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Efficient authenticated key agreement protocols
resistant to a denial-of-service attack

By Yuh-Min Tseng*,†

Malicious intruders may launch as many invalid requests as possible
without establishing a server connection to bring server service to a
standstill. This is called a denial-of-service (DoS) or distributed DoS
(DDoS) attack. Until now, there has been no complete solution to
resisting a DoS/DDoS attack. Therefore, it is an important network
security issue to reduce the impact of a DoS/DDoS attack. A resource-
exhaustion attack on a server is one kind of denial-of-service attack. In
this article we address the resource-exhaustion problem in authentication
and key agreement protocols. The resource-exhaustion attack consists of
both the CPU-exhaustion attack and the storage-exhaustion attack. In
2001, Hirose and Matsuura proposed an authenticated key agreement
protocol (AKAP) that was the first protocol simultaneously resistant to
both the CPU-exhaustion attack and the storage-exhaustion attack.
However, their protocol is time-consuming for legal users in order to
withstand the DoS attack. Therefore, in this paper, we propose a slight
modification to the Hirose–Matsuura protocol to reduce the computation
cost. Both the Hirose–Matsuura and the modified protocols provide
implicit key confirmation. Also, we propose another authenticated key
agreement protocol with explicit key confirmation. The new protocol
requires less computation cost. Because DoS/DDoS attacks come in a
variety of forms, the proposed protocols cannot fully disallow a
DoS/DDoS attack. However, they reduce the effect of such an attack and
thus make it more difficult for the attack to succeed. Copyright © 2005
John Wiley & Sons, Ltd.
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1. Introduction

Recently, a loss of availability through
denial-of-service (DoS) or distributed
DoS (DDoS) attacks has become an

important network security issue.1,2 DoS/DDoS
attacks can result in significant loss of profits for
many enterprises and organizations. A server
needs some resources to provide services for legiti-
mate users. These resources include network con-
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nectivity between a user and a server, server’s
memory space and CPU time. An intruder is able
to consume the network bandwidth using a large
number of request packets sent to a server over the
Internet to prevent legitimate users from connect-
ing to the server. Malicious intruders may also
launch as many invalid requests as possible
without establishing a server connection to bring
the services provided by the server to a standstill.
Until now, there has been no complete solution to
resisting a DoS/DDoS attack. A resource-exhaus-
tion attack on a server is a kind of denial-of-service
attack. The resource-exhaustion attack consists of
the CPU-exhaustion attack and the storage-
exhaustion attack. In this paper, we address the
resource-exhaustion problem in authentication
and key agreement protocols.

Loss of availability through denial-of-
service attacks has become an important

network security issue.

To achieve secure communication over an open
network, two principals use a key agreement or a
key distribution protocol to establish a session key to
encrypt the communication data between them. In
1976, Diffie and Hellman3 first proposed a secure key
agreement protocol. However, their protocol does
not allow two principals to authenticate each other.
Their protocol therefore requires an authentication
channel to exchange the public keys. Afterwards,
many authenticated key agreement protocols were
proposed to integrate authentication into key agree-
ment protocols. According to technical categories of
the authentication approach, these key agreement
protocols may be classified into two categories:
public-key-based key agreement protocols4–8 and
password-based key agreement protocols.9,10 A
public-key-based key agreement protocol adopts
digital signature schemes11,12 into a key agreement
protocol to provide mutual authentication. A pass-
word-based key agreement protocol allows both
principals to share a secret password in advance to
provide the authentication property. In this article,
we address key agreement protocols based on
public key systems.

In the past, several desired security goals and
properties were considered for authenticated key

agreement protocols.13–15 An authenticated key
agreement protocol (AKAP) should provide secu-
rity goals and properties. In the following, first we
describe two kinds of security goals. An authenti-
cated key agreement protocol must achieve one of
two security goals to withstand some attacks.

1. Implicit (Weak) key confirmation. This means
that each principal shows to the other princi-
pal who can compute the session key.

2. Explicit (Strong) key confirmation. This means
that a principal is assured that another prin-
cipal has actually computed the session key.

In addition, an authenticated key agreement pro-
tocol must also have four security properties as
follows:

1. Known-key security. Suppose that a session
key established by two principals is dis-
closed. The adversary must be unable to learn
future session keys between them.

