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Abstract: The notion of soft state has been introduced in packet-switched networks to achieve
particular services for end-to-end communications, such as quality-of-service provisioning and
configuration of stateful packet filters. Protocols built upon soft state principles were believed to be
simple, however in practice they are far more complex. An important issue with such protocols is to
ensure their operations to be error-free and deadlock-free. In the paper the use of formal techniques
is proposed, specifically, Specification and Description Language (SDL) and Message Sequence
Charts (MSCs), for modelling, analysis and validation of soft-state protocols. Based on a general
state management system that identifies their most representative behaviour, an extensive study on
modelling and validating soft-state protocols with SDL/MSCs is presented, and it is shown that
design flaws and ambiguity introduced in informally specified, textual protocols can be avoided if a
protocol is formally modelled.

1 Introduction

In communication networks, there is a need to maintain
certain information (‘state’) in network nodes associated
with endpoint-generated sessions or calls. For example,
ATM switches maintain information about virtual circuits
such as bandwidth allocation. As state generally reflects
some requirements of an end-to-end session/call to the
traversed nodes, it needs to be maintained properly,
especially when network ‘conditions’ change (e.g., some
link or node fails, or the traversing route changes).

The state maintained by the network can be categorised
as either hard state or soft state. Hard state is installed in
nodes upon receipt of a setup message and is removed only
upon receipt of an explicit tear-down message. It is vital for
the state initiator to know when the state has been installed
or removed, and ensure that installation and removal are
performed only once. Furthermore, since hard state remains
installed unless explicitly removed, there must be a
mechanism to remove an orphan state that is left after the
state initiator has crashed or departed without removing the
state. In contrast, ‘soft state’ refers to a certain non-
permanent control state in network nodes that expires
unless refreshed. Since a soft state eventually expires, this
approach does not require explicit removal or a mechanism
for removing an orphan state.

Conventionally, it was believed that state information
would only be needed for end systems with packet-switching
networks, such as the Internet, following the fundamental
end-to-end principle [1]:

‘An end-to-end protocol design should not rely on the
maintenance of state (i.e. information about the state of the
end-to-end communication) inside the network. Such state
should be maintained only in the endpoints, in such a way

that the state can only be destroyed when the endpoint itself
breaks.’

However, the idea that ‘end-to-end communications
should not have state inside the network’ has hardly been
realised in real networks. For example, most routing
protocols, ATM signalling protocol [2] and early Internet
signalling protocol (ST-II) [3] use hard state in the network.
In addition to hard state, soft state has been introduced into
the Internet, too. Once it was applied to the Resource
Reservation Protocol (RSVP) [4, 5], which allows QoS
resource reservation to establish state in the network nodes
along the path for end-to-end communications in IP
networks, the soft state paradigm has been adopted by
many other protocols. These include the Real-Time Control
Protocol (RTCP) [6], Protocol Independent Multicast
(PIM) [7], the Session Initiation Protocol (SIP) [8] and the
Cross-Application Signalling Protocol (CASP) [9–11]. By
the use of state – either hard state or soft state – inside the
network, protocols can provide certain enhanced services
for end-to-end communications. Note that both hard state
and soft state can be installed either in intermediate nodes
or end hosts only, or both. Owing to the nature of state,
unlike other types of protocols, state management protocols
often require extremely complex and powerful mechanisms
to ensure that the state is perfectly synchronised and up-to-
date with the session it is related to (otherwise problems
may arise). With the informal, text-based IETF specifica-
tions, operations of these protocols tend to be error-prone.
For example, a report [12] showed numerous problems or
unexpected behaviours in the specification and implementa-
tion of TCP [13], the dominating end-to-end transport
protocol that uses hard state in end hosts. With an ever-
increasing number of soft-state protocols and the increase in
their complexity, unfortunately the risk of design and
implementation errors for soft-state protocols increases.
Another example is the ‘auto-refresh’ loop in RSVP,
possibly keeping a state alive forever [5]. In general, it is
vital to ensure the correctness of state management
operations in protocol specifications.

