWV1 with seldom interruptions
because the wireless signal in our test lab was constantly
strong. Similar to the university LAN connected node,WX1

received a considerable amount of the data (42.23%, 0.85 GB
out of 2.0 GB) from 9 Joost content servers. Among the other
most contributed peers (top10), 8 peers came from European
countries and they contributed 53.9% data (1.08 GB out of
2.0 GB). AlthoughWV1 were located geographically close to
WX1, it contributed1.8% of data (360 MB).

The test result is shown in Figure 11. The tested node is
put in the middle of the figure and other connecting peers
are put around. Joost content servers are listed on the right
side and other JCs are put on the left side. Clearly,9 out of
19 contributors were content servers. Among the rest of the
contributors, they came respectively from Denmark, Finland,
Germany, Hungary, Netherland and Sweden (8 out of 10 from
European countries).

Lei. tmg. xx. xx. xx.de

xx.xx.Cybercity.dk
xx. xx. Cybercity.dk

xx.xx.dna.fi
xx.xx.t-ipconnect.de

xx.xx.verizon.net
xx.xx. t-dialin.hu

xx.xx.adsl2.versatel.nl
202.219.xx.xx

Icy. Itsnode.xx.xx
Icy. Itsnode.xx-0.xx

Icy. Itsnode.xx.xx
xx.xx.cableone.se

Icy. Itsnode-5.xx.xx

Icy. Itsnode-6.xx.xx

Icy. Itsnode-4.xx.xx

4.71.xx.xx

4. xx.xx.165

sna. Itsnode.xx.xx

WX1

84.xx.xx.219

Fig. 11: Contributing peers during DSL user watching the German
Channel.

There was no big difference of video quality between the
WX1 and WV1 during this experiment, and therefore it can
not be ascertained that peer’s capacity has been considered
in Joost. In order to verify whether Joost is sensitive to low
capacity uplink and downlink, we conducted the experiments
in Section VI.

3) Scenario 3 (DSL):We captured five-hour period data
through the residential DSL connection. Unfortunately, the
quality of the video was not good (e.g. occasionally stalled)
and by that time the channel was randomly selected. Therefore,
we believe that Joost provides all users with the same quality
of video without considering their heterogeneities. Afteriden-
tifying the peers providing media content to the test node, we
found that most peers were cable users.

9

“Most Popular” Channel
After 30 minutes, we switched to a program selected

from the “most popular” list. At that moment, the quality
of the video was much higher than the previous channel
although some of the connecting peers were still cable users.
More specifically, the most contributed peers were not cable
users, instead, they were high-capacity clients besides content
servers.

Local Channel
In the end, we switched to a German channel and the quality

was unbelievably good as there was no noticeable delay and
almost no interruption. By then, the most contributed peers
(top 19, ranking according to the total bytes) are almost all
Joost content servers (11 out of 17, 64.7%) instead of JCs.

To our experience, two possibilities caused such a result:
(1) the selected channel was rarely watched. For example, our
test node was one of the few peers requesting such a channel
during that time. Since there was few available JCs, the only
way was to serve the client all by content servers; (2) during
the peer selection, low capacity peers (i.e.WX2) was pushed
out of the existing distribution session. Later, we found the
second assumption could not hold in this case since there were
other JCs contributed to the test node, which were not DSL
users. However, the majority of the data were still sent directly
from content servers (63.38%, 290 MB).

D. Measurement Analysis

Then, we detail the three mechanisms observed during the
above three experiments in the following section.

1) Locality Considerations:In order to find the correlation
between the geographical distance and amount of data, we
parsed the IP address of connected media server and other
peers from which our test nodes received data. Finally, we
identified 1210 distinct peers providing contents to our test
nodes. These peers were located in over54 countries. Of
all the data collected from the test nodes,45% (547) came
from European countries,24% (293) came from United States,
8.2% (99) came from Asian countries,7.9% from South
America,3.6% from other countries. Besides, there was45 IP
addresses were not traceable and therefore we marked them
as “unknown”.

Figure 12 shows that the major sources of peers are Europe
and United States. Meanwhile, sources of JCs from Germany
were 130 (19% of Europe). Since our host was located
Germany, we conclude that the geographical distance (e.g.
from specific continent) may have been considered in Joost.
For example, the prefix awareness may have been considered
during the peer selection. However, from Scenario 1 we
ascertain that the network/topological locality has not been
considered yet.