2. Forward secrecy. If both secret keys of two
principals are disclosed, the adversary must
be unable to derive any old session keys
established by them.

3. Key-compromise impersonation. Assume that
entities A and B are two principals. If A’s
secret key is disclosed, obviously, an adver-
sary that knows this secret key can imper-
sonate A to other principals. However, it is
desired that in some situation this disclosure
does not allow the adversary to impersonate
other principals to A.

4. Unknown key-share. When principal B believes
the key is shared with some principal C π A,
and A believes that the key is shared with B.
This scenario cannot be permitted.

An authenticated key agreement protocol is
designed to provide the mutual authentication
function between two communication parties and
establish a session key. This is one of the funda-
mental protocols for many applications in Internet
or network systems. Although authenticated key
agreement protocols ensure that no malicious
intruders can obtain the messages transmitted
over an open channel, the previously proposed
key agreement protocols4–6,8 are unable to with-
stand the denial-of-service attack.

In 2001, Hirose and Matsuura proposed a 
key agreement protocol that was the first pro-
tocol simultaneously resistant to both the CPU-
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exhaustion attack and the storage-exhaustion
attack. In this paper, first we propose a slight 
modification to the Hirose–Matsuura protocol to
reduce the server computation cost. We then
propose a new authenticated key agreement pro-
tocol with explicit key confirmation, in which the
computation cost can be further reduced. Our pro-
posed protocols meet the security requirements 
for an authenticated key agreement protocol.
Although the proposed protocols do not fully
resist a DoS/DDoS attack, both protocols reduce
the effect of such an attack and thus make it more
difficult for the attack to succeed.

The remainder of this article is organized as
follows. In the next section, some design principles
and strategies for withstanding a DoS attack are
presented. In Section 3, we briefly review the
Hirose–Matsuura protocol. Section 4 gives our
proposed protocols and security analysis. In
Section 5, performance comparisons among our
proposed protocols and the Hirose–Matsuura 
protocol are presented. Section 6 gives our 
conclusions.

Availability is defined as valid access for
data and services to an authorized user

within a reasonable time.

2. Design Principles
Availability is defined as valid access for data

and services to an authorized user within a rea-
sonable time.16 Malicious intruders may launch as
many invalid requests as possible without estab-
lishing server connection to bring the services pro-
vided by the server to a standstill: thus, the server
cannot provide services for authorized users. The
resource-exhaustion attack consists of the CPU-
exhaustion attack and the storage-exhaustion
attack. Therefore, in the following we will describe
strategies for preventing the CPU-exhaustion
attack and the storage-exhaustion attack.

Let us first consider how to withstand the CPU-
exhaustion attack. The fundamental design
approach is that the client computation load
should be higher than or equal to that of the server.
We provide some design rules as follows.

1. In an authenticated key agreement protocol,
several interactive steps occur between a
client and a server. Initially, a client sends a
request to the server. Malicious intruders
may send random messages to the server.
After receiving a request, the server should
have no on-line modular exponentiation
computations. That is, the pre-computation is
independent of the client’s identity.

2. Malicious intruders may compute exponen-
tiations to ensure that the server also com-
putes some exponentiations to validate the
received message. When the client increases
the computation cost to carry out the attack
in other steps, the increased computation cost
to the server should be less than or equal to
that of the client. The concept is that mali-
cious intruders must carry a great computa-
tion load to initiate the attack. This concept is
called the pricing function.17

3. The fundamental design approach is that the
computation cost to a client should be higher
than or equal to that of the server. However,
intentionally increasing the computation 
cost to a client is not permitted because 
it will affect legitimate clients at the same
time.

In the following, let us consider the storage-
exhaustion attack on an authenticated key agree-
ment protocol. The server need not maintain the
connection state before establishing a correct con-
nection. Therefore, this connection is called the
‘stateless connection’.18 To achieve this goal, the
server must combine the request message with
some pre-computed values into an encrypted
material and then send it to the client. This process
is not recorded by the server. Afterwards, in the
next step the client must re-send the encrypted
material to the server.