The methods for studying state management operations
and correcting possible flaws can be classified into two basic
groups. The empirical approach, which is also the mostE-mail: fu@cs.uni-goettingen.de
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natural way, is to study protocol behaviours with an actual
implementation (or a prototype). Another possibility
involves a model-based approach in which protocol
behaviours may be studied using a model of the protocol,
e.g. as shown in [14]. The empirical approach is only
effective for examining standard, ordinary behaviours of a
protocol, whereas model-based approaches, based on
simulation or analytical models, can be more effective in
determining possible errors in the design. Applying the
model-based approach to state management systems may
reduce excessive problems (and costs!) in standards and
implementations, unlike the empirical (‘trial-and-error’)
method of debugging and correcting these specifications.
From our experience [11], real soft-state protocols can be
rather complex and difficult to be analysed through imple-
mentations. This is partly due to the fact that soft-state
protocols have two or more network nodes, which must
maintain independently several types of timers and soft
states associated with a given end-to-end session. Moreover,
they are generally specified informally and imprecisely.
Therefore, model-based approaches are preferred.

In this paper we employ a model-based approach to
study the basic functionalities and aliveness properties of
general soft-state systems, using the Specification and
Description Language (SDL) [15] and the Message
Sequence Charts (MSCs) [16]. As successfully demonstrated
in experiences in modelling other communication protocols
(e.g. [17]), SDL and MSCs are efficient tools for such
tedious tasks. By presenting a general architecture for state
management systems and modelling one representative
system with SDL/MSC, we demonstrate the feasibility of
applying this approach in the modelling of soft-state
protocols, analysing their basic properties and advocating
a potential way of improving protocol descriptions. Current
work is limited to the general state management system
rather than a real protocol; a few minor weaknesses still
remain in the tools. In this paper we focus on the
functionality modelling and validation of different variants
of soft-state protocols and hard-state protocols described in
[18], including verification of (the absence of) deadlocks and
livelocks. Our goal here is not to model a real soft-state
protocol such as RSVP or CASP, or hard-state protocols
like ST-II or TCP, but rather to model general soft-state
protocols in order to capture and verify the essential
concepts and general functionalities of interest. There are
other, non-functional aspects of these protocols, such as
complexity and performance, but they are beyond the scope
of this paper.

The rest of this paper is organised as follows. We first
shortly review the related work in Section 2. Given the
importance and difficulty of analysing soft-state protocols,
we present a general architecture covering all variants of
soft-state protocols in Section 3, followed by SDL models
of different soft-state variants in Section 4 and a verification
of the models (Section 5). We summarise our modelling
experiences and conclude this paper in Section 6.

2 Related work

2.1 Studies on soft-state protocols
System designers argue soft state is ‘better’ than hard state,
and by using soft state the handling of network condition
changes is ‘easy’ [19, 20]. However, these claims are based
more on intuitive, high-level thoughts and explanations,
rather than on formal, exhaustive modelling and analysis.
In contrast to original expectations, soft-state protocols that
have been developed so far (and also those currently under
development) are still far from being simple, especially when

coupled with channel reliability, multicast sessions or traffic
control models.

There are two types of soft-state protocols which have
been developed so far: end-to-end protocols and hop-by-
hop protocols. The former only involves certain states in
two communicating end systems, without involving any
other nodes in between; examples of this type include RTCP
and SIP. Alternatively, hop-by-hop protocols, such as
RSVP and CASP, involve state manipulation in one or
more intermediate node(s) in between in addition to the
states in the communicating ends. For the purpose of
demonstration and general discussions of soft-state opera-
tions, we have chosen to use the latter since it is more
representative and comprehensive.

