
A F r a m e w o r k for D i s t r i b u t e d A u t h o r i z a t i o n *
(Extended Abstract)

T h o m a s Y . C . W o o S i m o n S. L a m

D e p a r t m e n t of C o m p u t e r S c i en ces

T h e U n i v e r s i t y of T e x a s a t A u s t i n

A u s t i n , T e x a s 78712-1188

1 I n t r o d u c t i o n

Security is an important concern in the design and
implementation of many services. Typical security
considerations include the following (among others):
(1) only authorized clients can obtain service; (2)
proper charges are levied on services performed; and
(3) correct records are kept for all services requested
and delivered. These considerations give rise to the
following problems: authentication, authorization, ac-
counting and auditing.

Authentication is the most basic, as well as the
most studied among the four problems. Much work
has recently been done on authentication [1, 3, 4, 10].
Its main issues are fairly well-understood. In fact, sev-
eral implementations of distributed authentication are
available, e.g., Kerberos from MIT [2, 8] (which has
also been integrated as part of the OSF DCE Security
Service [7]), SPX [9] from DEC, and KryptoKnight [5]
from IBM.

On the other hand, issues of authorization, ac-
counting and auditing have remained relatively unex-
plored. In this paper, we focus on distributed autho-
rization. We examine the major issues involved and
propose a framework for constructing a distributed
authorization service. Our framework has two central
ideas, namely, (1) a language-based approach (called
generalized access control list or GACL in short) for

*Resea rch s u p p o r t e d in pa r t by NSA C o m p u t e r Secur i ty
Univers i ty Resea r ch P r o g r a m u n d e r con t r ac t no. M D A 904-92-
C-5150 a n d by Na t iona l Science F o u n d a t i o n g r a n t no. NCR-
9004464.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice end the
title of the publication end its date appear, end notice is given
that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

1st ConE- Computer & Comm. Security '93-11/93 -VA,USA
© 1993 ACM 0-89791-629-8/93/0011...$1.50

specifying authorizations; and (2) authenticated del-
egation. GACL is a significant extension of ordinary
ACL. In particular, it provides constructs for explic-
itly stating inheritance and defaults. Authenticated
delegation is not new. For example, it has been dis-
cussed in one form or another in [3, 4, 6]. Most of
these works, with the exception of [6], are focused on
the authentication aspect. Our study of authenticated
delegation is for authorization. Our idea is similar to
the notion of proxy in [6]. The framework is the result
of our a t tempt in exploring the theory and practice of
constructing a distributed authorization service which
parallels existing distributed authentication services.
Since our focus is on authorization, we will discuss ac-
counting and auditing issues only to the extent that
they are relevant to authorization.

Due t o length limitation, we have omitted most
of the details (e.g., the precise syntax and semantics
of the language GACL, detailed specifications of pro-
tocols); we plan to present them together with our
implementation experience in a separate forthcoming
paper.

2 D i s t r i b u t e d
S e r v i c e

A u t h o r i z a t i o n

In the following, we will refer to a service that a client
would ultimately like to obtain as an end service; and
a server implementing such a service as an end server. 1

Our research aims at abstracting and separating
out the authorization functions as a distributed "core"
service, which performs authorization on behalf of end
servers. A client desiring service from an end server

1This t e rmino logy is a d a p t e d f rom [6], where t he n o t i o n of
an end se rver is def ined in t he c o n t e x t of a proxy, a n d is m u c h
more specific. Our no t i on of an end se rver is in fo rmal , a n d is
i n t e n d e d m a i n l y for d i f fe ren t ia t ing use r -o r i en t ed services f rom
sys t em-o r i en t ed services.

112

must first contact an authorization server (and pos-
sibly an authenticat ion server before that) to obtain
authorization.