It is known that there are three main media server clusters
over the world: one United States, two in Europe (one in
United Kingdom) [1]. In the best case, when a client sends
a video request, the request will be directed to the nearby
servers. For example, a European client receives the media
mostly from the European servers.

In order to further investigate the locality awareness in
Joost, we measured the RTT from the receiving peers to

3.6%

3.8%

7.1%

7.9%

8.2%

24%

45%

 Europe

 North America

 Asia

 South America

 United Kingdom

 Others

 Unknown

Fig. 12: Geographic Location.

the transmitting peer by OmniPing [27]. We conducted this
experiment in parallel with the ping experiment by using
WhereIsIP [32] to determine the number of hops between our
Joost client and the transmitted peers.

TABLE II: Locality Experiments with RTT, Hops and Data

Host Hops RTT (ms) Data (%)
Host 1 11 19.20 0.01
Host 2 12 113.63 0.02
Host 3 14 110.13 0.07
Host 4 13 97.397 0.48
Host 5 21 134.14 0.66
Host 6 16 128.22 0.95
Host 7 19 128.97 6.36
Host 8 16 147.14 7.22
Host 9 22 186.27 8.64
Host 10 11 416.68 8.25
Host 11 18 182.47 10.15
Host 12 21 56.19 18.07
Mean 16.17 143.36 5

Median 17.5 131.18 3.655
Standard Deviation 3.848 93.873 5.458
Correlation to Data 0.5228 0.2173

Table 2 summarized the results of the experiments that
tested peer connected with University LAN over 1 Hour 30
minutes. We firstly selected19 peers who contributed most
data to our test node. Meanwhile, there were7 Joost content
servers (7 out of 19). Then, we traced the rest12 peers with
their RTT and hop counts. As depicted in the Table, the hop
counts varies ranging from11 to 22, and the largest contributor
has large hop counts. All above hosts show a weak positive
correlation between RTT and the amount of transferred data.
Thus, we conclude that Joost selecting peers is unlikely based
on topological locality. Otherwise, the result should show
strong negative (over0.7) correlation between them.

There is a software released [22], by which user can
determine which Joost-owned content distribution serversto
use. How the neighboring peers can be selected is still unclear.
But one thing can be assured is that topological locality is not
the main metric for the peer selection algorithm in Joost.

2) Bandwidth Capacity:As indicated in Scenario 3, JCs
with different bandwidth support may have different level
service experience. As Joost dominates the network control,

10

it is impossible for clients to control incoming and outgoing
bandwidth except for the strategic clients. Strategic clients can
manually manipulate their bandwidth with help of additional
traffic shaping tools. In order to identify the capacity impacts
on the Joost system, we used “Traffic Shaper XP” [4] to
intentionally control the bandwidth under Windows XP.

Upload CapacityHere, we changed the uplink capacity if
the download capacity is full 100 Mbps. We obtained the
following results.

• When the total upload bandwidth was up to 64kbit/s, the
channel list could be updated but slowly and the VoD
functions (e.g. fast forward) were performed bad.

• The connection with the backend server could be estab-
lished when the TCP limitation was beyond40kbit/s. That
is, under this condition the request could be sent to the
server and the client was ready to receive contents.

• When the UDP upload capacity increased up to10kbit/s,
the video showed and continuously played. It could be
noticed that the quality of the video is fine.

• If the whole upload bandwidth was limited under5kbit/s,
there was no chance to watch program, even for updating
its program list.

• If we controlled UDP upload capacity under5kbit/s, the
program list could be updated and the channel started for
a while but it stopped after 5s anyway.

Above studies indicate that the uplink capacity has little
impact on the video performance since with10k bps (out of
100 Mbps) upload support JC can playback program without
interceptions. That is, Joost client is assumed to contribute as
much as it can without any mechanisms to encourage more
contributions. Besides, it is also not possible yet becauseof
the fixed video bit rate.

Download CapacityDuring the following tests, the upload
bandwidth was independently unlimited.

• The quality of channel was fine without any interruption
when the download bandwidth was allowed up to 1 Mbps.

