
Implementation and Performance Study of a New
NAT/Firewall Signaling Protocol

Niklas Steinleitner, Henning Peters, Xiaoming Fu
Institute for Informatics, University of Göttingen, Germany

Email: {steinleitner,hpeters,fu}@cs.uni-goettingen.de

and Hannes Tschofenig
Siemens AG, Munich, Germany, Email: hannes.tschofenig@siemens.com

Abstract

The NAT/Firewall NSIS Signaling Layer Protocol
(NAT/Firewall NSLP) is a path-coupled signaling protocol
for explicit Network Address Translator and firewall
configuration within an extensible IP signaling framework
currently being developed by the IETF Next Steps in
Signaling (NSIS) working group. This new protocol allows
end hosts to signal along a path to configure NATs and
firewalls according to the data flow needs. In this paper we
present a first open source implementation and performance
evaluation of NAT/Firewall NSLP. The performance study
shows that our implementation scales well and is able to
support firewall signaling for up to tens of thousands of
flows in parallel even in a low-end PC testbed environment.
The overall performance bottleneck is found to lie in
the utilized firewall implementation, not depending on the
NAT/Firewall NSLP implementation.

1 Introduction

Middleboxes, such as firewalls (FW) and Network

Address Translators (NAT), have been used throughout the

Internet for many years and it is expected that they will

remain present for a foreseeable future [1]. Firewalls are

used to protect networks against certain types of threats,

and NATs provide, among restricting inbound connections,

a virtual extension of the depleting IP address space.

In most instances both types of devices only allow

inbound traffic generated and destined to desired entities

specified before. These entities have to follow specific

rules or a limited set of supported applications to traverse

them, typically some given protocols with relatively

predetermined and static properties, e.g., port numbers.

Applications which have more dynamic properties can

traverse firewalls and NATs with assistance of application

layer gateways (ALGs). In practice this leads to the fact that

although the traffic of many applications is able to traverse

firewalls or NATs, a direct connection to a peer behind a

middlebox is not possible without further assistance.

Several implicit middlebox configuration (triggered by

data traffic) approaches to enable end-to-end connectivity

used for peer-to-peer applications have been proposed,

e.g., P2PNAT [2] using STUN [3]. It is assumed that

all middleboxes between the sender and the receiver

behave well, otherwise such an implicit approach is not

supported on a path. In contrast, explicit middlebox

configuration (triggered by signaling traffic) approaches,

such as middlebox communication (MIDCOM) [4] or

NAT/Firewall NSLP [5], can rely on an open and

standardized protocol behavior.

Signaling for a specific data flow as needed in Quality

of Service (QoS) signaling is preferably done with a path-
coupled approach, i.e., the data packets follow the same

path as the signaling traffic. This idea is also adopted

for NAT and firewall signaling, because there may be

several middleboxes on the path between the sender and the

receiver, interaction with all of them is needed. Therefore,

a client-server approach as in MIDCOM [4] is of limited in

a cascaded or symmetrical NAT environment.

RSVP [6] is an example of a path-coupled QoS

signaling protocol. Roedig et al. [7] proposed the use of

RSVP as firewall signaling protocol without NAT support.

Unfortunately, they did not provide implementation details

or a performance evaluation.

In this paper, we describe the implementation and

performance study of NAT/Firewall NSLP [5], a new

path-coupled signaling protocol for NAT and firewall

configuration within the NSIS (Next Steps in Signaling)

framework [8] developed by IETF NSIS working group [9].

NSIS is an extensible IP signaling framework based upon

a two-layered approach. The lower layer protocol GIST

[10] provides path-coupled signaling transport, whereas the

Proceedings of the 26th IEEE International Conference on Distributed Computing Systems Workshops (ICDCSW’06)
0-7695-2541-5 /06 $20.00 © 2006 IEEE

upper layer is solely concerned with signaling. The layer

splitting allows path-coupled signaling applications to reuse

functionality and to avoid unnecessary protocol design

complexity. Although proposals for middlebox traversal

exist, their implementations are rarely reported and, as far as

we know, there is no evaluation of such an implementation

available.