According to the above design principles for
preventing a DoS attack, two-pass authenticated
key agreement protocols (such as, unified 
model4 and MQV6) are unable to withstand 
the DoS attack. That is because the client only
sends a request message to the server and the
server must compute the session key according 
to the request message. Meanwhile, the server
must also validate the client. As a result, on-line
computation of modular exponentiations is
required.
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3. Brief Review of the
Hirose–Matsuura Protocol

In this section, we briefly review the
Hirose–Matsuura protocol.19 In their system, there
exist two large prime numbers p and q, where q is
a factor of (p - 1). Let g be a generator with order
q in GF(p). Let h be a collision-free hash function.20

The system publishes p, q, g and h, which are
shared among all users. Each user i with the iden-
tity information Ii selects a secret key xi in Zq and
computes the corresponding public key yi = g-xi

mod p. Assume that the user A is the client and the
user B is the server. Thus, A and B carry out the
following procedure to generate the session key.

Step 0. The client A selects two random
numbers a1, a2 Œ Zq, and computes uA =
g-a1 mod p and rA = ga2 mod p. The server
B also selects two random numbers b1,
b2 Œ Zq, and computes uB = g-b1 mod p
and rB = g b2 mod p.

Step 1. A sends uA and IA to B.
Step 2. B computes eB and wB as follows.

eB = h(rB, uB, uA)
sB = b2 + eBb1 + eB

2SB mod q
B also computes cB = EB(b1,rB), where EB(·)
is a symmetric encryption function of B
and DB(·) is the corresponding decryp-
tion function. And B keeps the master
key K securely and uses h(K,t) as the
secret key of EB(·), where t is changed
every certain period of time.

Step 3. B sends uB, eB, sB, cB and IB to A.
Step 4. A computes rB¢ = g sB ·uB

eB ·yB
eB
2 mod p,

where rB¢ should be equal to rB if B is
honest to compute uB, eB, sB and cB. Then,
A checks if eB = h(rB¢,uB,uA). If it holds, A
computes the following:

Step 5. A sends uA, eA, sA, V, uB, eB, cB and IA to
B. Meanwhile, A can compute the
common key CK = uB

-a1 mod p.
Step 6. B recovers (b1,rB) = DB(cB) and checks if V

= h(rB,uA,uB) and eB = h(rB,uB,uA). If they
do not hold, B terminates the execution.
Otherwise, B computes rA¢ = g sA ·uA

eA ·yA
eA

2

mod p and checks if eA = h(rA¢,uA,uB).

s a e a e x qA A A A= + +2 1
2   mod

e h r u uA A A B= ( ), ,

V h r u uB A B= ¢( ), ,

Finally, B can get the common key CK =
uA

-b1 mod p.

4. Proposed Authenticated Key
Agreement Protocols

This section describes two authenticated key
agreement protocols resistant to a DoS attack. 
The first is a slight modification of the Hirose–
Matsuura protocol. As in the Hirose–Matsuura
protocol, the improved protocol provides the
implicit key confirmation property. The second
protocol is a new authenticated key agreement
protocol resistant to a DoS attack. It has the explicit
key confirmation property and the computation
cost can be further reduced.

—4.1. Improved Hirose–Matsuura
Protocol—

In the system, there are two large prime
numbers p and q, where q is a factor of (p - 1). Let
g be a generator with order q in GF(p). Let h be a
collision-free hash function. The system publishes
p, q, g and h, which are shared among all users.
Each user i with the identity information Ii selects
a secret key xi in Zq and computes the correspond-
ing public key yi = gxi mod p. Assume that the user
A is the client and the user B is the server, they own
the secret/public key pairs (xA,yA) and (xB,yB),
respectively. Thus, A and B carry out the follow-
ing steps to generate the session key.

Step 0. The client A selects two random num-
bers a1, a2 Œ Zq, and computes uA = ga1

mod p and rA = g a1 ·g-a2 mod p. The server
B also selects two random numbers b1,
b2 Œ Zq, and computes uB = g b1 mod p and
rB = gb1 ·g-b2 mod p.

Step 1. A sends rA and IA to B.
Step 2. B computes eB and sB as follows.

B also computes cB = EB(uB,b1), where
EB(·) is a symmetric encryption function
of B and DB(·) is the corresponding
decryption function. And B keeps the
master key K securely and uses h(K,t) as

s b e x qB B B= -2   mod

e h u r r yB B B A B= ( ), , ,
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the secret key of EB(·), where t is changed
every certain period of time.

