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We propose two new mechanisms for caching handshake information on TLS clients. The “fast-
track” mechanism provides a client-side cache of a server’s public parameters and negotiated pa-
rameters in the course of an initial, enabling handshake. These parameters need not be resent on
subsequent handshakes. Fast-track reduces both network traffic and the number of round trips,
and requires no additional server state. These savings are most useful in high-latency environ-
ments such as wireless networks. The second mechanism, “client-side session caching,” allows the
server to store an encrypted version of the session information on a client, allowing a server to
maintain a much larger number of active sessions in a given memory footprint. Our design is fully
backward-compatible with TLS: extended clients can interoperate with servers unaware of our ex-
tensions and vice versa. We have implemented our fast-track proposal to demonstrate the resulting
efficiency improvements.
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Protocols; E.3 [Data]: Data Encryption; C.4 [Computer Systems Organization]: Performance of
Systems
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1. INTRODUCTION

TLS is a widely deployed protocol for securing network traffic. It is commonly
used for protecting web traffic and some e-mail protocols such as IMAP and
POP. Variants of TLS, such as WTLS [Wireless Application Forum 2000], are
used for securing wireless communication. In this paper, we consider two mod-
ifications to the TLS (and WTLS) handshake protocols. The first, “fast-track,”
makes the protocol more efficient in terms of bandwidth and number of round
trips. Improving the handshake protocol is especially relevant in bandwidth-
constrained environments, such as wireless communications, where latency is
high and small payload transfers are common. The second, “client-side session
caching” (CSSC), extends TLS’s session resumption mechanism to reduce the
load on the server. We hope that these extensions will promote the use of TLS
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Fig. 1. TLS handshake message diagram.

in high-latency and high-load situations and discourage the development of ad-
hoc security protocols to address them.

Recall that the TLS protocol [Dierks and Allen 1999] incorporates two types
of handshake mechanisms: a full handshake, and a “resume handshake” pro-
tocol. The resume handshake protocol is used to reinstate a previously negoti-
ated TLS session between a client and a server. Compared to a full handshake,
the resume mechanism significantly reduces handshake network traffic and
computation on both ends. A session can only be resumed if the old session is
present in the server’s session cache. Unfortunately, heavily loaded servers can
only store a session for a relatively short time before evicting it from the cache.
For example, Amazon’s servers evict sessions from their cache after approxi-
mately 2 min. As a result, a full handshake is often needed even though the
client may be willing to resume a previously negotiated session.

In contrast, user-operated clients rarely connect to large numbers of TLS
servers, and could therefore cache information about servers for a longer time.
For example, Mozilla allows sessions to remain in its cache for the RFC-2246–
recommended maximum 24 h. Both of our extensions take advantage of this
situation to improve TLS efficiency. The fast-track extension (Section 3) allows
the client to cache the server’s long-lived parameters, thus bypassing the “dis-
covery” phase of the TLS handshake. The CSSC extension (Section 4) allows
the server to export the cost of session caching to the client, allowing the server
to maintain a much larger session cache.

2. TLS HANDSHAKE OVERVIEW

A TLS handshake has three objectives: (1) to negotiate certain session param-
eters; (2) to authenticate the server to the client, and optionally the client to
the server; and (3) to establish a shared cryptographic secret. The session pa-
rameters include the protocol version, the cipher suite, and the compression
method. Authentication makes use of a certificate-based public-key infrastruc-
ture (PKI): servers and clients identify themselves through certificate chains
terminating in well-known Certification Authority (CA) certificates.

The standard TLS handshake is summarized in Figure 1. Messages sent
by the client are on the left; by the server, the right. Messages appearing in
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Fig. 2. Message diagram for a TLS session resume.

slanted type are only sent in certain configurations; messages in brackets are
sent out-of-band. The handshake proceeds, in four flows, as follows.

A client initiates a handshake by sending a ClientHello message. This message
includes a suggested protocol version, a list of acceptable cipher suites and
compression methods, a client random value used in establishing the shared
secret, and (when TLS extensions [Blake-Wilson et al. 2003] are used) other
extension-specific parameters.

The server replies with a ServerHello message, which selects a protocol ver-
sion, cipher suite, and compression method, and includes the server random
value and extension-specific parameters. The server then sends its certificate
chain in the Certificate message. In certain cases, it sends a ServerKeyExchange
message with additional information required for establishing the shared se-
cret (e.g., the 512-bit export-grade RSA key for RSA export key-exchange). If
the server wishes that the client authenticate itself, it sends a CertificateRequest
message listing acceptable certificate types and CA names for the client’s cer-
tificate chain. Finally, it sends a ServerHelloDone message to signal the end of
the flow.

If the server requests client authentication, the client begins its response
with a Certificate message that includes its certificate chain, and, after the
ClientKeyExchange message, a CertificateVerify message that includes its signa-
ture on a digest of the handshake messages to that point. The ClientKeyExchange
message includes the information necessary to determine the shared secret.
(For example, in RSA key exchange, it includes the encryption of a “premaster
secret” that is used to calculate the secret.)

Finally, the client sends a ChangeCipherSpec message (which is not a hand-
shake message), signaling its switch to the newly negotiated parameters and
secret key, and sends an encrypted and compressed Finished message that in-
cludes a digest of the handshake messages.

The server, in turn, also sends a ChangeCipherSpec message and a Finished
message that includes a digest of the handshake messages (up to the client’s
Finished message). After this, the client and server can exchange application
data over the encrypted, authenticated, and possibly compressed link that has
been established.

A server can identify a particular connection by a “session ID,” a field in the
ServerHello message. A client and server can resume a connection by mutual
consent. The client includes the ID of the session it wishes to resume in its
hello message, and the server accepts by including the same ID in its hello. The
client and server proceed directly to the ChangeCipherSpec and Finished messages
(with the previously agreed-upon parameters and secrets). This exchange is
summarized in Figure 2.

ACM Transactions on Information and System Security, Vol. 7, No. 4, November 2004.



556 • H. Shacham et al.

Relative to establishing a new session, resuming a previously negotiated ses-
sion saves bandwidth, flows, and computation (since the handshake’s expensive
cryptographic operations are avoided). However, heavily loaded servers typi-
cally keep session IDs in their session cache for only a relatively short while.