The basic focus of this paper is to prove that the

current draft of NAT/Firewall NSLP signaling protocol

is implementable and technically feasible. Furthermore,

we aim to know how a path-coupled NAT and firewall

configuration protocol stresses the involved middleboxes.

These aspects might prove applicability of the protocol in

existing contexts.

The organization of this paper is as follows. Section

II provides an overview of the NSIS framework and the

NAT/FW NSLP, Section III presents the system design and

implementation. Then our performance study is given in

Section IV. Section V points out the open issues and aspects

for further discussion. Section VI concludes this paper.

2 An Introduction to NSIS and the NAT/FW
NSLP

2.1 The NSIS Signaling Concept

The NSIS framework has been developed with the goal

of supporting different signaling applications which need

to install and manipulate states in the network. These

states belong to a certain data flow and are installed and

manipulated on all NSIS Entities (NEs) along the signaling

flow whereas not every node has to be a NE. Two NSIS

entities (or called NSIS hops) are in a peer relationship if

they communicate directly with each other. Neighboring

nodes do not necessarily have to be NSIS-aware, because an

NSIS- unaware node will be ignored at the peer discovery

process. The discovery process is triggered when there

is no GIST-peering between the peers yet. Under a soft-

state approach, states are removed when the state timer

expires. Neighbouring nodes store information about each

other, but it is unnecessary to establish a long-term signaling

connection between them. This basic concept can support

the development path-coupled signaling protocols.

Figure 1. Signaling and Data Flow Example

Figure 1 shows a possible signaling scenario. A data flow

is sent from an application at the sender via several routers

to the receiver. The end hosts and two of the routers support

the NSIS implementation. R3 does not support NSIS and

performs only IP layer forwarding. The signaling message

exchange is possible in both directions.

2.2 NSIS Layered Model Overview

In order to meet the modular requirements for an

extensible and generic signaling protocol, the design of the

NSIS protocol suite separates the transport functionalities

for signaling message transport from signaling applications.

Thus, the NSIS protocol is structured into two protocol

layers [8] as illustrated in Figure 2:

• The NSIS Transport Layer Protocol (NTLP), which is

responsible for transporting signaling application layer

messages, called General Internet Signaling Transport

(GIST) [10]. The NTLP layer is independent of the

signaling application and runs over standard transport.

• The NSIS Signaling Layer Protocols (NSLPs)

implement application specific signaling functionality.

Examples for NSLPs are the QoS NSLP for resource

reservation signaling [11] and the NAT/FW NSLP [5].

Figure 2. Separation between Signaling
Transport and Signaling Application

2.3 NAT/FW NSLP Overview

The main goal of NSIS NAT/FW NSLP signaling is to

enable communication between two endpoints across IP

networks in existence of NATs and firewall middleboxes.

Firstly, it is assumed that firewalls will be configured in

such a way that NAT/FW NSLP messages are accepted for

local processing at any time. Then, the NAT/FW NSLP

is used to dynamically install additional policy rules in all

NAT/FW NSLP-aware middleboxes along the path. NATs

will be configured to translate data packets according to the

Proceedings of the 26th IEEE International Conference on Distributed Computing Systems Workshops (ICDCSW’06)
0-7695-2541-5 /06 $20.00 © 2006 IEEE

NAT bindings which are installed and maintained by the

NAT/FW NSLP signaling. Firewalls will be configured to

process data packets according to the previously installed

policy rules.

The signaling traffic of an application behind a

middlebox must traverse all middleboxes along the data

path to establish communication with a corresponding

application on the other end host. To achieve middlebox

traversal, the application triggers the local NSIS entity

to signal along the data path. If the local NSIS entity

supports NAT/FW NSLP signaling, the knowledge of these

application is used to establish policy rules and NAT

bindings at all middleboxes along the path, which allows

the data to travel from the sender to the receiver. Clearly, it

is necessary for intermediate NATs and firewalls to support

NAT/FW NSLP, but not necessary for other intermediate

nodes to support NAT/FW NSLP or even GIST.

NAT/FW NSLP works in different scenarios, such as

cascaded NATs and firewalls, NATs with private network

on sender side, NATs with private network on receiver

side, both end hosts behind a NAT and/or firewall. Our

implementation supports all currently specified scenarios,

for both NAT and firewall cases. The performance study

presented in this paper only concerns firewalls, while NATs

are expected to exhibit similar behavior, given that both

share many properties. Figure 3 shows a common topology

for the use of NAT/FW NSLP. This network is separated

into two distinct administrative domains, namely “Domain

A” and “Domain B”, and used for the performance study.