Step 3. B sends rB, eB, sB, cB and IB to A.
Step 4. A computes uB¢ = rB ·g sB ·yB

eB mod p. Then,
A checks if eB = h(uB¢,rB,rA,yB). If it holds,
A computes the following:

Step 5. A sends V, eA, sA, rA, rB, cB and IA to B.
Step 6. B recovers (uB,b1) = DB(cB) and checks if

V = h(uB,rA,rB). If it does not hold, B 
terminates the execution. Otherwise, B
computes uA¢ = rA ·gsA ·yA

eA mod p and
checks if eA = h(uA¢,rA,rB,yA). Finally, B can
get the session key CK = h((uA¢)b1 mod p).
Meanwhile, A can also compute the
session key CK = h((uB¢) a1 mod p).

s a e x qA A A= -2   mod

e h u r r yA A A B A= ( ), , ,

V h u r rB A B= ¢( ), ,

The improved authenticated key agreement pro-
tocol (Improved-AKAP) is depicted in Figure 1.
The improved protocol provides the implicit key
confirmation using a signature scheme that is a
variation of the Nyber–Ruppel signature scheme
with message recovery.21 In Step 3, the message
(rB,eB,sB) is regarded as a signature that is used to
recover uB. By computing uB¢ = rB ·gsB ·yB

eB mod p and
then checking eB = h(uB¢,rB,rA,yA), A is able to ensure
that B received rA and knows uB and b1. Thus, A is
able to ensure that B can compute the session key
CK.

Security analysis—Let us discuss the security
properties described in Section 1 as follows.

1. Known-key security. If the session key CK is
disclosed, an adversary is unable to obtain
the value ga1b1 because it is protected by a
hash function. Even though ga1b1 is disclosed,
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Step A B 

0 
qR Zaa Œ21,

pgu a
A mod1=

pggr aa
A mod21 -◊=

qR Zbb Œ21,

pgu b
B mod1=

pggr bb
B mod21 -◊=

1 ==> ),( AA Ir ==>

2 ),,,( BABBB yrruhe =
qxebs BBB mod2 ◊-=

),( 1buEc BBB =
3 <== ),,,,( BBBBB Icser <==

4 pygru BB e
B

s
BB mod' ◊◊=

),,,'(? BABBB yrruhe =
),,'( BAB rruhV =

),,,( ABAAA yrruhe =
qxeas AAA mod2 -=

5 ==> ),,,,,,( ABBAAA IcrrseV ==>

6 )mod)'(( 1 puhCK a
B= )(),( 1 BBB cDbu =

),,(? BAB rruhV =
pygru AA e

A
s

AA mod' ◊◊=
),,,'(? ABAAA yrruhe =

)mod)'(( 1 puhCK b
A=

Figure 1. Improved authenticated key agreement protocol (Improved AKAP)



the protocol may also withstand the known-
key attack, this is because a1 and b1 are
selected randomly in each session. Thus,
knowing ga1b1 is no value to deriving the new
session keys in future sessions.

2. Forward secrecy. If both secret keys of A and B
are disclosed, the adversary is unable to
compute a1 and b1 from sA or sB because
neither sA nor sB include the values. Suppose
that the adversary directly tries to find a1 and
b1 from uA¢ and uB¢, respectively. This is equiv-
alent to solving the discrete logarithm
problem.11 That is, the adversary knows both
secret keys of A and B, but is unable to derive
any old session keys established by the two
principals.

3. Key-compromise impersonation. Suppose that
the secret key of B is disclosed. An adversary
that knows this secret key tries to imperson-
ate some entity A to B. Impersonating A
requires computing the signature message
(rA,eA,sA) using the secret key xA of A. In this
case impersonating A to B is impossible.
Therefore, the proposed protocol can with-
stand the key-compromise impersonation
attack.

4. Unknown key-share. Because this protocol pro-
vides the implicit key confirmation property,
it can withstand the unknown key-share
attack.19

—4.2. New Authenticated Key
Agreement Protocol—

In this subsection, we propose a new authenti-
cated key agreement protocol. The initialization is
the same as that of the improved protocol. The
new authenticated key agreement protocol (New-
AKAP) is depicted in Figure 2. The detailed steps
are presented as follows.