• In case the download bandwidth was limited up to
512kbit/s, the program occasionally stalled.

• When the download capacity was only128kbit/s, it was
hard to continuously watch the program.

• If the download capacity was64kbit/s, the program was
no longer available.

Fig. 13: Throughput Behavior of LAN Client.

Fig. 14: Throughput Behavior of Wireless Client.

Furthermore, we measured the throughput behaviors during
Scenario 2. In Figure 13, the red line represents the download
capacity ofWV1 and the black line is the upload capacity.
There was a large amount of throughput at the beginning of the
experiment due to the initialization procedure. For both testing
nodes, Joost used approximately600 kbps down and150

kbps up bandwidth. Regardless of the type of connections, the
throughput of JC remains consistently if the client is online.

If the JC watched the program one hour,200 − 300 MB
data was received and around100 MB was sent to other peers.
Noticeably, only a few nodes (around five) are selected to be
significantly served, which consume85% upload data of the
client.

3) Peer Selection:According to the results from three
scenarios, we can deduce the peer selection mechanisms in
Joost as follows.

Firstly, the popularity has been considered during the peer
selection. Most likely, the JC receives a peer list with more
available clients if a most popular channel is chosen.

Secondly, reconsidering the Scenario 3 we conjecture that
during the peer selection, low capacity peers probably con-
nected mostly with low capacity peers except for most popular
program. It is quite similar to the swarm mechanisms used in
BitTorrent [10], which allow low capacity can only receive
data from comparatively low capacity node since, otherwise,
high capacity node may waste resource for sending data to
low capacity nodes instead of high capacity nodes. But for
the most popular channels, there are enough peer resources so
that it would be no problem for low capacity node to receive
data from some high capacity nodes.

Thirdly, we further conclude that if the JC requests a seldom
channel or it is the only one in that channel, most of the data
will be sent from the Joost content server since there is not
enough peers which can contribute to the client.

Fourthly, based on Scenario 1 and 2 we can conclude that
the geographical locality may have been considered in Joost,
however, AS-level awareness or topological locality have not
been realized in the current version.

VII. R ELATED WORK

Peer-to-Peer IPTV architecture requires a minimal infras-
tructure support and can offer the possibility of rapid de-
ployment at low cost. In terms of simultaneous users, one

11

of the most successful IPTV deployments has employed P2P
streaming architecture. Heiet al.[13] provided an overview of
P2P streaming system (e.g. PPLive [3]) and characterized P2P
IPTV behavior and traffic profiles at packet, connection and
application levels. Among most popular IPTV services, Video-
on-Demand (VoD) provides video, audio and data service
triggered by users’ selection. However, most of existing work
about P2P VoD systems was concentrated on the protocol
design and the implementation [11], [14], [12]. Different from
them, we provides a real measurement analysis on Joost func-
tions, peer selection and locality awareness. Furthermore, the
Joost architecture is quite different from, even more complex
than, media streaming architecture described in [13]. In Joost,
each JC is more “selfish” since it only cares about the content
behind its current playback position. The VoD functionalities
give the users more flexibilities, and hence make the system
more difficult to analyze.

Joost uses some similar P2P technologies as used in Skype
which critically depends on the a peer-to-peer network formed
by super nodes. Any participating node initially is a standard
node, and some of them will be promoted to super nodes ac-
cording to a number of factors including spare bandwidth and
public reachability. Basetet al. [29] analyzed various aspects
of the Skype protocol such as login, NAT and firewall traversal,
call establishment, media transfer, codecs and conferencing
under three network setups. In general, the paper provided a
detailed analysis of Skype user experience and peer behaviors.
Guhaet al. [30] analyzed node dynamics and churn in Skype’s
peer-to-peer overlay. Further, it identified that Skype was
fundamentally different from earlier P2P systems like P2P file
sharing networks. There are three main differences between
Skype and Joost. First, Joost architecture requires more than a
login server. Second, Joost super nodes are not responsible
for relaying traffic to standard nodes. Third, as observed
in [29] the voice packet size varied between 40 and 120
bytes, however, the Joost video packet size was much larger
(1104 bytes). Joost analysis may help to understand how P2P
technologies for such VoD services should be provisioned.