Figure 3. A Firewall Traversal Scenario

The NSLP Initiator (NI) sends NSIS NAT/FW NSLP

signaling messages along the data path to the NSLP

Responder (NR). Along the path, the signaling messages

traverse intermediate NSLP Forwarders (NF). NFs process

the messages and additional policy rules or NAT bindings

might be installed for the upcoming data traffic.

3 Implementation

The NAT/FW NSLP daemon is implemented in user-

space using C++. The code builds upon a GIST daemon

that was developed at the University of Göttingen, both

implementations are freely available in a single release [12]

for Linux. GIST daemon offers an API for NSLPs to use

its generic transport services via UNIX sockets. NAT/FW

NSLP daemon itself also offers an API to upper layers

to allow applications to trigger signaling flows, such as

accepting inbound connections at an edge firewall. As

depicted in Figure 4, the implementation consists of six

main parts: (1) server core connecting to GIST-API and

delegating callbacks to the other components, (2) NAT/FW

engine API, (3) protocol behavior defined in a finite state

machine, (4) message parsing and construction, (5) security

policy table and (6) APIs to firewall and NAT. NAT/FW-

engines, which enforce the NAT bindings and FW policy

rules for corresponding data traffic, are connected to the

NAT/FW NSLP daemon via the NAT/FW engine-API.

Figure 4. NAT/FW NSLP Architecture

We chose to use Linux kernel netfilter [13] module

and its iptables front end as NAT and firewall, because of

its availability and complete coverage of needed features.

The use of the low-level iptables API libiptc is still

discouraged by its developers because lack of robustness

and missing documentation. To avoid problems and

incompatibility with different iptables versions we chose

to use system() call to invoke an iptables process with

according parameters although this approach is known to

be inefficient. NAT/FW NSLP imposes only a small set of

requirements on the used firewall and NAT as it supports

only hardly more than the smallest subset of any possible

firewall or NAT implementation. Replacing the currently

used firewall and NAT can be done easily.

It was shown during GIST development that having an

efficient finite state machine in source code that represents

similar sets of states, transitions and actions as in state

machine specification simplifies the understanding of the

code without sacrificing performance. A C++ template was

written to allow reusability among GIST and NSLP daemon

development, enabling a mapping between the definition

of a finite state machine, including states, transitions and

actions to corresponding variables, function pointers and

executable code.

The NAT/FW NSLP state machine [15] lists three

possible initial states, a host being in an initiator, a

forwarder or a receiver idle state. The decision whether a

Proceedings of the 26th IEEE International Conference on Distributed Computing Systems Workshops (ICDCSW’06)
0-7695-2541-5 /06 $20.00 © 2006 IEEE

message has to be forwarded or delivered can not be made

solely on the destination address in GIST Message Routing

Information (MRI) as in NAT case it is being rewritten,

similarly as IP headers in NATs. Moreover, it depends

on the current NAT configuration (or alternatively, often

called reservation) status at the host where a message is

received. The idea of the state machine giving an high-level

overview for protocol understanding misses some aspects,

such as locator rewrite and reservation dependency, that

were fundamental aspects during implementation.

Incoming message are processed by GIST and delivered

to an NSLP if the NSLP is supported on that node.

The NSLP decides whether to accept the message or

forward it. In the NAT/FW NSLP there are messages that

are meaningful either just for NAT or just for firewall.

The daemon configuration allows to set flags whether a

NAT/FW NSLP host is running a firewall, a NAT or both.

After a message is accepted, basic validity checks are

performed and the daemon will try to associate an existing

state with the incoming message based on the session ID

carried in NSLP payload. If there is no state installed

yet, a new state machine object with a new session ID

needs to be created. As mentioned above, it must be

distinguished whether the host is the NR of the signaling

path or whether it is a NF. Depending on the initial state, the

protocol behavior for this session is different. In contrast, if

the action is triggered via API the host is always the NI

and a new state machine object with a new session ID is

created. Now, as the state machine object is created and

the initial state is determined, the transition is applied on

it. Transitions are modeled as a set of states, events and

function pointers on the state machine object. According to

a given state and an incoming event, a function is called.