We note that our fast-track optimization applies only to full handshakes, not
session-resume handshakes. Hence, fast-track is most effective in environments
where short-lived TLS sessions are common, so that handshakes are usually
not resumed.

3. FAST-TRACK

The TLS handshake is optimized for two basic situations. In the case where the
peers have never communicated, the full handshake is required for the client
to discover the server’s parameters. When the peers have communicated very
recently, then the resume handshake can be used. However, an intermediate
case, in which the server and the client have communicated at some point in the
past but the session has expired or been purged from the server’s cache, is quite
common. Amazon, for instance, reported that over 73% of its orders were repeat
business [Wolverton 2000], yet experience suggests that few customers place
multiple orders within Amazon’s 2-min session cache window. Since server pa-
rameters are essentially static, the discovery phase is unnecessary. Fast-track
takes advantage of this observation to improve full TLS handshake efficiency.

Fast-track clients maintain a cache of long-lived server information, such
as the server certificate, and long-lived negotiated information, such as the
preferred cipher suite. The long-lived cached information allows a reduction in
handshake bandwidth: The handshake messages by which a server communi-
cates this information to the client are obviated by the cache, and omitted from
the fast-track handshake. Moreover, the remaining messages are reordered, so
a fast-track handshake has three flows rather than four. Hence, our fast-track
mechanism reduces both network traffic and round trips in the TLS handshake
protocol.

By a flow we mean an uninterrupted sequence of messages from one partic-
ipant in a connection to the other. An ordinary TLS handshake has four flows;
our fast-track handshake has three. Because of the design of the TLS protocol,
multiple consecutive handshake messages can be coalesced into a single TLS
transport-layer message. Thus, when network latency is high, a savings in flows
can translate into a savings in time.

The use of fast-track, along with the particular fast-track parameters, is
negotiated between clients and servers by means of TLS extensions [Blake-
Wilson et al. 2003]. Care is taken to ensure interoperability with non-fast-track
clients and servers, and to allow graceful fallback to ordinary TLS handshakes
when required.

The use of fast-track session establishment gives savings in handshake band-
width and flows, but does not provide a significant computational speedup rela-
tive to ordinary TLS handshakes. It is most useful for bandwidth-constrained,
high-latency situations, and those in which application message payloads are
small. Thus fast-track, via a relatively simple and fully backward-compatible
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change to the TLS protocol, improves performance and makes TLS more usable
in wireless environments.

We enumerate the long-lived, cacheable items and describe the manner
in which they are used in Section 3.1. We discuss some design criteria in
Section 3.2. We describe the fast-track handshake protocol in Section 3.3.
We then discuss performance, implementation, and security consideration in
Sections 3.4–3.6.

3.1 Cacheable Handshake Parameters

The savings we achieve through fast-track depend on a client’s caching certain
long-lived handshake parameters. “Long-lived,” in this context, means, first,
that they do not change between handshakes (as does, e.g., the server random
value), and, second, that they are expected not to change except when either
the server or client is reconfigured. A client collects these parameters in the
course of an ordinary TLS handshake. In a fast-track handshake, it uses these
parameters to craft its messages.

The particular values that a client uses in a fast-track handshake are called
the determining parameters for that connection. A server uses information in
the client hello message and its own configuration to come up with its own ver-
sion of the determining parameters for the connection. The two versions must
match for the handshake to be successful. Therefore, a fast-track-initiating
hello message includes a hash of the determining parameters to allow the server
to verify this match, as described in Section 3.3.2.

The long-lived parameters fall into two general categories: (1) those that are
features of the server’s configuration alone; and (2) those that properly depend
on the interaction of the server’s configuration with the client’s.
In the first category, we include:
� The server’s certificate chain;
� The server’s Diffie-Hellman group, if any; and
� Whether client authentication is required; if so,

—Acceptable client certificate types; and
—Acceptable certificate authorities.

These features of a TLS server’s configuration are assumed to change infre-
quently and thus to be capable of being cached on the client.
In the second category, we include parameters such as:
� The preferred client–server cipher suite; and
� The preferred client–server compression method.

(The cipher suite comprises a key-exchange algorithm, a bulk encryption algo-
rithm, and a MAC algorithm.) These are a function of both the server and client
configurations, and are negotiated in a TLS handshake: the client proposes a
list for each, and the server chooses.

A client in possession of the above information knows enough to be able to
compute a key-exchange message, without any additional input from the server

ACM Transactions on Information and System Security, Vol. 7, No. 4, November 2004.



558 • H. Shacham et al.

(with one exception discussed below). It is this fact that allows the reordering
of the handshake messages.

To participate in ephemeral Diffie-Hellman (EDH) key exchange, a client
needs to know the group modulus and generator relative to which the
Diffie-Hellman exchange will operate. The description of this group is part
of the ServerKeyExchange message when EDH is used. It is assumed that
the server will not often change its EDH group, so a fast-track client can
cache the group parameters and use them to send a ClientKeyExchange mes-
sage during a fast-track handshake. By contrast, a server employing tempo-
rary RSA keys for key exchange, in the RSA export cipher suites, will typi-
cally change its export RSA key quite often. The temporary RSA key, which a
client would need for its fast-track key exchange, can be cached only briefly.
Accordingly, fast-track explicitly does not support RSA export authentication.
Since the RSA export mechanism is being phased out, this is not a serious
constraint.

3.2 Design Considerations

With significant deployment of legacy TLS clients, incompatible changes to
the protocol are unlikely to be accepted. Accordingly, fast-track’s design em-
phasizes interoperability and backward compatibility. Fast-track clients and
servers must be able to interoperate with TLS servers and clients not capa-
ble of using fast-track; they must be able to discover which peers are capable of
fast-track; and they must recover gracefully when configurations have changed,
falling back on the ordinary TLS handshake protocol.

Through the use of TLS extensions [Blake-Wilson et al. 2003], a client and
server can, in an ordinary TLS handshake, negotiate the future use of fast-
track. A subsequent fast-track connection uses another extension to allow the
client and server to ascertain that they both are using the same unsent, client-
cached parameters. Since a client must suggest and a server must assent to the
use of fast-track, the likelihood of a client’s attempting to initiate a fast-track
connection with a non-fast-track server is minimal.