Given the particular importance of soft-state protocols,
recent studies have looked at issues regarding their
modelling and analysis. Raman and McCanne [20]
presented a model for the soft-state notion based on
Jackson queueing networks; a performance study of hard-
state and soft-state signalling protocols was performed by
Ji et al. [18]. Unfortunately, these studies lack more detailed
formal modelling and validation. In a study performed by
Bradley et al. [21] regarding the correctness and interoper-
ability issues with the HTTP protocol, the authors
established that multi-stage interactions between the HTTP
server and clients are stateful, error-prone and can be
automatically verified by using a formal checking tool SPIN
[22]. However, their study is limited to application-layer
hard-state management between two end nodes and does
not consider the soft-state paradigm for packet-switching
networks (which may involve multi-hop behaviours of state
management systems).

2.2 An introduction to SDL and MSC
As described earlier, SDL and MSCs are two potential
techniques for modelling soft-state protocols. In SDL, a
system is divided into building blocks that communicate
using channels, these blocks are composed of processes.
Processes (within a block) are connected using signal routes.
Each process is an extended finite state machine, which has
its own infinite queue and is assumed to operate
independently from all other processes. MSCs are another
valuable description technique for visualising and specifying
inter-system, asynchronous component interaction. The
strength of MSCs lies in their ability to describe communi-
cation between cooperating processes. Each process is
represented as an identifier and has a process lifeline that
extends downward. There are arrows representing messages
passed from a sending to a receiving process. Messages not
starting or ending at a process lifeline are exchanged with
users, be they human or mechanical (the ‘environment’).

Detailed descriptions of SDL and MSC can be found in
[15, 16, 23] and an example of modelling systems using the
combination of SDL and MSC can be found in [17].
Modern SDL development tools like Telelogic Tau SDT
also support verification and validation based on developed
models.

3 General architecture of state management
systems

As described by Ji et al. [18], in contrast to hard-state (HS)
protocols, soft-state (SS) protocols can be further classified
into four variants: ‘pure’ soft state (pSS), soft state with
explicit removal (SS+ER), soft state with reliable trigger
(SS+RT) and soft state with reliable trigger/removal
(SS+RTR). In this Section, we present a simple abstraction
and typical operations for all these state management
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protocols (both soft state and hard state), in addition to
possible problems that may occur in their operations.

We begin our modelling with a generic architecture for
state management systems as shown in Fig. 1, which covers
two services and one protocol as below:

� The state message transport (ST) service, which transmits
state messages over the lossy channel.

� The (soft or hard) state management service (SMP
service), which is the service rendered by the state manage-
ment protocol to the state application (SA).

� The state management protocol (SMP), which manages
state in the network nodes.

3.1 Expected behaviour of state
management protocols
Behaviours of a state management protocol are determined
by timers and state messages used by the three types of
protocol entities, namely the state initiator, forwarder and
target. Timers and state messages: an important feature of
soft-state systems is timers. In a soft-state system, there can
be three types of timers dealing with state management:
the state timer which will expire the state unless refreshed,
the refresh timer which triggers periodical refreshes, and the
retransmission timer which triggers periodical retransmis-
sion of trigger or removal messages (SS+RT or SS+RTR).
In HS systems there are only retransmission timers for state
trigger and removal messages, while state timers and refresh
timers are necessary for SS systems for operating state
refresh messages. The existence or absence of these timers
and different operations for state messages in a state
management protocol determines which protocol type it
belongs to.

3.1.1 Protocol behaviour: We present the MSC
description (shown in Fig. 2) to illustrate the messages and
mechanisms of various state management protocols. The
communications between the three types of entities are
realised through several service primitives (Setup, Trigger,
Teardown, and optionally, Refresh, Resp, Notify and
Remove). For the purposes of simplicity, we omit the
Inform and Resp primitives since they generally do not
change state information.

The protocol communication takes place in three
possible, distinct phases:

� State setup: This phase is initialised by SA in the entity
Initiator with a Setup. Initiator can thereafter issue a
Trigger towards the entity Target. Upon the receipt of the
Trigger, every Forwarder entity creates a state (which is
associated with a state timer for soft-state protocols), and
then forwards the Trigger message on. When the Target

receives the Trigger, it creates a state (which is associated
with a state timer for soft state protocols).
If HS, SS+RT or SS+RTR is used, additionally the
Target issues back a Notify to the Initiator when it receives
a Trigger. In this case, the Initiator starts a retransmission
timer before it issues a Trigger. If it does not receive a
Notify after the Retransmission timer expires, the Trigger is
transmitted again. After repeating certain times, the
retransmission stops and the Initiator returns to the initial
state.