This keeps the function call overhead very small. The

function bodies contain all relevant code that defines the

protocol behavior, such as state manipulation, NAT and

firewall interaction, message parsing and construction.

4 Performance Study

Our motivation is to evaluate the performance impact on

our implementation under different number of sessions. We

choose this approach, since the maximum supported flows

is likely a bottleneck for the deployment of firewalls in

heavy- load environments. Furthermore, NAT/FW NSLP

might be not deployed in the network core, but rather

in the edge. Considering large access network, such as

corporate or campus ones where border firewalls protect

thousands of nodes, maximum session support is the crucial

performance aspect. However we decided to perform the

tests without background traffic since we would examine

rather the utilized firewall implementation as our NAT/FW

NSLP implementation thereby.

4.1 Testbed Setup and Tools

The testing experiments were running Debian on

standard PCs with Linux Kernel version 2.6.12.1. We

decide to use middle- to low-end hardware as many

firewalls are not equipped with high-end hardware and often

run with middle-rate CPUs and minimal memory.

Our machines are equipped with the following hardware:

• Via Eden CPU 533 MHz

• 3 Realtek 100 Mb/s NICs

• 256 MB SD-RAM PC 133

Figure 3 depicts how we connected the nodes for our

experiments. Both NSLP forwarders run firewalls. Most

experiments were performed with this topology, while

other experiments were performed with only one NSLP

forwarder, namely for the session setup time measurement.

The source code was extended by timestamps to measure

the session setup time. The same approach is used

to calculate the processing time for the NAT/FW NSLP

implementation and for netfilter/iptables. A simple script

similar to Linux process monitoring tool top was used to

monitor CPU and memory consumption in regular intervals.

The tests were performed using a simple test application.

This application was developed to run on the NI and creates

a NAT/FW NSLP session every 3
4 second. The delay of

3
4 second between two sessions is a result of the utilized

firewall implementation and will become more clearly in

the following section. Each session has the same NR, but

different source and destination ports. Thereby we can

assure that the NF must create a new pinhole for each

session. Each test generates up to 15,000 sessions between

the NI and the NR without deleting or tearing down existing

sessions during the tests. GIST is configured to use C-

mode with a session refresh rate of 180 seconds and the

NAT/FW NSLP is configured to use a session refresh rate

of 90 seconds. [14] have shown that 180 seconds as NTLP

session refresh rate and 90 seconds as NSLP session refresh

rate are the probably best value for session refresh rate.

4.2 Performance Study

4.2.1 Analysis of the Processing Time

First tests showed us that the maximum session number

is limited by a certain threshold and that an increased

amount of sessions rapidly increases the session setup

time for each new session. This motivated us to

examine the processing time distribution of the individual

implementation components more closely and to determine

the performance bottleneck in detail. Therefore, timestamps

were inserted in the source code and the same test was

Proceedings of the 26th IEEE International Conference on Distributed Computing Systems Workshops (ICDCSW’06)
0-7695-2541-5 /06 $20.00 © 2006 IEEE

executed again. Several timestamps allow the individual

measurement of the processing time for the NAT/FW NSLP

implementation and the processing time of netfilter. The

netfilter processing time can only be measured on firewall

nodes. Hence, measurement was run on a NF and thus

the NAT/FW NSLP processing time represents only the

processing times on a NF.

Figure 5 shows the processing time for the NAT/FW

NSLP implementation with and without netfilter calls.

As it can be seen, the processing time of the NAT/FW

NSLP implementation is almost stable between 40-50 ms,

independent of the number of sessions. In contrast, the

processing time for adding a new rule to netfilter may be

acceptable for up to 6,000 sessions; with more than 6,000

sessions it increases rapidly and reaches nearly 400 ms with

15,000 sessions. This shows that the netfilter system-call to

open a pinhole is a bottleneck in our experiments.

 0

 100

 200

 300

 400

 500

 600

 0 2000 4000 6000 8000 10000 12000 14000 16000

T
im

e
in

 m
se

c

Sessions

NAT/FW NSLP-processing
NAT/FW NSLP+netfilter-processing

Figure 5. Average Processing Time

These high values may be caused by the machines

used in our testbed, which are, due to their hardware,

only comparable with middle or low-end firewall devices.