If a client does attempt to initiate a fast-track connection with a non-fast-
track server, it is important that it be alerted of its mistake quickly. A fast-track
handshake is initiated through a message that TLS servers not implementing
fast-track would reject as invalid. This minimizes confusion resulting from such
a mismatch. For servers aware of fast-track, but not wishing to use it, we include
a rollback mechanism to allow a server to revert gracefully to an ordinary TLS
handshake if its configuration has changed.

3.3 The Fast-Track Handshake

In this section, we describe the actual fast-track handshake protocol. There
are two distinct phases. First, in the course of an ordinary TLS handshake, a
client and server negotiate and agree on the future use of fast-track, and the
client collects the parameters that will allow it to make that future handshake.
Next, the client initiates a fast-track handshake with the server, using the
determining parameters from earlier.
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Fast-track also defines a mechanism whereby the server can decline the use
of fast-track; it would do so, for example, when its configuration has changed,
rendering the client’s cached determining parameters obsolete. This mecha-
nism is also used for session resumes.

3.3.1 Negotiation of Fast-Track. A client wishing to engage in a fast-track
handshake with a server must first determine whether that server is capable
of (and willing to use) fast-track. This is not a problem, since the client must
also have completed an ordinary handshake with the server to have obtained
the information it needs for the new, fast-track handshake.

The TLS Extensions mechanism [Blake-Wilson et al. 2003] provides the ma-
chinery for the negotiation. A client proposing the prospective use of fast-track
includes the fasttrack-capable extension in its hello; a server assenting to the
prospective use includes the same extension in its hello. Such a handshake is
referred to as “enabling.”

Servers might be reconfigured to disable fast-track, and clients should be
alerted of the configuration change as soon as possible; preferably, before they
undertake the computationally heavy early steps of the fast-track handshake.

Accordingly, a client is expected to include in each of its handshakes the
fasttrack-capable extension, and attempt a fast-track handshake with a server
only if their most recent successful handshake was an enabling one. (Per spec-
ification, the extensions governing a resumed session are those negotiated in
the original handshake for that session; a successful resume is therefore not
considered a handshake for this purpose.)

3.3.2 Fast-Track. To engage in a fast-track handshake, the client and
server must agree on certain determining parameters (see Section 3.1). The
client obtains these from a previous, enabling handshake. But it and the server
must make sure that they expect to use the same parameters. Fast-track en-
sures this as follows. As part of its fast-track hello message, a client must
include, in the fasttrack-hash extension, the SHA-1 hash of the determining pa-
rameters. (A SHA-1 hash is believed to be sufficient for the same reasons that
the Extensions document gives in discussing the security of the client-certificate-
url hash [Blake-Wilson et al. 2003, Section 6.3]: The client and server can both
detect misunderstandings, so collision resistance is all that is required.) The
server builds its own version of the parameters, and ensures that the hashes
match.

Suppose a client initiates a fast-track handshake, and includes in its hello
message both the fasttrack-capable extension and the fasttrack-hash extension, ac-
companying the latter with a hash of what it thinks are the determining param-
eters for the handshake. If the server’s configuration has changed, but it still
wishes to engage in fast-track in the future (with the new, correct parameters),
it ought to deny the fast-track, but include the fasttrack-capable extension in its
(ordinary) hello message. If, instead, the server’s configuration has changed,
and it no longer wishes to engage in fast-track in the future, it ought to deny
the fast-track, and ought not to include the fasttrack-capable extension in its hello.

The fast-track handshake is summarized in Figure 3. The notation is that
employed in Figures 1 and 2, above. Note that the ClientHelloFT message must
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Fig. 3. Message diagram for an accepted fast-track handshake.

include the fasttrack-hash extension with a hash of the determining parameters;
this requirement is indicated in the first line of the figure.

The exchange omits the server Certificate, CertificateRequest, and ServerHello-
Done messages, and requires three flows rather than four. In an ordinary TLS
handshake, the server has the last handshake flow; here, the client does. If the
client sends the first application data—the typical situation—the savings in
flows is magnified, since the client’s first application-data flow can be coalesced
with its last handshake flow.

The fast-track handshake calls for a nontrivial reordering of the TLS hand-
shake messages. If a client were accidentally to attempt it with a server entirely
unaware of fast-track, the client and server might befuddle one another. In keep-
ing with the design goal that the client and server should expeditiously discover
whether fast-track is appropriate, the fast-track client hello is made a different
message type—ClientHelloFT rather than ClientHello—although the two message
types have an identical format. A TLS server that is not aware of fast-track will
alert the client immediately to the unexpected message type.

The client has enough information to create its key-exchange message with-
out any additional server input, so this message can be sent in the first flow.
Once the server has sent its server-random (in its hello) and potentially its key-
exchange message, both sides have enough information to calculate the master
secret and change cipher suites. The client must wait until it has seen a mes-
sage from the server before sending its CertificateVerify message, to avoid replay
attacks.

3.3.3 Denying Fast-Track. A server need not agree to engage in a fast-track
handshake, even if it had previously assented to one through the fasttrack-capable
extension. Fast-track includes a mechanism whereby the server denies an in-
progress fast-track handshake, and the client and server revert to an ordinary
handshake negotiation.

A server denies fast-track by responding to the client’s first flow with a Server-
Hello message rather than a ServerHelloFT. Its response should be as though the
client had initiated the connection through a ClientHello message with the same
body as that of the ClientHelloFT message it actually had sent (but without the
fasttrack-hash extension). From that point on, the parties carry on an ordinary
TLS handshake, conforming to the rules given in the TLS specification. The
other messages sent by the client as part of its first flow are ignored by both
parties, and are not included in any handshake message digests.
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Fig. 4. Message diagram for a denied fast-track handshake.

Fig. 5. Message diagram for a session resume, with fast-track denied.

Figure 4 presents the messages exchanged when fast-track is denied. Mes-
sages that are not included in any handshake digests are shown with strike-
through.