� State maintenance: This phase is only used in soft-state
protocols. Upon the expiration of the refresh timer, the
Initiator sends a Refresh [Note 1] towards the Target and
restarts the timer. Any forwarder receives the Refresh
checks whether a corresponding state already exists: if yes, it
refreshes the state timer, otherwise it recovers a state
together with a state timer. Then it forwards the Refresh on
towards the Target.
Upon receipt of the Refresh, similar to the Forwarder, the
Target recovers state or just refreshes the state timer. If no
Refresh is received in a Forwarder or Target before the state
timer expires, state will be removed.

� State teardown: In pSS or SS+RT, there is no such
phase; an Initiator remains inactive and state expires in all
the other nodes when their state timers time out. In other
state management protocols, a Remove is issued by the
Initiator towards the Target to remove all state and
associated timers (should they exist). Additionally, if HS
or SS+RTR is used, after the Target receives Remove and
removes its state (and timers), a Notify is sent back to the
Initiator. An Initiator in a HS or SS+RTR system follows
a way similar to the retransmission in the state setup phase
if no Notify is received within a given time.

3.2 Possible problems in state
management operations
Because the above general model captures the key concepts
and operations of all the five possible types of state
management protocols, we believe it forms the basis for
studying actual behaviours of real state management
systems. The most obvious problem that occurs in state
management protocols is failure to install or remove state
correctly. In addition to this, there are timing considerations
to be taken into account, since a protocol of this kind
needs to be able to react appropriately to timer
events and the receipt of state messages. An installed state

Initiator Forwarder Target

ST

SMP SMP

SA

Setup/Teardown
/Notify/Resp

Inform/Resp Inform/Resp

Trigger/Refresh
/Remove/Notify

Trigger/Refresh

/Remove/Notify

Trigger/Refresh

/Remove/Notify

SA SA

SMP service 

primitives:

ST service

primitives:

Fig. 1 General architecture of state management systems

Note 1: Refreshes described here are limited to those originating from the
Initiator. Some SS protocols ( for example, RSVP) further allow more reactive
operations upon network condition changes, where Refresh messages can also
be initiated at an intermediate node. This behaviour is not covered in this paper.
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can become invalid either owing to the receipt of a
removal message or when the state timer expires. The latter
may occur either when a state refresh or notify message is
lost during its transmission, or when the state initiator
crashes.

There are other potential problems with state manage-
ment protocols. For example, there can be infinite state
management loops, i.e., state messages enter a transmission
circle somewhere between an initiator and a target. This
kind of loop can result in two possible errors:

� Deadlocks: a state management system goes into a state
without possibilities to enter another state. A deadlock is
most often caused by two processes waiting for a message
from each other; the result is that both wait infinitely.
In pSS, deadlocks are theoretically impossible, as it only
allows refresh and expiration operations for a state, and
there is no resource contention. However, we cannot
exclude this possibility in more comprehensive state
management protocols, owing to more complex synchroni-
sation and/or notification mechanisms.

� Livelocks: a state management system enters into an
endless loop consisting of a set of interacting states which
cannot progress towards a next expected step of the
protocol’s behaviour.

These cases are very undesirable since the state manage-
ment behaviour in any individual node appears to be valid,
but in reality it cannot further deliver other desired messages
or jump out of certain running state(s). For example, the
following operation could be possible in the original
description of SS+RT [18].

Example 1: A deadlock behaviour in SS+RT. A brief
explanation of such a scenario is as follows:

1) An Initiator initially sends a Trigger message to a Target
through the Forwarder. The link between the Forwarder
and the Target then suddenly goes down.

2) The Trigger message is lost before reaching the Target,
and the Initiator cannot receive a desired Notify message
that acknowledges the success of state installation along
the path.