Step 0. The client A selects a random number 
a Œ Zq, and computes rA = ga mod p. The
server B also selects a random number,
b Œ Zq, and computes rB = gb mod p, sB =
b + xB ·h(rB,yB) mod q and MB = g sB mod
p.

Step 1. A sends IA to B.
Step 2. B computes cB = EB(rB,MB,sB), where EB(·)

is a symmetric encryption function of B

and DB(·) is the corresponding decryp-
tion function. And B keeps the master
key K securely and uses h(K,t) as the
secret key of EB(·), where t is changed
every certain period of time.

Step 3. B sends rB, cB and IB to A.
Step 4. A computes MB¢ = rB ·yB

h(rB ,yB) mod p.
Then, A computes the following:

Step 5. A sends V, TA, rA, e, cB and IA to B.
Step 6. B recovers (rB,MB,sB) = DB(cB) and checks

if V = h(MB,rA,rB,yA). If it does not hold,
B terminates the execution. B computes
MA¢ = rA ·yA

V mod p and checks if e =
h(MA¢,rA). If it does not hold, B terminates
the execution. Otherwise, B computes
K = (MA¢ )sB mod p and checks if TA =
h(rA,rB,K). Finally, B computes TB =
h(rB,rA,K).

Step 7. B sends TB to A.
Step 8. A checks TB = h(rB,rA,K). Then, A com-

putes the session key CK = h(K). B also
computes the session key CK = h(K).

Note that both A and B may obtain the session
key CK since K = (MB¢)sA mod p = gsAsB mod p =
(MA¢)sB mod p. Moreover, B checks the equation 
TA = h(rA,rB,K) in Step 7 and A checks the equation
TB = h(rB,rA,K) in Step 8, which may provide the
security goal of explicit key confirmation.

Security analysis—In the following, we discuss
our new protocol and how to hold the security
properties described in Section 1.

1. Known-key security. If the session key CK is
disclosed, an adversary is unable to obtain
the value K because it is protected by a hash
function. Suppose that the adversary has
obtained a value K1 established between A
and B. Since K1 = (MB1¢ )sA1 mod p = gsA1sB1 mod
p = (MA1¢ )sB1 mod p, we have

T h r r KA A B= ( , , )

K M pB
sA= ¢( ) mod

e h M rA A= ( , )

M g pA
sA= mod  

s a x V qA A= + ◊   mod

V h M r r yB A B A= ¢( ), , ,
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Suppose that there is another value K2 estab-
lished by A and B. For the same reason, we
have K2 = ga2b2+xAV2b2+a2xBh(rB2,yB)+xAxBV2 h(rB2,yB) mod
p. Suppose that the adversary knows K1, but
is unable to compute sA or sB because this is
equivalent to solving the discrete logarithm
problem, and the adversary also obtains no

K g p

g p

g p

s s

a x V b x h r y

a b x V b a x h r y x x V h r y

A B

A B B B

A B B B A B B B

1
1 1

1 1 1 1 1 1

1 1 1 1 1 1 1 1

=
=
=

+( ) + ( )( )

+ + ( )+ ( )

mod

mod

mod

,

, ,

information (such as, a1b1, xAxB, xAb1 and xBa1)
from K1. Certainly, the adversary does not
find another session key K2 from K1. There-
fore, the proposed protocol can withstand the
known-key attack.

2. Forward secrecy. If both secret keys of A and B
are disclosed, the adversary tries to find sA or
sB and then computes K = (MB¢ )sA mod p or 
K = (MA¢)sB mod p. However, to find sA or sB

you must derive a and b from rA or rB, respec-
tively. In this case, this will be equivalent to
solving the discrete logarithm problem.
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Step A B 

0 
qR Za Œ

pgr a
A mod=

qR Zb Œ

pgr b
B mod=

qyrhxbs BBBB mod),(◊+=
pgM Bs

B mod=
1 ==> )( AI ==> 

2 ),,( BBBBB sMrEc =

3 <== ),,( BBB Icr <==

4 pyrM BB yrh
BBB mod' ),(◊=

),,,'( ABAB yrrMhV =
qVxas AA mod?+=

pgM As
A mod=

),( AA rMhe =
pMK As

B mod)'(=
),,( KrrhT BAA =

5 ==> ),,,,,( ABAA IcTeVr ==>

6 )(),,( BBBBB cDsMr =
),,,(? ABAB yrrMhV =

pyrM V
AAA mod' ◊=

),'(? AA rMhe =
pMK Bs

A mod)'(=
),,(? KrrhT BAA =

),,( KrrhT ABB =
7 <== )( BT <== 

8 ),,(? KrrhT ABB =
)(KhCK =

)(KhCK =

Figure 2. New authenticated key agreement protocol (New AKAP)



Therefore, the proposed protocol provides
forward secrecy.