Finally, a server can deny fast-track but proceed with a session-resume if
it wishes, and if the client sent a nonempty session ID in its fast-track hello
message. Figure 5 gives the message flow in this case, using the same nota-
tional conventions as the previous figures. Session resumption provides less of
a performance gain to fast-track clients, since they will have already engaged
in the time-consuming ClientKeyExchange calculations when the server accepts
the resume.

3.4 Performance Considerations

The fast-track handshake mechanism reduces the protocol’s communication
requirements and round trips but has little effect on CPU load. We briefly
discuss fast-track’s effect on CPU load for both servers and clients.

The performance of servers employing fast-track is comparable to that of
ordinary servers. Fast-track servers avoid sending as many as three messages
(Certificate, CertificateRequest, and ServerHelloDone), but none of these involves
any computationally intensive operation; contrariwise, fast-track servers must
verify the SHA-1 hash of the determining parameters.

Performance of fast-track clients is slightly improved, with a proper imple-
mentation. For example, once a client has validated a server’s certificate chain,
it need not revalidate it in the course of a fast-track handshake. Indeed, once it
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Table I. Handshake Bytes Sent for TLS Key-Exchange
Methods; No Client Authentication

RFC 2246 Fast-Track Savings (%)

TLS RSA WITH 3DES EDE CBC SHA

Client 322 291 10
Server 1187 130 89
Total 1509 421 72

TLS DHE RSA WITH 3DES EDE CBC SHA

Client 285 245 14
Server 1461 404 72
Total 1746 649 63

has computed the determining parameters hash which will later be sent to the
server, the client may choose to discard the chain, maintaining only the server’s
public key. Thus, in a fast-track handshake, a client avoids the signature veri-
fications of an ordinary handshake, with a long-term space overhead of only a
few hundred bytes for the server key.

3.5 Implementation

We have modified OpenSSL 0.9.6a to negotiate and perform fast-track hand-
shakes. Since OpenSSL does not currently support TLS extensions, our
implementation instead used TLS’s version negotiation scheme: fast-track-
capable clients and servers speak the fictitious TLS “Version 1.1.”

We summarize our observed savings in bandwidth below. Aside from the
bytes-sent measurements, our implementation also maintains the savings in
flows that fast-track provides over ordinary TLS handshakes: three flows,
rather than four.

Table I presents, for each of two cipher suites, the number of bytes written
across the wire by the client and by the server in both a standard (RFC 2246)
TLS handshake [Dierks and Allen 1999], and a fast-track handshake. The first
cipher suite, called “TLS RSA WITH 3DES EDE CBC SHA” in RFC 2246 (and called
“DES-CBC3-SHA” in OpenSSL), uses RSA for key exchange. It does not require a
ServerKeyExchange message to be sent. The second cipher suite, “TLS DHE RSA-
WITH 3DES EDE CBC SHA” (“EDH-RSA-DES-CBC3-SHA” in OpenSSL), employs EDH
for key exchange, with RSA authentication. A handshake using this cipher suite
requires the server to send a ServerKeyExchange message. At present, EDH-based
key exchange is not widely deployed in TLS environments, though support for
it has been added in some recent browsers; accordingly, the first of the two
settings in Table I is by far the more common.

The data in Table I show quite clearly that, in typical situations, the band-
width cost of a TLS handshake is dominated by the server’s transmissions—
which, a little examination of the protocol shows, themselves are dominated by
the server’s certificate chain. The server’s key-exchange message, when sent, is
also a significant component. Note that the server here sends only its own certifi-
cate. Since the client must already have a copy of the self-signed CA certificate to
assess the server’s credentials, the CA certificate need not be transmitted. (This
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Table II. Handshake Bytes Sent for TLS Key-Exchange
Methods; Client Authentication Required

RFC 2246 Fast-Track Savings (%)

TLS RSA WITH 3DES EDE CBC SHA, client auth
Client 2519 2488 1
Server 1196 130 89
Total 3715 2618 30

TLS DHE RSA WITH 3DES SHA, client auth
Client 2482 2442 2
Server 1472 404 73
Total 3954 2846 28

is permitted by the TLS specification [Dierks and Allen 1999, Section 7.4.2].)
The certificates are typical RSA certificates as generated by OpenSSL’s built-in
CA. Note that our estimate of the space used in the non-fast-track case is con-
servative: The savings could easily be inflated by having the server send both
its certificate and the CA certificate in the non-fast-track case.

Although the savings in bandwidth generated by the server are substantial,
the savings in client bandwidth are quite modest. In fact, our implemented
client does not (yet) send the determining-parameters hash to the server.
These additional 22 bytes of extension to the client hello (required in a fully-
conforming fast-track implementation) would largely negate the savings in
client bytes-sent evident in Tables I and II. The savings in server bytes-sent is
unaffected. This underscores that, since fast-track does not assume a server-
side cache, it can do little to reduce the information that a client must sup-
ply during a handshake. (The client bytes-sent savings are largely at the TLS
transport layer, where the reduced number of flows allows better consolidation
of messages.)

Table II presents data in the same format as in Table I, but in which the server
requires that the client authenticate itself. Here, the dominant component is
the client’s certificate chain. Unlike the server, the client does send the CA
certificate along with its own.

The limited gains in bytes-sent seen in Table II again reflect fast-track’s
inability to do away with the sending of client information to the server. The
specific problem of client certificates can be alleviated via a different mech-
anism, complementary to fast-track: the TLS Extensions document defines a
client-certificate-url extension [Blake-Wilson et al. 2003, Section 3.3]. With this ex-
tension, a client sends the URL where its certificate may be found, along with
a hash of the certificate, rather than the certificate itself.

The number of bytes that a server writes depends on its certificate chain;
similarly for a client when client authentication is required. Since certificates
vary in length, a limit is placed on the accuracy of bytes-sent measurements.
This limit is made more severe by the presence at several points in the TLS
handshake of arbitrary-length lists: the client’s supported cipher suites; the
client’s supported compression methods; and the server’s acceptable certificate
types and acceptable CA names (for client authentication).
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3.6 Security Analysis

In this section, we argue that fast-track is no less secure than the ordinary
TLS handshake protocol. Unfortunately, a formal argument about the security
of fast-track as a handshake protocol is extremely difficult, especially in the
absence of a comprehensive formal analysis of TLS. The existing analyses by
Mitchell et al. [1998] and Paulson [1999] rely on simplification too extensive
to be useful here. Nor is a rigorous reduction of fast-track security to TLS
security feasible—the message order is changed between the two protocols, so
an attacker on one would not necessarily be able to create messages for the other
without breaking the hash functions used in the Finished-message digests. In
light of these limitations, we present common arguments about the security of
fast-track.