TargetForwarderInitiator

Idle

Idle
Idle

Established

Established

Established

Idle

Established

Established

Established

Established

Established

Established

Established

Idle

MSC description of soft-state and hard-state protocols behaviour (normal case)

IdleIdle

Retrans_timer
(for HS, SS+RTR)

Notify

(for HS, SS+RTR)

Notify

(for HS, SS+RTR)

Notify

(for HS, SS+RTR)

Remove

(for HS,SS+ER,SS+RTR)

Refresh (for all SS )

Refresh (for all SS)

Refresh (for all SS)

Refresh (for all SS )

Trigger (for all)
Trigger (for all)

Refresh_timer
(for all SS)

State_timer
(for all SS )

Refresh_timer
(for all SS)

Refresh_timer

(for all SS ) State_timer
(for all SS )

State_timer
(for all SS )

State_timer

(for all SS )

State_timer
(for all SS )

State_timer
(for all SS )

Retrans_timer
(for HS, SS+RTR)

Notify

(for HS, SS+RT, SS+RTR)

Teardown

(for all)
Remove

(for HS,SS+ER,SS+RTR)

Resp

(for HS,SS+RT,SS+RTR)

Notify

(for HS, SS+RT, SS+RTR)

Setup

(for all)

Idle

Fig. 2 MSC for various state management protocols operation (normal case)
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3) After the retransmission timer expires, the Initiator
resends the Trigger towards the Target.

4) Again the Trigger is lost, and the Initiator still thinks it is
simply the result of random loss and retransmits the
Trigger.

5) If there is no specification for conditions that stop the
sending of the Triggers, the result is a deadlock in which
case the Initiator expects a Notify (but cannot receive it)
after sending out the Trigger while the Responder expects a
Trigger (but cannot receive it).

This error is somewhat easy to detect and fix. However,
sometimes such flaws can be very subtle, so that even senior
designers miss them in protocol specifications, particularly
in IETF informal, text-based specifications for complex
operations of state management protocols, which were
designed typically without formal modelling, validation and
verification. For example, the inadvert synchronisation
problem [24] was noticed as an important issue for
periodical soft-state systems. In real specifications of some
soft-state protocols, for example RTCP [6] and RSVP [5],
designers have tried to avoid this problem by setting the
refresh timers to be varied randomly (e.g., over the range
[0.5, 1.5] times the calculated interval). However, true
randomness in a real implementation is hard to achieve.
Moreover, as these interval management requirements are
sometimes not mandatory in protocol specifications (e.g., as
a ‘should’ requirement in RSVP), typically in practice
default fixed values (30 seconds in the case of RSVP [24])
are used for implementation simplicity. All these contribute
to the potential synchronisation problem of soft-state
management.

4 Modelling soft-state protocols with SDL

4.1 Key modelling issues and the system
model
Based on the general architecture covering the key con-
cepts of state management protocols, we chose the
most comprehensive state management protocol, SS+RTR
in a hop-hop manner, as the target for modelling.
Other variants may be derived easily from this model
by removing certain messages, timers, state transitions
and/or logic.

The address of each node is represented by a pre-assigned
integer, 1, 2, 3, respectively. The state message format is also
simplified as shown in Fig. 3a. There are further issues vital
for the modelling process:

1) How do we model ST, in order to allow state messages
(generally from an Initiator to a Target) to be visible for an
intermediate Forwarder?

2) How do we model the lossy channel, which can be of a
given loss rate?

3) How do we model the duration (start and end) of
a session state? This also naturally reflects the system
model, namely which information should be visible
inside the system, and which needs to be put in the
environments.

Figure 3b shows the SMP system model for SS+RTR.
We assume the SMP system model to be composed of three
nodes: an Initiator, a Forwarder and a Target, each of
which is represented by a process. Furthermore, an
additional process ST is used to transmit SS messages from
the Initiator towards the Target, or reverse. All four
processes form the only block SM of the system.