However, a more crucial contributing factor for the limited

performance in the case with netfilter calls is that netfilter

implements the data structure for rule sets using a linked

list. Netfilter uses a packet classification algorithm which

traverses the rules in a chain linearly per packet until a

matching rule is found. Thus, this approach lacks efficiency.

Furthermore, the iptables approach is not optimized for

chains with many rules as the cost for inserting rules and the

processing time per packet increases rapidly with increasing

numbers of rules in the rule set [16, 17].

Another critical aspect is that netfilter stalls the packet

processing during chain updates, such as inserts. In order

to study the performance of the implementation with larger

numbers of sessions, netfilter would have to be replaced by

a more scalable implementation.

Kadlecsik and Pásztor [16] and Hoffmann et al. [17] have

investigated this behaviour of the netfilter implementation.

They demonstrated that a high-end firewall needs above 400

seconds to add 16,384 rules into the rule set and that the

cost to add a rule increases the more rules already exist.

Several alternative solutions were proposed to solve this

problem, e.g. ipset [18] or nf-HiPAC [19].

[16] have shown that both solutions reduce the number

of memory look-ups per packet. They are applicable

for environments with large rule sets or high bandwidth

networks and outperform netfilter independent of the

number of rules. Thereby, they do not impose any decisive

overhead, even for very small rule sets. They also can

update their rule sets dynamically without stalling packet

processing.

4.2.2 Analysis of the Session Setup Time

The next performance test examines the session setup time

of the implementation to answer the following question:

how long does it take to establish a NAT/FW NSLP session

between NI and NR? The experiment is performed using

only three nodes of the testbed, one NI, one NR and

one NF. We limited the number of nodes to simplify the

measurement. The results can be used to calculate setup

times for scenarios with more than one intermediate NF

as the processing is almost equal among all NFs when

considering a two-way message exchange.

As stated above, the netfilter implementation is the

bottleneck of our experiments. Instead of using a different

firewall implementation, the firewall was configured with

an “allow-all” policy. Furthermore, the implementation

was changed to ignore any netfilter calls as our primary

goal is to study only the NAT/FW NSLP implementation

performance and to validate protocol design and operation

efficiency. This experiment approach is very likely to be

a good approximation to some realistic scenarios as [16]

and [17] show that the overhead of more scalable firewall

implementations can be negligible.

Figure 6 shows the average session setup time under

different number of sessions in both scenarios: with and

without performing netfilter-calls.

The first observation is that both demonstrate a nearly

linear increase of the session setup time with an increased

number of sessions. When serving for approximately

15,000 sessions and performing the netfilter-calls, the

NAT/FW NSLP implementation seemed heavily overloaded

with a setup time of about 520 ms. Without performing

the netfilter-calls, it can be seen that the NAT/FW NSLP

implementation is now able to handle up to 35,000 sessions.

The figure also shows that the session setup time without

the netfilter-call increases slower. With 35,000 sessions the

session setup time remains under 150 ms.

Proceedings of the 26th IEEE International Conference on Distributed Computing Systems Workshops (ICDCSW’06)
0-7695-2541-5 /06 $20.00 © 2006 IEEE

 0

 100

 200

 300

 400

 500

 600

 0 5000 10000 15000 20000 25000 30000 35000

T
im

e
in

 m
se

c

Sessions

Session Setup Time - no netfilter-calls
Session Setup Time - with netfilter-calls

Figure 6. Average Session Setup Time

4.2.3 CPU and Memory Consumption

Another experiment was to measure the CPU consumption

of the NAT/FW NSLP implementation. As described above

we were only able to perform tests for less than 15,000

sessions if netfilter is running (and less than 35,000 sessions

if netfilter is not running).

Figure 7 shows the CPU usage of the NSLP forwarder

under different numbers of sessions. The first observation

is that the CPU consumption of the netfilter implementation

increases rapidly if it has to handle more than 2,000

sessions. The figure also confirms that the netfilter

implementation is the bottleneck in the experiments.