Fast-track is negotiated in the course of an ordinary TLS handshake, using
the fasttrack-capable extension (Section 3.3.1). The extension itself contains no
sensitive data, and the negotiation is protected by the same mechanisms that
protect other negotiated extensions.

A client should store determining parameters for use in a future fast-track
handshake only after verifying that the server has a valid certificate, and the
parameters come from an ordinary handshake, so these parameters should
not be open to tampering. Furthermore, if the client and server determining
parameters differ, the mismatch will be detected in the course of the handshake,
since some messages will be incomprehensible. Thus, determining parameter
mismatch is not a security problem, and the SHA-1 hash should be sufficient
to provide collision resistance for robustness. (The exception is if the client
has obtained an adversary’s certificate for the server’s distinguished name,
a situation that could allow for a man-in-the-middle attack. But this would
require a compromise of the PKI.)

All the same information exchanged in a standard handshake is exchanged
in a fast-track handshake, except for the determining parameters, for which a
cryptographic hash is exchanged. The handshake MAC in the Finished messages
should thus provide the same security as in ordinary TLS.

The ordering of the server and client Finished messages is opposite to that
in ordinary TLS handshakes, but TLS session resumes also use this reversed
ordering.

The server response message (ServerHello or ServerHelloFT) is included in the fi-
nal MACs regardless of whether fast-track is denied, so rollback attacks should
be impossible.

The only message not verified by both the client and server finished-message
MACs is the client CertificateVerify message. It is included in the client finished-
message MAC, so the server should be able to detect its having been modified
and abort the connection.

In any case, the client certificate itself is included in both finished-message
MACs, and is presumably no more open to tampering than in an ordinary TLS
handshake. The client CertificateVerify message contains only a signature with
the certificate’s key, so opportunities for mischief through its modification are
limited.
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4. CLIENT SIDE-SESSION CACHING

In most cases, TLS session resumption dramatically improves handshake per-
formance, since it allows the peers to skip the time-consuming key agreement
computation. However, maintaining the session cache imposes a substantial
memory burden on the server. In addition, when multiple SSL servers are used
together for load balancing, session-cache coordination between the servers
becomes problematic. CSSC substantially alleviates these problems.

4.1 Memory Consumption

The amount of memory consumed by the session cache scales roughly with the
number of sessions cached on the server. The exact amount of memory consumed
by each session varies, but is at minimum 48 bytes for the master secret. Since
session IDs are themselves 32 bytes, 100 bytes is a reasonable approximation.
Assuming a server operating at 1000 handshakes/s, which is easily achievable
with modern hardware, the session cache will grow at a rate of 3 MB/min.

This effect makes a 24-h timeout, as suggested by the TLS RFC, quite im-
practical for any server with reasonable transaction volume. Typical settings
are on the order of a small number of minutes. For example, mod ssl’s default
setting is 5 min. Experiments with sites like Amazon show that sessions are
evicted from the session cache after approximately 2 min.

4.2 Distributed Implementations

When a web site is served by a cluster of SSL servers behind a load balancer,
the problem of sharing the session cache becomes a distributed systems prob-
lem. In general, server implementors choose to ignore this problem. Instead,
each server has its own session cache and the load balancer is expected to
direct returning clients to their original server. This increases load balancer
complexity.

Moreover, the need to maintain connection locality to make use of the session
cache can interfere with the load balancer’s ability to distribute load evenly.

4.3 CSSC Theory

One way to reduce the overhead of session caching is to force the client to
store the session cache data for the server and provide the server with it when
attempting to resume. For obvious reasons, it is not safe to provide the client
with the cache data in the clear, but it is easy to encrypt it using a symmetric
cipher under a fixed server key called enc-key. The simplest such token is

Token = Eenc-key[Cache Data]

Note that the symmetric cipher must be made semantically secure (e.g., by
using CBC mode with a new random IV for every token), since otherwise an
attacker might deduce relations between the cache data in different tokens.

When using the simple token above the server may not be able to tell whether
the token has been modified. The problem is that encryption by itself does
not guarantee integrity. To verify integrity the server should also use a MAC

ACM Transactions on Information and System Security, Vol. 7, No. 4, November 2004.



566 • H. Shacham et al.

Fig. 6. TLS handshake using extended session ID.

with a fixed server key called mac-key. There are several ways for combining
encryption and a MAC [Krawczyk 2001]. For consistency with TLS, we construct
tokens using the following method called MAC-then-encrypt:

Token = Eenc-key[Cache Data‖mac]
where mac = MACmac-key[Cache Data]

Both enc-key and mac-key can be derived from a single fixed server master key
as done in TLS. This approach allows us to do away completely with the server-
side session cache. Any data that the server wishes to retain across sessions
can be placed in the authentication token. Since the token is authenticated and
encrypted, even sensitive information can be carried around by the client. Only
the master key needs to be shared across server processors or cluster members,
and this key can be statically configured.

4.4 Adapting TLS for Client-Side Caching

For CSSC to work, the server must ensure that the client returns the authen-
tication token when requesting resumption. The only piece of information that
the client is guaranteed to provide during a resumption attempt is the session
ID, so this suggests that the authentication token must be placed in the ses-
sion ID. Unfortunately, the session ID is currently unsuitable for two reasons.
First, it is too short. The TLS session ID is limited to 32 bytes. Since the master
secret is 48 bytes long, an encrypted master secret cannot fit in the session ID.
Second, it is delivered at the wrong time. The server provides the session ID in
the ServerHello, which is transmitted before it knows the master secret.

We must therefore modify the TLS handshake message flow to make client-
side caching possible. The necessary changes are relatively simple. First, we
relocate the session ID. The server delivers a zero-length session ID in the
ServerHello message (remember that our our token is likely too large to fit in
the ServerHello) and then sends a new ExtendedSessionID message containing the
authentication token immediately before the ChangeCipherSpec message. The
sequence of events is shown in Figure 6.