3. Key-compromise impersonation. Suppose that
the secret key of B is disclosed. An adversary
that knows this secret key tries to imperson-
ate some entity A to B. Impersonating A
requires computing sA that must be computed
using the secret key xA of A. In this case
impersonating A to B is impossible. There-
fore, the proposed protocol can withstand the
key-compromise impersonation attack.

4. Unknown key-share. Because this protocol pro-
vides the explicit key confirmation property,
it can withstand the unknown key-share
attack.14

5. Discussion and Performance
Comparisons

In this section, we discuss the proposed proto-
cols on how to resist the DoS attack. Performance
comparisons between the proposed protocols and
the Hirose–Matsuura protocol are presented.

First, the storage-exhaustion attack is consid-
ered. In the improved protocol, the values
(IA,rA,uB,b1) are the connection state. Since uB and b1

are encrypted and transmitted to the client A, then
A forwards these values to B in Step 5. Thus, 
the values uB and b1 need not be maintained by the
server B. Therefore, this protocol can withstand the
storage-exhaustion attack. By checking if V =
h(uB,rA,rB) in Step 6, B can confirm that rA and rB

are used to compute the correct uB because of 
eB = h(uB,rB,rA,yB) and uB = rB ·gsB ·yA

eB. The above
technique is called the stateless connection for the
server.

As for the new proposed protocol, we also adopt
the same technique. The values sB and rB are the
connection state. Because sB and rB are encrypted
and transmitted to the client A, then A forwards
these to B in Step 5, in this case the values sB and
rB need not be kept by the server B. Therefore, 
the new protocol can withstand the storage-
exhaustion attack. By checking if V = h(MB,rA,rB,yA)
in Step 6, B can confirm that B has computed the
correct MB.

In the following, let us consider the CPU-
exhaustion attack, in which the server need not
keep the connection state. The computation cost of
modular exponentiations is considered as the

main factor because it is a time-consuming com-
putation. Three kinds of requests to a server are
analyzed. One is a valid request. Another is an
invalid request with a last message, which is called
a minor invalid request. The other is an invalid
request without a final message. We call it a 
major invalid request, that is, the client sends the
first message to the server to perform the CPU-
exhaustion attack.

T he computation cost of modular
exponentiations is considered as the

main factor because it is a time-consuming
computation.

In our improved protocol, computing uB and rB

in Step 0 requires two modular exponentiations
and it is able to be pre-computed. That is, it can be
computed off-line. When the client has computed
a valid uB¢, they are able to compute the correct V
in Step 4. Thus, the client sends the messages
(V,eA,sA,rA,rB,cB,IA) to the server in Step 5. Therefore,
when the client spends two modular exponentia-
tions to compute the correct V, the checking for 
V = h(uB,rA,rB) to the server is valid. Then, the
server must compute uA¢ = rA ·gsA ·yA

eA mod p that
requires two modular exponentiations. If the client
is a legal client, the server can compute the correct
uA¢. Then, the checking for eA = h(uA¢,rA,rB,yA) is valid
and the server must compute CK = h((uA¢)b1 mod p)
that requires one modular exponentiation. Finally,
we summarize the above descriptions as follows.
In a valid request, it requires five modular expo-
nentiations to the server. In a major invalid
request, a malicious client only sends (rA,IA) to the
server, then two modular exponentiations are
required to compute uB and rB to the server. For a
minor invalid request, a malicious client computes
the correct V and sends it to the server, four
modular exponentiations are required. In addi-
tion, considering the off-line pre-computation, the
required modular exponentiations are three, two
and zero for the valid request, the minor invalid
request and the major invalid request, respectively.