4.2 ST modelling
ST is modelled in Fig. 4. It can be used for all variants of
state management protocols. Here we use random Abstract
Data Type (ADT) to simulate a given loss rate of the link.
Note the transport service should determine the direction
( forward or backward) according to the type of the
message it receives. A more comprehensive ST can have
different loss rates in different links and this feature is to be
added in the next step.

4.3 SMP entities modelling
Figures 5–7 show the detailed models for each of the three
SMP entities.

To model the duration of a session state, the Initiator
process communicates with environments through an SA-
SMP interface. When it receives an ASetup with certain
state information data, it assigns a new session identifier
(sid) and installs a soft state locally, before going through
the state setup and maintenance phases. When Initiator
receives an ATeardown from the SA-SMP interface, it
enters into the teardown phase. For simplicity sid is
currently set as a fixed value. To avoid confusion different
notification messages have to be identified: Notify1 for
notifying the success of a state setup, Notify2 for notifying

NEWTYPE MesgType 
literals Trigger, Refresh, Remove, Notify1, 
            Notify2, Notify3;
ENDNEWTYPE;

NEWTYPE AData STRUCT
  info Charstring := '---';

NEWTYPE Mesg STRUCT
  mtype MesgType;
  info AData;
  sid Integer := 0;
  status Boolean := false;

SIGNAL

FromST1(Mesg),
FromST2(Mesg),
FromST3(Mesg),

ToST1(Mesg),
ToST2(Mesg),
ToST3(Mesg),

ASetup (AData),
ATeardown,
AResp (Boolean);

SM

C1
ASetup,
ATeardown

AResp

block SM

Initiator Forwarder

ST

Target

C1

C4

AResp

ASetup, ATeardown

C2

ToST2

FromST2

C1

FromST1

ToST1

C3

ToST3

FromST3

system SMP

a

b

ENDNEWTYPE;

Fig. 3 Description of SDL system and block
a System SMP
b Block SM
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state timer expiration in the Target, and Notify3 for
notifying the success of a state teardown.

The Forwarder process first listens to ST input. If a
Trigger or Refresh message arrives, it installs a soft state
locally and forwards the message on. Expiration of a local
state in Forwarder only removes itself.

The Target process installs and (if it should exist)
refreshes a soft state locally upon receipt of a Trigger or
Refresh message. When receiving a Trigger or Remove
message, Target needs to notify Initiator about it. Expira-
tion of a local state in Target also accompanies a Notify2 to
trigger a teardown.

5 Model verification, validation and further
discussions

5.1 Methodology of modelling verification
and validation
The finite state machines derived from the SDL model is
shown in Fig. 8.

Since state management protocols involve distributed
timers and message interaction, their correctness is hard to
verify using an informal description. We use the Tau
integrated package SDT 4.4 which includes support for
SPIN, to verify the SDL model of the SS+RTR protocol
against deadlocks, unspecified receptions, livelocks and
unreachable states. In order to verify the model, we have
chosen the following scenario case study to validate our
design against some of the specific properties of the
modelled SS+RTR protocol:

1) Establish a session between Initiator and Target.

2) Stop the state message transmission between Forwarder
and Target.

3) Change the ST loss rate between Forwarder and Target
to different values between 0 and 1.

4) Stop the Target process.

5) Let Initiator teardown the session.

With the above scenario, we have covered all ST service
primitives and SMP service primitives as well as all
important scenarios, but not all possible scenarios. There-
fore, after checking the scenario, we have used Tau
validator to validate all possible walk algorithms.

5.2 Results and further discussions
We generated a number of MSCs for the above scenario
case study to check the protocol functionality at each stage
of the simulation. For the SDL models designed in Section
3, MSCs shown in Fig. 9–11 represent some interesting
protocol behaviours. Through a comparison with the
general description, we are able to refine the abstract
system and make more concrete descriptions.