Furthermore, we can see that the NAT/FW NSLP

implementation does not impose high overhead. We can

also see that the maximum number of 35,000 sessions

depends on the GIST implementation. That is due to the

fact that the used GIST implementation currently uses an

insufficient timer approach , which brings a large overhead

to the GIST implementation [14].

Figure 8 presents the impact of the number of sessions

on the memory utilization of the GIST and NAT/FW

NSLP implementation at an NSLP forwarder. The memory

utilization of the GIST implementation increases nearly

linear. The memory utilization of the NAT/FW NSLP

implementation also increases nearly linear, however more

slowly.

5 Open Issues

Our NAT/FW NSLP implementation supports signaling

for both firewall and NAT configuration. The behavior

of simultaneously using both features needs further

investigation. Performance evaluation of the NAT/FW

NSLP protocol using other firewall/NAT implementations

than netfilter is another interesting topic which we plan to

 0

 20

 40

 60

 80

 100

 0 5000 10000 15000 20000 25000 30000 35000

C
P

U
 c

on
su

m
pt

io
n

(%
)

Sessions

GIST
NAT/FW NSLP

netfilter

Figure 7. Average CPU Consumption

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 5000 10000 15000 20000 25000 30000 35000

M
em

or
y

co
ns

um
pt

io
n

(M
B

)

Sessions

GIST
NAT/FW NSLP

Figure 8. Average Memory Utilization

work in the next phase.

The implementation has been mostly concerned with

enabling and maintaining fixed hosts session-based firewall

(and NAT) configurations in middleboxes. It does not

deal with node mobility case yet. This will be a very

important step for enabling mobile support for the Internet

and is currently being studied. Lastly, the performance

study is currently only performed for firewalls, not NATs.

We believe it is representative enough for the fundamental

protocol operations but the run-time performance for NAT

case will be of interest for further study.

6 Conclusion

This paper presented the first open source

implementation and performance study of a recently

proposed middlebox traversal approach which is currently

under the development in the IETF. The implementation

proves that the path-coupled NAT/FW NSIS Signaling

Proceedings of the 26th IEEE International Conference on Distributed Computing Systems Workshops (ICDCSW’06)
0-7695-2541-5 /06 $20.00 © 2006 IEEE

Layer Protocol [5] is technically feasible and behaves well.

The performance results show that the NAT/FW NSLP

implementation is scalable even in a low-end hardware

environment and the selection of an appropriate firewall

implementation has a big impact on the performance; here

netfilter [13]. However, it should be noted that the session

setup time includes a path discovery and path setup that

is likely to be more time-consuming than any implicit

peer-to-peer approach. Still, the session setup time might

be negligible for the user experience in most cases and

the standardized solution of NAT/FW NSLP offers more

vendor independence and better interoperability.

To the best of our knowledge, there have been no

performance results of any explicit middlebox signaling

solution available and the results presented in this paper will

be regarded as the first contribution in the field.

Due to the low-end hardware we decided to use in our

test environment, it was impossible to create more than

15,000 sessions when netfilter is enabled. This is also

caused by the high processing time of netfilter to insert

a new rule into a large rule set. With more than 6,000

sessions the processing time increases rapidly and reaches

nearly 400 ms with 15,000 sessions. This shows that

the bottleneck in the experiments is the netfilter system-

call to open a pinhole. Without the netfilter system

call the implementation is able to handle 35,000 sessions

with nearly stable session setup and processing time. As

the NAT/FW NSLP protocol is based on the IETF GIST

protocol [8] for signaling transport, the maximum session

number of the NAT/FW NSLP implementation is also

limited by the utilized GIST implementation. Nevertheless,

to be able to handle 15,000 session or 35,000 sessions with

a more scalable firewall implementation might be enough.

This is even more obvious in larger networks with more

powerful hardware. Therefore we assume that our NAT/FW

NSLP implementation is applicable for most networks.

Previous firewall performance tests in [16] and [17]

showed that firewall implementations also can perform well

with a large rule set if the firewall rules are managed

efficiently enough. In our implementation, the decision

of using netfilter implementation resulted in a limited

performance for the firewall traversal implementation as

netfilter stores the maintained rule sets using linked lists.

Thus, further study with other firewall implementations will

be necessary.