In our new protocol, when a client sends a
request to the server, the server requires two
modular exponentiations to compute rB and MB in
Step 0. When the client has computed MB¢ and the
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correct V in Step 4. Thus, the client enables the
server to check V = h(MB,rA,rB,yA) and compute MA¢
= rA ·yA

V mod p that requires one modular expo-
nentiation. Meanwhile, a malicious client may
compute MA = rA ·yA

V mod p for passing the check
of e = h(MA¢,rA) on the server. Thus, this enables the
server to compute K = (MA¢)sB mod p, which
requires one modular exponentiation. Finally, we
also summarize the above descriptions as follows.
In a valid request, it requires four modular expo-
nentiations to the server. In a major invalid
request, a malicious client only sends a request to
the server, then two modular exponentiations are
required to compute rB and MB to the server. For a
minor invalid request, a malicious client computes
the correct V and e, and sends these values to the
server, four modular exponentiations are required.
Note that rB and MB in Step 0 can be computed 
off-line. Therefore, considering the off-line pre-
computation, the required modular exponentia-
tions are two, two and zero for the valid request,
the minor invalid request and the major invalid
request, respectively.

The number of modular exponentiations
required by a server for three kinds of requests
among the Hirose–Matsuura protocol and our 
proposed protocols is given in Table 1. Table 2 
presents the number of on-line modular 
exponentiations required by a server and a client
for three kinds of requests. Obviously, our pro-
posed protocols have better performance than the

Hirose–Matsuura protocol for withstanding the
CPU-exhaustion attack. Both the Hirose–Matsuura
protocol and the improved protocol provide the
property of implicit key confirmation with requir-
ing three communication steps. Although the new
proposed protocol requires four communication
steps, this protocol provides explicit key confir-
mation and the computation cost can be further
reduced.

From Table 2, we know that the computation
cost on the server side is less than or equal to that
on the client side. If a client with limited resources
wants to deny a powerful server, the attack cannot
succeed. When a large number of clients simulta-
neously launch thousands of requests at the target
server, this attack actually is difficult to withstand.
A notable example is the Yahoo and Amazon web
sites attacked by a large number of compromised
agent clients in February 2000. This attack crippled
their services. The proposed protocols cannot fully
disallow a DoS/DDoS attack, but they can reduce
the effect of such an attack and thus make it more
difficult to succeed. Our protocols increase the
capability for resisting this attack. A server
requires some resources to provide services for
legitimate users including network connectivity
between users and the server, server memory
space and CPU time. DoS/DDoS attacks have
many types: consumption of network bandwidth,
exhaustion of server resources, and configuration
information destruction. Here, we address only
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Request\Protocol HM-AKAP Improved AKAP New AKAP

Valid request 6 5 4
Minor invalid request 5 4 4
Major invalid request 2 2 2
Communication steps 3 3 4
Key confirmation Weak Weak Strong

Table 1. The number of modular exponentiations required for a server for three kinds of requests,
between the Hirose–Matsuura protocol and our proposed protocols

Request\Protocol HM-AKAP Improved AKAP New AKAP

Client Server Client Server Client Server

Valid request 4 4 3 3 3 2
Minor invalid request 3 3 2 2 2 2
Major invalid request 0 0 0 0 0 0

Table 2. The number of on-line modular exponentiations required for a server and a client for three
kinds of requests



the resource-exhaustion problem occurring in
authentication and key agreement protocols. For
defenses against DoS/DDoS attacks, many pre-
vention and detection mechanisms must also be
involved in the system, such as router filters.

6. Conclusions
We have proposed two authenticated key agree-

ment protocols resistant to a denial-of-service
attack. Although the proposed protocols cannot
fully resist a DoS/DDos attack, both protocols
reduce the effect of such an attack and thus make
it more difficult to succeed. By reducing the com-
putation cost on the server side relative to the
client side and using the stateless connection tech-
nique, both proposed protocols are able to simul-
taneously resist both the CPU-exhaustion attack
and the storage-exhaustion attack. One is an
improved protocol on the Hirose–Matsuura key
agreement protocol. The proposed protocol
reduces the computation cost compared with the
Hirose–Matsuura protocol. The other new proto-
col provides explicit key confirmation and further
reduces the computation cost. Our proposed pro-
tocols are efficient in resisting the CPU-exhaustion
attack. Several design principles resistant to a DoS
attack were also presented for designing an
authenticated key agreement protocol or authenti-
cation protocol. These design principles increase
the system’s capability to resist DoS attacks.
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