Hall et al. [8] provided a measurement study of Joost in
May, 2007. This paper explained an understanding of Joost’s
application behavior, network behavior, and peer behavior.
However, there are several major differences between their
work and our work. First, their experiments were taken
based on Joost version 0.9.2 which is already out-of-date.
Differently, our experimental studies were performed by Joost
beta 1.0 which is more stable and integrated version. Second,
through our analysis we inferred the Joost architecture andkey
components, however, [8] did not provide such information.
Third, we designed three typical scenarios in order to further
investigate the performance of locality awareness, bandwidth
capacity and peer selection. Nevertheless, [8] only examined
the locality awareness through three experiments. Lastly and
more importantly, we analyzed the Joost VoD functionalities
which are the main difference from other media streaming
systems. Therefore, we can argue that our paper provides the
first comprehensive analysis of Joost P2P VoD service.

VIII. C ONCLUSIONS ANDFUTURE WORK

Joost is one of the first commercial Peer-to-Peer VoD
systems which can provide high quality on-demand TV based
on P2P technologies. We have attempted to discover various
aspects of the Joost functions and behaviors by analyzing
the network traffic and by being acquainted with some of
the open software used in Joost. Without a surprise, Joost
and Skype have some P2P mechanisms and techniques in
common. Our major contributions include: (1)we inferred
the Joost architecture and some key components based on
careful studies of Joost network traffic; (2) we further took
a close investigation on its media streaming behaviors and
peer management behaviors; (3) with three envisioned typical
scenarios we have further studied the performance of locality
awareness, bandwidth capacity and peer selection. To our best
knowledge, this paper is the first comprehensive analysis on
Peer-to-Peer VoD services.

Overall, our study demonstrates that with some dedicated
infrastructure the current Internet infrastructure is capable
of providing performance requirements of high quality VoD.
Based on extensive measurements, we infer that Joost is a
server-assisted peer-to-peer VoD system. Joost mainly relies on
plenty of dedicated infrastructure nodes (e.g. content servers)
to distribute video. The P2P technologies are used to help
distributing video and to extend the system’s scalability.

Although large-scale P2P VoD systems are feasible in
today’s Internet, the performance remains to be improved in
the following branches:

• Such a architecture heavily relying on a set of centralized
content servers may still raise a scalability issue in the
near future. Currently, the scalability is not a major issue
due to the limited number of users.

• Joost has not efficiently used the peers’ resources, es-
pecially when the high capacity peers are available. In
other words, Joost could be slightly more aggressive with
uplink resource of high capacity peers. For example, it
takes a long time to browse the channel list since it is
dynamically downloaded from the server. If there is a
crowded browsing, the server is highly overloaded. These
high capacity peers could be used for providing such a
service.

• It was noticed that during our experiments there were over
five times of “This program is unavailable right now”.
When it happened with one program, it happened with
all programs. After waiting for a few minutes, even up to
30mins, the programs started. Therefore, we believe that
the current Joost P2P technology isn’t always reliable.

• Joost currently provides each client with the same quality
of video, which can be deduced from the results of
above scenarios. This may result in an inefficient resource
utilization if some clients are unable to support the
desired video quality. Hence, layered video or adaptive
mechanisms, together with certain incentive mechanisms,
may be introduced into Joost.

This paper provides a first trial on investigating the Joost
peer behaviors and media distribution mechanisms. Current
Joost P2P code maybe neither AS-level aware nor end-to-

12

end latency aware for the peer selection. However, the exact
peer lookup and selection techniques that Joost used for peer
management is still not clear. Our guess is that it uses a
combination of swarm techniques in BitTorrent and prefix
awareness. Therefore, we intend to investigate them in the
next stage, for example, the peer selection, local cache andon-
demand video streaming. Moreover, we noticed the significant
difference of TCP utilization in different network connections
(Section V) and therefore, we decide to trace the TCP network
traffic of Joost clients especially in the wireless environment.