Like fast-track, CSSC is negotiated using a TLS extension. The client sig-
nals to the server that it is capable of CSSC using the client-side-cache-capable
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extension in the ClientHello. If the server wants to request CSSC, it responds
with the client-side-cache-request extension in its ServerHello.

When the client attempts to resume a client-side cached session, it needs to
provide the server with the authentication token. If we could guarantee that
this token would be less than 256 bytes long, it could be placed in the session
ID field of the ClientHello, because even though the length of the session ID is
limited by the protocol to 32, the length field can represent lengths up to 255.
However, if the authentication token includes a client certificate, it will not fit
in the ClientHello. Instead, we use another TLS extension to carry the extended
session ID. Session resumption with CSSC is otherwise identical to ordinary
session resumption.

4.5 Cache Invalidation

TLS sessions can become invalid in a number of ways, including expiration, im-
proper closure, and error. Expiration is easily dealt with by including a times-
tamp in the token, provided that the servers in a load-balancing configuration
are roughly synchronized. Moreover, when CSSC is in use, expiration is less
important, since it is not required for garbage collection.

Unscheduled invalidation due to errors or improper closure is a more serious
problem. In the stateless regime described in Section 4.4, tokens are completely
self-authenticating and there is no way to invalidate sessions before they expire.
One can proceed along two paths. The first path is simply to fail to invalidate
sessions under such circumstances. This violates the TLS specification, but, as
we argue in Section 4.8, is still secure. The second is to maintain a “black list”
consisting of those sessions that have been invalidated but have not yet expired.

The size of the black list depends on the exact data structure chosen. In
general, a black list consumes far less memory than a session cache. Suppose
the server is processing R new handshakes per second where each session has
a lifetime of T seconds. Suppose the invalidation rate is E ∈ [0, 1], that is,
we have ER invalidations per second. Then an ordinary session cache has size
80TR(1− E) bytes assuming 80 bytes per entry (32 bytes for the session ID and
48 bytes for the premaster secret). A naı̈ve hash table implementation that just
keeps track of invalidated session IDs has size 32TRE bytes, which will be less
than the size of the session cache unless E > 0.7.

In practice, the size of the black list can be substantially reduced by clever
implementation. In particular one can store a message digest of the session
ID rather than the session ID itself, thus reducing the size of the black list to
8TRE bytes when using a 64-bit digest. (Note that this trick can be used to
reduce the size of the session cache as well, but since the bulk of the session
cache data is the master secret the effect is less.)

It is worth mentioning two more-sophisticated data structures. In environ-
ments where E is relatively high, it is more efficient to assign tokens in se-
quence. The black list can then be stored as a low-water mark and a bitmask
(the bitmask is 0 at positions that correspond to invalid sessions and 1 else-
where). The size of the bitmask vector is (1/8)TR bytes. When the bitmask
becomes excessively large, the low-water mark can simply be rolled forward,
expiring all sessions created before that time. In environments where E is low,
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Table III. Memory Consumption, in Bytes, for Various Session Cache Data Structures

Invalid Session Hash Wide Bloom
Rate Cache Table Bitmask Bitmask Filter

0.01 171,072,000 172,800 270,000 8,640,000 25,879
0.1 155,520,000 1,728,000 270,000 8,640,000 258,793
0.2 138,240,000 3,456,000 270,000 8,640,000 517,587
0.5 86,400,000 8,640,000 270,000 8,640,000 1,293,969
1 0 17,280,000 270,000 8,640,000 2,587,938

Column (1) refers to the standard valid session cache. Column (2) refers to a simple hash table storing a 64-bit
hashes of invalid session IDs. Column (3) refers to the bitmask method and column (4) refers to the “worst
case” scenario where we have to store data in our bitmask using one 32-bit word per bit. Column (5) refers to
storing the invalid sessions using a Bloom filter tuned for a 1% false positive rate.

a more efficient approach is to use a Bloom filter [Bloom 1970]. Although a
Bloom filter has false positives and thus identifies as invalid some valid ses-
sions, this merely causes the occasional full handshake. The size of the Bloom
filter can be tuned for the appropriate balance between memory consumption
and false-positive frequency.

A malicious client might intentionally invalidate its own sessions to induce
Bloom-filter false-positive invalidations on the sessions of others. This would
allow it to deny service to other clients, which would be forced to undertake
handshakes where they might otherwise have resumed previous sessions. How-
ever, this attack is less effective than others already available to TLS clients.
Sessions are not entered into the server’s cache until the server Finished mes-
sage is sent, so a malicious client wishing to apply this sort of attack would
have to complete each handshake successfully before invalidating it. In order
to mount a serious attack, the client would need to invalidate a large number
of connections, each with a complete handshake. Because handshake requires
public-key computation on the part of the client, there is a computational bar-
rier to mounting this attack that does not exist, for example, to descriptor-,
socket-, or bandwidth-exhaustion attacks.

Table III shows the memory consumption, in bytes, for various session-cache
data structures. For illustration, we have chosen a lifetime R of 3600 seconds
and a connection creation R of 600 cps, which is a common accelerator speed.
Thus, TR, the number of sessions that must be kept track of, is 2,160,000. As
this table shows, CSSC consumes less memory than ordinary session caching
unless the invalidation rate is very high. Note that the maximum memory
consumption of an ordinary session caching strategy in this scenario is approx-
imately 170 MB, a substantial amount of memory even for a large server. With a
session cache lifetime of 24 h as suggested by the specification, the cache would
of course be much larger.