Through this procedure, we have found there may be two
sources in the observed protocol misbehaviour. There may
be flaws in the original description, such as the missing
default behaviour for certain message types, and unreach-
able states. For example, for SS+RT and SS+RTR
protocols, [18] states:

‘yFirst, trigger messages are transmitted reliably in
SS+RT. Each time a trigger message is transmitted, the
sender starts a retransmission timer (with value R). On
receiving an explicit trigger message, the destination not
only updates signalling state, but also sends an acknowl-
edgment to the sender. If no trigger acknowledgment is
received before the retransmission timer expires, the
signalling sender resends the trigger message. Secondly,
SS+RT also employs a notification mechanism in which

/*#include 'random.pr' */

DCL
fwd Boolean,
lose_next Boolean,
data Mesg,
lossrate Real := 0.2;

SYNONYM
Seq RandomControl = DefineSeed(TYPE Integer 5);Idle

ToST1
(data)

lose_next := Draw 
(lossrate, seq)

lose_next

FromST2
(data)

Idle

ToST3
(data)

ToST2
(data)

lose_next := Draw
 (lossrate, seq)

lose_next

Idle

data!mtype

;

fwd

FromST3
(data)

Idle

FromST1
(data)

; fwd := true fwd := true fwd := true;

FromST1
(data)

false
true

true

false

Notify2

true
false

Notify3 Refresh Trigger RemoveNotify1

Fig. 4 SDL model for state message transport
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the signalling destination informs the signalling sender
about state removals due to state-timeout timer expiration.
This allows the signalling sender to recover from false
removal by sending a new trigger message.’

‘SS+RTR is similar to the SS+RT approach, except that
the SS+RTR approach uses reliable messages to handle
not only state setup/update but also state removal.’

When we strictly followed this description, and validated
the developed SDL model of SS+RTR, we easily detected
a deadlock (through the integrated SDL simulation and
validation environment) retransmission counters were miss-
ing in the protocol description. This confirms our statement
that an imprecise informal specification can result in
deadlocks and livelocks. In practice, many design flaws
can be more subtle but easily validated with formal tools.
Actually the models presented in Section 4 were the updated
version according to a specification slightly different
from [17].

Alternatively, the modelling process can introduce some
modelling errors, especially if the specification is not very
clear. In our work, for example, initially we introduced
several steps that were anticipated to be necessary in order
to work with the environments. However they were later
detected to be a misunderstanding of the description, by
tracing the obtained MSCs.

Some other results show that in the first version of the
models Notify1, Notify2 and Notify3 messages received by
Forwarder were not processed but consumed; they need to
be sent back to ST. Also, misused values of timers can
exclude the Initiator from entering the Established state.

We also come to the following conclusion: by adding a
reliable trigger and explicit removal to soft-state protocols,
the usage of state (reflected as network resources especially
memories) can be more efficient. This can be explained, for
example for the reliable explicit removal case, as if a user
tries to remove a state, but the teardown message is lost
during transmission, the state will remain in place until it

DCL 
s, r, sBuf Mesg,
aData AData,
cnt1, cnt2 Integer,
maxRetr Integer := 4,
cTrefresh Duration := 10,
cTretr Duration := 5;

timer Trefresh, Tretr1, Tretr2;

Init

ASetup
(aData)

s!mtype := Trigger;
s!info!info:= ''//aData!info;

s!sid := 12345;

ToST1
(s)

cnt1 := 0;
SET (NOW+cTretr, Tretr1);

WaitNotify1

WaitNotify1

Tretr1

cnt1<maxRetr

Init cnt1 := cnt1 +1

ToST1
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Fig. 5 SDL model for Initiator (SS+RTR)
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times out after a relatively long time. Since state typically
implies enhanced services for end-to-end communications,
maintaining a state incurs costs, thus users must pay for the
extra time that has been spent waiting for the state
expiration.