REFERENCES

[1] “Joost,” http://www.joost.net/.
[2] “Joost Network Architecture,” http://www.scaryideas.com/video/2362/.
[3] “PPLive,” http://www.pplive.com.
[4] “Traffic Shaper XP,” http://bandwidthcontroller.com/trafficShaperXp.html.
[5] “WildPackets,” http://www.wildpackets.com/products/omnipeek/overview.
[6] “Wireshark,” http://www.wireshark.org.
[7] C. L. Abad, W. Yurcik, and R. H. Campbell, “A survey and comparison

of end-system overlay multicast solutions suitable for network-centric
warfare,” In Proceedings of the SPIE Battlespace Digitization and
Network-Centric Systems IV, Vol. 5441, pp. 215–226, 2004.

[8] Y. J. Hall, P. Piemonte, and M. Weyant, “Joost: A Measurement Study”
Carnegie Mellon University, May 14, 2007.

[9] B. Bhargava, C. Shi and S.-Y. Wang, “MPEG Video Encryption Algo-
rithms,” Multimedia Tools and Applications, Vol. 24, No. 3,pp. 57–79,
April 2004.

[10] B. Cohen, “Incentives build robustness in bittorent,”in Proc. of 1st
Workshop on the Economics of Peer-2-Peer Systems, Berkley,CA, 2003.

[11] T. Do, K. Hua, and M. Tantaoui, “P2vod: providing fault tolerant video-
on-demand streaming in peer-to-peer environment,” In Proc. of IEEE
ICC 2004, Paris, France, June 2004.

[12] Y. Guo, K. Suh, J. Kurose, and D. Towsley, “P2cast: peer-to-peer
patching for video on demand service,”Multimedia Tools Appl., vol. 33,
no. 2, pp. 109–129, 2007.

[13] X. Hei, C. Liang, Y. Liu, and K. Ross, “A measurement study of a large-
scale P2P IPTV system,” to appear in IEEE Transactions on Multimedia,
Nov. 2007

[14] C. Huang, J. Li, and K. Ross, “Peer-assisted vod: Makinginternet video
distribution cheap,” in Proc. IPTPS 2007, Feb. 2007.

[15] I. Norros and B.J. Prabhu and H. Reittu, “Flash crowd in afile sharing
system based on random encounters.” Proc. of ICST/ACM workshop on
Interdisciplinary systems approach in performance evaluation and design
of computer & communications sytems, 2006.

[16] Internet Assigned Numbers Authority (IANA), http://www.iana.org).
[17] ITU Telecommunication Standardization Sector (ITU-T),

http://www.itu.int/ITU-T/.
[18] J. Rosenberg, “Interactive Connectivity Establishment (ICE): A Method-

ology for Network Address Translator (NAT) Traversal for Offer/Answer
Protocols,” Internet Draft (draft-ietf-mmusic-ice-17),IETF, 2007.

[19] J. Rosenberg and J. Weinberger and C. Huitema and R. Mahy, “STUN
- Simple Traversal of User Datagram Protocol (UDP) Through Network
Address Translators (NATs),” RFC 3489, IETF, 2003.

[20] J.M. Almeida and D.L. Eager and M. Frris and M.K. Vernon,“Provi-
sioning Content Distrition Networks for Streaming Media,”In Proc. of
INFOCOM 2002.

[21] Joost Open Source, http://opensource.joost.net/.
[22] Joost Support Forum, http://www.joost.com/support/faq/Technology.html.
[23] Kazaa, http://www.kazaa.com/.
[24] Level 3 Communications, http://www.level3.com/.
[25] MaxMind, http://www.maxmind.com/app/locateip.
[26] O. Babaoglu and H. Meling and A. Montresor, “Anthill: A Framework

for the Development of Agent-Based Peer-to-Peer Systems,”In Proc. of
22nd IEEE International Conference on Distributed Computing Systems
(ICDCS’02), 2002.

[27] OmniPing Professional, http://www.manasoft.com/manasoft/.
[28] R. Hipp, “SQLite,” http://www.sqlite.org/.
[29] S. Baset and H. Schulzrinne, “An Analysis of the Skype Peer-to-Peer

Internet Telephony Protocol,” in Proc. of INFOCOM’06, Barcelona,
Spain, 2006.

[30] S. Guha, N. Daswani, and R. Jain, “An Experimental Studyof the Skype
Peer-to-Peer VoIP System,” in Proc. of IPTPS 2006.

[31] H. Schulzrinne and S. Casner, “RTP Profile for Audio and Video
Conferences with Minimal Control,” RFC 3551, IETF, 2003.