Aside from their small size, both Bloom filters and bitmasks have the ad-
vantage that they require only minimal synchronization and can be stored in
shared memory. If we assume that bit-wise ORs can be performed atomically,
both writers and readers can safely write the blacklist without first synchro-
nizing. (In the worst case we can allocate one word per bit.) The only operation
that requires synchronization is rollover, in order to ensure that two writers do
not independently try to move the low-water mark.
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Table IV. Token Decryption and MAC Performance:
Seconds per Million

Bytes AES-128 DES 3DES

100 8 9 18
200 13 16 33
300 18 22 48
500 27 34 78

1000 51 65 214

Table V. Locking Performance: Seconds per Million

Processes Semaphores Mutexes

1 2.2 0.2
2 10.6 0.8
3 25.4 1.8
5 51.9 7.7

10 100.2 10.1
20 192.3 20.5
40 388.5 44.1
60 586.0 79.2

4.6 Performance Analysis

When a session is resumed, the CSSC token must be decrypted and the MAC
verified. (Tokens must also be encrypted when issued, but we assume that ses-
sion resumption is more common than full handshakes.) This requires symmet-
ric decryption and the computation of a MAC, which, though not free, are rela-
tively efficient. Table IV shows the time (in seconds) to perform a million token
encryptions using HMAC-MD5 and various encryption algorithms on a typical
server, an Ultra60 running Solaris 8. A size of 100 bytes is realistic for sessions
which do not require client authentication, 500 bytes is realistic for small cer-
tificates and 1000 bytes for large certificates. Note that the high estimate is
somewhat pessimistic, since the certificate, if MACed, can be left unencrypted.

Since CSSC does not require session cache locking, it is natural to compare
the additional cost incurred for encryption and MACing to that for locking the
session cache. Table V shows the performance of locking and unlocking, again
on an Ultra60 running Solaris 8. The benchmark task, from Stevens [1999],
is incrementing a single counter from one to one million. The column labeled
Semaphores uses System V semaphores and the column labeled Mutexes is
for POSIX Mutexes. Note that performance declines dramatically as the num-
ber of processes attempting to acquire the lock increases. To some extent, this
is not representative of SSL servers because the server processes, unlike our
benchmark, do other things than attempt to acquire locks.

As is apparent, the cost for CSSC is commensurate with that incurred by
locking the shared session cache. When client authentication is not required,
CSSC overhead is comparable to that of an average of 10 processes’ accessing
the session cache (using mutexes) or merely 2 processes’ (using semaphores).
Even with client authentication, we expect the CPU cost from CSSC to be better
than for semaphores though somewhat worse than that for mutexes. (How much
worse depends on how much contention there is for the session cache, which in
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turn depends on the total number of server processes and locking granularity.)
Note that CSSC has the advantage here in that its CPU overhead per connection
is constant rather than increasing with load on the server, as in the case of cache
locking.

4.7 Backward Compatibility

CSSC is designed to be backward compatible with ordinary TLS so that it can
be deployed in stages. If both peers are CSSC capable, they will use CSSC and
omit ordinary session caching. Otherwise, they will fall back to ordinary TLS
with ordinary session resumption. This means that CSSC-capable agents need
simultaneously to do old-style and CSSC-style session caching.

This does not introduce any security problems. Since the CSSC token and
session ID are delivered in separate fields, they cannot be confused; since they
are different lengths, they will not collide. (The probability of random 32-byte
fields’ colliding is negligible in any case.) Note that regular TLS session IDs
are generated separately from CSSC tokens. Hence, no information about open
sessions in one method can be gained from open sessions in the other method.

4.8 Security Analysis

CSSC introduces three new security concerns: (1) Can CSSC be safely negoti-
ated? (2) Can attackers tamper with or forge CSSC tokens in any useful way?
(3) What is the impact of failing to invalidate sessions?

The use of CSSC is negotiated via the usual TLS extension mechanisms.
Thus, any attempt to force peers to use CSSC by tampering with the handshake
would be detected by the Finished check. No sensitive information is contained
in any of the new CSSC extensions, so having them appear in the clear is not
a problem. Similarly, the ExtendedSessionID message is covered by the Finished
message digest and therefore cannot be forged.

Since the integrity of CSSC tokens is protected using a key known only to
the server, it is not possible for attackers to tamper with valid tokens or forge
their own. It is of course possible for an attacker to attempt to use a passively
captured CSSC token to resume his own connection, but since the attacker will
not know the corresponding keying material, he will not be able to complete the
handshake. Similarly, since the CSSC token is encrypted, an attacker cannot
learn anything about the keying material hidden in the token. (A token en-
crypted using a semantically secure cipher provides no more information than
the random session ID currently used in TLS.) It is worth noting that if a stream
cipher is used to encrypt the token, care must be taken to ensure that a fresh
section of keystream is used each time, perhaps by providing an offset at the
beginning of the token.

As we noted earlier, although the TLS specification requires a session to be
invalidated when errors occur, this procedure adds substantial complexity to
CSSC. With respect to security, rather than standards compliance, invalidation
is unnecessary. To see this, consider that errors can occur under three circum-
stances: (1) local-side error; (2) error by the peer; or (3) active attack. Only the
third case represents a potential threat.
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However, the structure of TLS key derivation renders this threat minimal.
In particular, because the individual session keys are derived from the master
secret via a message-digest-based PRF, it is not possible to derive useful infor-
mation about the master secret or about other sessions by observing server be-
havior with respect to one session. To do so would require reversing the message
digests. If such a reversal were possible it would seriously threaten the security
of TLS. Thus failing to invalidate sessions—even under an active attack—does
not pose a security risk.

One potential new risk is timing analysis of the master secret. If the session
is not invalidated after errors, then an attacker can repeatedly initiate connec-
tions with variant ClientHello values in an attempt to determine the master se-
cret, using techniques similar to those of Kocher [1996] and Brumley and Boneh
[2003]. Based on the small timing signals present in symmetric algorithms and
the effect of the server random value, we do not believe that this is a practical
attack. Note that this sort of attack presents a signature different from simple
failure to send a closure message—the handshake never finishes. Thus, one
potential countermeasure would be for servers to maintain a small, nonshared
blacklist of invalid sessions. Because timing analysis typically involves millions
of trials, the session under attack would quickly be blacklisted on all servers.