As a result, we have found ( for example, the retransmis-
sion counters and refresh durations – either explicit or
implicit – are missing in many text-based IETF specifica-
tions); through verification and validation of the SDL
models, these could be avoided. With the developed model,

DCL
r, sBuf Mesg,
cTstate Duration := 20;

timer Tstate;
sBuf!sid := 0;

sBuf!info!info := '###';

Init

FromST2
(r)

r!mtype = Trigger or
r!mtype =Refresh

sBuf!sid := r!sid;
sBuf!info!info := r!info!info;

SET(NOW+cTstate,
Tstate)

ToST2
(r)

Established

ToST2
(r)

Init
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sBuf!sid:= 0 ;
sBuf!info!info:='###';

RESET(Tstate)
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(r)

r!mtype = Refresh
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ToST2
(r)

sBuf!sid:= 0 ;
sBuf!info!info:='###';
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(r)
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sBuf!info!info := r!info!info;
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(r)
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true

false
false

true

false

true

Fig. 6 SDL model for Forwarder (SS+RTR)

DCL
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cTstate Duration := 20;

timer Tstate;sBuf!sid := 0;
sBuf!info!info := '###';
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FromST3
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r!mtype = Refresh

sBuf!sid := r!sid;
sBuf!info!info:=r!info!info;

SET(NOW+cTstate,
Tstate)
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r!mtype = Remove

sBuf!sid := 0;
sBuf!info!info := '###';

RESET(Tstate);

s!mtype := Notify2;
s!status := true;

ToST3
(s)
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str := 'Unexpected
Message'

s!mtype := Notify1;
s!status := true;

ToST3
(s)

sBuf!sid := r!sid;
sBuf!info!info:=r!info!info;

SET(NOW+cTstate,
Tstate)

Established
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(r)
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sBuf!mtype:=Notify3;
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Fig. 7 SDL model for Target (SS+RTR)
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we have verified these aspects against the description of
SS+RTR, and improved upon it.

Finally, while extending this model for other state
management systems, we found it is fairly easy since we
have abstracted the most critical and representative
behaviours. We simply removed some unused message
types and state machine entries, and validated successfully

for all the five types of state management systems. Two
particular issues were noted: first, the models developed in
SDL usually do not cover performance aspect, because it is
not the major objective of the current SDL development
tools. However, with certain extensions, it is possible to also
support protocol performance analysis in the tools [26, 27].
Second, when performance analysis is desired, under the
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Fig. 8 State diagram of a soft-state protocol (SS+RTR)
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current modelling methodology, the ST is the central
message transport entity, thus there is a scalability issue of
the system with the number of the intermediate nodes. We
have recently attempted an alternative methodology using
decentralised message transport entities [28], but its
implications require further study.

This work is derived from the first attempt we made on
this topic as published in [29], in a revised and more
accurate fashion. First, the state concept is clarified under
the Internet end-to-end principle as the motivating
fundamental background, not just soft-state versus hard-
state discussion, to indicate the proposed method can be of
potential use in the future Internet evolution and its
relevance to the other network state protocol designs.
Moreover, the state diagrams for the SS+RTR protocol
are now derived to better illustrate the overall behaviour. In
addition, this paper also fixes a few modelling bugs
introduced in [29], and the verification results are now
checked against a concrete excample of an imprecise specifi-
cation given in [18].

6 Conclusions

Given the fundamental importance of soft-state protocols, it
is vital to ensure that their behaviour is specified correctly.
We have generalised and modelled behaviour for different
variants of soft-state communications with the aid of formal
techniques SDL and MSC. We observed that formal
techniques are of great help for efficient designing and
engineering of soft-state communication models and
protocols, and in particular functional behaviour (through
checking for possible deadlocks and livelocks). We
concluded that two sources of protocol misbehaviour are
possible, namely the protocol design and specification flaws
and the modelling errors (in our case, owing to the
ambiguity of the specifications), and the results based on
SDL/MSC modelling help to correct these problems.
However, we found that a weakness exists with the utilised
formal tools concerning protocol performance; a more
realistic performance evaluation has to rely on tools with
better real-time support. We are currently exploring various
ways on studying performance aspects of this approach. We
believe our ongoing activities with modelling some real soft-
state protocols such as RSVP and CASP will bring more
insights in this field and help effectively making more robust
standards.
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