Acknowledgment

We would like to thank Christian Dickmann and Bernd

Schlör for their work on the GIST implementation. We

would also like to thank members of the IETF NSIS

working group, including Cedric Aoun, Martin Stiemerling

and Elwyn Davies.

References

[1] B. E. Carpenter and S. Brim, “Middleboxes: Taxonomy and

Issues”, Internet Engineering Task Force, RFC 3234, Feb.

2002.
[2] B. Ford, P. Srisuresh, and D. Kegel, “Peer-to-Peer

Communication Across Network Address Translators”, in

Proc. of the 2005 USENIX Annual Technical Conference
(USENIX ’05), Anaheim, California, April 2005.

[3] J. Rosenberg, J. Weinberger, C. Huitema, and R. Mahy,

“STUN - Simple Traversal of User Datagram Protocol (UDP)

Through Network Address Translators (NATs)”, RFC 3489,

March 2003.
[4] P. Srisuresh, J. Kuthan, J. Rosenberg, A. Molitor, A. Rayhan,

“Middlebox Communication Architecture and Framework”,

RFC 3303 (Informational), August 2002.
[5] M. Stiemerling, H. Tschofenig, C. Aoun, and E. Davies,

“A NAT/Firewall NSIS signaling layer protocol (NSLP)”,

Internet draft (draft-ietf-nsis-nslp-natfw-10), work in

progress, March 2006.
[6] R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin,

“Resource ReSerVation Protocol (RSVP) – Version 1

Functional Specification”, RFC 2205, Sept. 1997.
[7] U. Roedig, M. Goertz, M. Karsten, R. Steinmetz, “RSVP

as firewall Signalling Protocol”, Proc. of the 6th IEEE
Symposium on Computers and Communications, Hammamet,

Tunisia, pp. 57–62, IEEE Computer Society Press, July 2001.
[8] R. Hancock, G. Karagiannis, J. Loughney, and S. Van

den Bosch, “Next Steps in Signaling (NSIS): Framework”,

Internet Engineering Task Force, RFC 4080, June 2005.
[9] “The IETF Next Steps in Signaling (NSIS) Working Group”,

http://www.ietf.org/html.charters/nsis-charter.html.
[10] H. Schulzrinne and R. Hancock, “GIST: General Internet

Signaling Transport”, Internet draft (draft-ietf-nsis-ntlp-09),

work in progress, February 2006.
[11] J. Manner, G. Karagiannis, and A. McDonald, “NSLP for

Quality-of-Service signaling”, Internet draft (draft-ietf-nsis-

qos-nslp-10), work in progress, March 2006.
[12] ”An Implementation of the Next Steps in Signaling

(NSIS) Protocol Suite at the University of Göttingen”,

http://user.informatik.uni-goettingen.de/˜nsis/.
[13] “Netfilter, firewalling, NAT, and packet mangling for Linux”,

http://www.netfilter.org.
[14] X. Fu, H. Schulzrinne, H. Tschofenig, C. Dickmann,

D. Hogrefe, “Overhead and Performance Study of the General

Internet Signaling Transport (GIST) Protocol”, in Proc. of
INFOCOM 2006, Barcelona, Spain, IEEE, April 2006.

[15] C. Werner, X. Fu, H. Tschofenig, C. Aoun, N. Steinleitner,

“NAT/FW NSLP State Machine”, Internet draft (draft-

werner-nsis-natfw-nslp-statemachine-02), work in progress,

March 2006.
[16] J. Kadlecsik, G. Pásztor, “Netfilter Performance Testing”,

2004, http://people.netfilter.org/kadlec/nftest.pdf.
[17] D. Hoffmann, D. Prabhakar, P. Strooper, “Testing iptables”,

Proceedings of the 2003 conference of the Centre for

Advanced Studies on Collaborative research, Toronto,

Ontario, Canada, pp. 80–91, IBM press, 2003.
[18] “IP sets,”http://www.ipset.netfilter.org.
[19] “nf-HiPAC: High Performance Firewall for Linux Netfilter”,

http://www.hipac.org.

Proceedings of the 26th IEEE International Conference on Distributed Computing Systems Workshops (ICDCSW’06)
0-7695-2541-5 /06 $20.00 © 2006 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