If session invalidation is performed, then one possible concern here is the pre-
dictability of CSSC tokens. If the sequence-number-based blacklisting method
of Section 4.5 is used, then the plaintext of the tokens (at least the part con-
taining the sequence number) will be predictable. If an attacker could generate
tokens with known sequence numbers he could invalidate the corresponding
sessions. Even though the tokens are encrypted, it is possible that given a to-
ken for one session the attacker could generate a token for another session if,
for instance, the token were encrypted in CTR mode [Diffie and Hellman 1979]
(by using the malleability of ciphertexts generated by this mode). However,
the MAC used to test token integrity prevents a user from generating a valid
token for another user’s session. Therefore, servers must test token integrity
before using any data in the token. Otherwise, an attacker might be able to
take advantage of bad logic by generating an invalid token with a predictable
sequence number, which would then cause session invalidation when the hand-
shake failed. Note that it is still possible to invalidate sessions that the attacker
has observed, but this attack is also possible with ordinary TLS. Note also that
if the Bloom filter invalidation technique is used, there is a potential for false
positives when one session is invalidated. However, it is straightforward to tune
the Bloom filter to minimize the number of false positives.

5. COMPARISON OF FAST-TRACK AND CSSC

TLS servers deal many clients, whereas clients typically connect to only a few
servers in a given time period. Nevertheless, standard TLS requires more exten-
sive state maintenance on the server. This is understandable—servers cannot
trust clients’ honesty—but not optimal. Information that clients could remem-
ber must be retransmitted with each connection; state which must remain on
the server is expired for lack of space.
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Both fast-track and CSSC make use of client-side caching. Both use cryptog-
raphy to ensure that malicious clients cannot subvert the handshake protocol
and reduce the security of TLS.

Although both fast-track and CSSC make use of client-side caches to improve
TLS efficiency, the environments in which their use is appropriate are quite dif-
ferent. Fast-track is intended to save bandwidth and round-trip latency, and is
therefore most useful where the connection between the client and server is
slow. By contrast, since CSSC increases the size of the TLS handshake mes-
sages, it is most appropriate in situations where the connection is fast, but a
large number of clients are connecting to a given server.

That fast-track and CSSC are applicable in such widely different scenar-
ios provides evidence that client-side caching is a versatile tool for reducing
or rebalancing costs (such as bandwidth and memory overhead) associated
with the TLS handshake protocol, and likely in other security protocols as
well.

6. RELATED WORK

Related work falls into three major categories:

(1) Security analysis of SSL/TLS;
(2) Performance analysis of SSL/TLS; and
(3) Optimizations to SSL/TLS.

We consider each category in turn.
The security of SSL/TLS has been extensively analyzed. Bradley and Davies

[1995] performed message dependency analysis on SSL 3.0 but focused on the
message structure, not the cryptography. Wagner and Schneier [1996] pro-
vided the first analysis of the security of SSL 3.0 and uncovered a number
of minor potential attacks. They stopped short, however, of a formal treat-
ment. Mitchell et al. [1998] and Paulson [1999] both provided formal analysis
of simplified versions of SSL but did not prove security for the full protocol. A
number of minor vulnerabilities have also been found by informal analytical
methods [Bleichenbacher 1998; Möller 2004; Vaudenay 2002; Canvel et al.
2003].

A fair amount of work has been done on SSL performance. Apostolopoulos
et al. [1999, 2000] quantified several timing costs associated with TLS. They
profiled the handshake protocol in implementation of TLS, breaking down the
costs to the client and server due to each step. They measured the effect on
data throughput of the choice of different-strength symmetric crypto primitives.
They used benchmark loads to measure the latency implications of different
session-reuse rates.

Goldberg et al. [1998] demonstrated that session caching dramatically im-
proved Web server performance. The definitive reference on SSL/TLS perfor-
mance, Coarfa et al. [2002], studied the relative contribution of all aspects of
the SSL handshake and demonstrated that (as expected) the public key phase
of the key exchange was a dominant contributor to the overall cost.
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In their study of TLS performance, Apostolopoulos et al. [1999, Section 4]
briefly discuss a modification to TLS, called Certificate Caching, which is related
to our fast-track handshake, discussed in Section 3. There is a number of differ-
ences between the two proposals. First, in addition to caching the server’s cer-
tificate chain, fast-track also caches the server’s Diffie-Hellman group (used for
RSA-EDH key exchange), its preferred cipher-suite and compression method,
and its allowed CAs for client authentication. This has two advantages over
caching only the server certificate chain. First, unlike [Apostolopoulos et al.
1999], we are able to do a fast-track RSA-EDH key exchange. Second, it saves
bandwidth, since there is no need for the server to retransmit these parameters
and there is no need for the client to transmit a cipher-suite list for the server
to choose from. We also note that the primary motivation for the two proposals
is quite different. Fast-track is designed for speeding up the TLS handshake
in high-latency networks typically associated with mobile devices. In contrast,
the proposal in [Apostolopoulos et al. 1999] is designed for standard web traf-
fic. This might explain some of the differences in design and the differences in
measurement methodologies.

Work on optimizing SSL/TLS has mostly focused on optimizing the imple-
mentations. The two basic strategies, as suggested above, are to reduce the cost
of the public-key operations, or to make session cache use more effective.

Work dealing with the cost of the public-key operations has considered the
effectiveness of cryptographic acceleration, as in Coarfa et al. [2002] and Abbott
and Keung [1998], and the use of more efficient crypto primitives, such as
elliptic-curve cryptography [Gupta et al. 2004].

A common observation is that when multiple machines are in use behind a
load balancer, random connection assignment leads to a large number of cache
misses. Thorpe’s Distcache [Thorpe] implemented a session cache shared be-
tween a number of machines. Rescorla et al. [2002] also described a distributed
session cache in the context of a clustered SSL implementation. Modern load
balancers often attempt to use intelligent connection assignment to increase
the fraction of cache misses.

7. CONCLUSIONS

We have described two extensions to TLS that use client-side caches to improve
efficiency. The fast-track extension caches the server’s long-lived parameters,
reducing network bandwidth consumption in a handshake by up to 72% and
the number of flows from four to three. The CSSC extension moves the session
cache from the client to the server, allowing the server to maintain a much
larger cache, so that connections that would otherwise have required a full
handshake can be resumed.

We have designed our proposals to be backward compatible. If either the
client or the server does not understand or does not wish to use these extensions,
it can revert to the standard TLS handshake. A prototype implementation of
fast-track is available for download [Shacham and Boneh]. An Internet Draft
describing fast-track is also available [Shacham and Boneh 2001].
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