[32] WhereIsIp, http://www.jufsoft.com/whereisip/.

APPENDIX

A. HTTP messages involved in Joost installation

This section shows the message dump of HTTP 1.1 GET
request that a JC sent to backend.joost.net (89.251.4.175)and
the responses it received.

In case it was the first time after installation, the client sent
a HTTP 1.1 GET request containing the URI of the resources.
The requested file is zelos2-0.12.zip which can be unzipped
into zelos2-0.12.sqlite as described in Section IV.

Fig. 15: Joost installation: HTTP GET

Then, there was a 200 OK response received by the client
for the above GET request.

Fig. 16: Joost installation: HTTP OK

B. HTTP messages involved in Joost initialization

During the bootstrapping procedure, JC sent a HTTP 1.1
GET request to instdata.joost.com which is actually the version
server (89.251.2.87). The current software version is 0.13.0
(Beta 1.0). The fragmentation of the HTTP GET request is
shown as follow.

HTTP Command: GET
URI: /?version=0.13.0
HTTP Version: HTTP/1.1
Host: instdata.joost.com
User-Agent: Mozilla/5.0 Windows; U; Windows NT 5.1; ...)

Fig. 17: Joost initialization: HTTP GET

Then, a 200 OK response was sent from the version server
to the client.

13

HTTP Version: HTTP/1.1
HTTP Status: 200
HTTP Reason: OK
Server: Apache/2.2.5-dev
Cache-Control: max-age=600

Fig. 18: Joost initialization: HTTP OK

C. HTTP messages involved in Joost reconnection

This section shows the message dump of HTTP 1.1 GET
request that a JC sent to channel graphs server and the
responses it received.

The HTTP GET containing the URI of requesting Com-
pressed Scalable Vector Graphics File (.svgz) is shown below.
At that moment, the channel list management was redirected
to lux-backend-13-bond0. joost.net (89.251.4.153).

Fig. 19: Joost reconnection: HTTP GET

Then, there was a OK response received by the client for
the above GET request.

Joost system is built on the top of several open softwares
[21]. In this section, we briefly summarize some of the most
related mechanisms for the better understanding of the system.

D. Anthill

Joost uses Antihill Model [26], a agent-based peer-to-peer
system, to support the P2P media distribution services. An
Anthill system is composed of a network of interconnected
nests which are middleware layers capable of performing
computations and hosting resources. Any machine connected
to the Internet and running Anthill can act as a nest. If a nest
receives a request from the local application, one or moreants
- autonomous agent - will be generated to satisfy the request.

Logically, a nest contains three modules: ant scheduler,
communication layer and resource managers. Thecommuni-
cation layeris responsible for discovery of new nests, network
topology management and for ant movement between nests.
Each service installed by a nest is associated with a set of
resource managermodules. For instance, the Joost file-sharing
service based on a distributed index for file retrieval. A file
manager is used to maintain shared files; URL manager is
used to maintain the distributed index; and a routing storage
is used by ants to make routing decisions.

Anthill provides a configuration mechanism that the struc-
ture of the network, the ant algorithm, characteristics of the
workload are all defined in its XML files (share.xml). More
specifically, we found that the the IP address, negotiated port

number (ListeningPort), inbound and outbound bandwidth,
and NodeID are defined in the share.xml file.

E. STUN

Joost middlebox traversal is currently performed by STUN
protocol [19] that allows a client to discover whether it is
behind a NAT or firewall and the type of the NAT or firewall.
It is achieved with the help of a special server in the public
address space, called STUN server. For example, a JC sends
an exploratory message to the STUN server and the server
checks the message and informs the client about the public IP
address and ports used by the NAT. By recording the public IP
address and port in the share.xml file, the JC can use them to
send and receive packets without intervening the STUN server.

However, STUN only works for UDP and does not work
with the “symmetric NAT” which is the most common NAT
type in corporate networks. Therefore, Joost is currently inves-
tigating Interactive Connectivity Establishment (ICE) [18] that
allows the client to learn the topology it meets and different
types of firewalls that may exist between the client and the
network [2]. By doing this, the client can easily learn how
to communicate with others since existing firewalls could be
successfully traversed.

The snapshot of the Joost channel database in Figure 20.

Fig. 20: Initial Channel List.