Two key problems need to be addressed in con-
structing a distributed authorization service:

• Representation problem - - The commonalit ies in
authorization requirements of end servers should
be identified, and an appropriate representation
abstraction designed to capture these common-
alities. In our research, we adopt a language ap-
proach. Our specification language GACL can be
used to specify most commonly encountered au-
thorization requirements, and efficient algorithms
can be constructed for their evaluation.

• Protocol design problem - - To offioad authoriza-
tion from end servers to authorization servers, se-
cure protocols are needed for interactions among
clients, authorization servers and end servers.
These protocols make transparent the decoupling
of authorization services from end services.

In the next section, we describe two key concepts
underlying our framework designed to address the
above problems. Then, in Section 4, we provide a
high-level overview of our framework for distributed
authorization.

3 Two Key Concepts

T e r m i n o l o g y . To differentiate between our lan-
guage of generalized access control list from a partic-
ular generalized access control list, we will refer to the
former as GACL and the latter as "gacl". A similar
convention (acl and ACL) is adopted in referring to
ordinary access control lists. 1:3

3 . 1 I n f o r m a l I n t r o d u c t i o n t o G A C L

ACL has long been used for specifying authorization
requirements. An acl is typically associated with an
object and consists of a list of pairs; each pair is made
up of a subject identifier and a set of access rights. A
subject s is granted access r to object o if and only if
the acl associated with o contains a pair (s, R) such
that r E R. Denial is implicit, i.e., it is implied by the
absence of positive authorization in the list. As an
example, consider the following acl for a file f: (Alice
and Bob are individuals while Dept is a group)

f : (Alice, {read, write}), (Bob, {read}), (Dept, {write})

This acl specifies that Alice can be granted read and
write accesses to f, and denied any other access to f.
Similarly, Bob only has read access while all members
in group Dept only have write access.

The key advantage of ACL is its straightforward
semantics which is easy to understand. However, it
is not very expressive. Several extensions have been
proposed, e.g., allowing explicit negative authoriza-
tions. Most of these extensions are, however, ad-hoc
and have often been introduced without a well-defined
semantics.

We believe tha t ACL is the right abstraction to
use in an authorization service. However, it must be
extended to be effective. To this end, we propose the
GACL language. GACL is much more expressive than
ordinary ACL. The main features of GACL include the
following:

* It provides constructs tha t can express in a
straightforward way most commonly encountered
authorization requirements. For example, the
structural properties, closure, inheritance and de-
faults, identified in [11], can be directly expressed
in GACL.

• It allows incomplete authorizations. Tha t is, it is
possible that for some request, neither grant nor
denial can be determined. A failure is returned
in this case. This is preferred over the "denial
by default" style of authorization because a fail-
ure may suggest an error in a specification. On
the other hand, the language allows an authoriza-
tion adminis t ra tor to explicitly specify a catch-all
"denial by default" if so desired.

• It has an implementat ion independent semantics,
thus allowing implementat ions of varied complex-
ity and permit t ing interoperabili ty across differ-
ent authorization servers.

• It provides a declaration section tha t gives an au-
thorization adminis t ra tor additional flexibility in
expressing authorization requirements.

GACL can be viewed as a practical "approxima-
tion" of the logical language of policy base introduced
in [11]. In what follows, we give an informal intro-
duction to GACL by examples. This hopefully would
provide sufficient background for discussions on the
architectural and protocol aspects of our framework
in Section 4.

An example is specified using GACL in Figure 1.
Each gacl is labeled by an object name and consists
of two parts: (1) a declaration par t identified by the

113

P.exe declare
list

P.doc declare
list

P.src declare
list

ordered
([Alice,Bob],[-execute]),
([Dept],[execute]),
highload :=~ ([*],[--execute]),
inherit P.src::([*],[write])
anonymous
P.exe::([_x],[execute]) =~ ([-x],[read]),
([Dept],[-write]),
always inher i t Doc::([*],[-read]),
d e m a n d inher i t Doc::([*],[write])

([Research] ,[read ,write]),
([-Dept],[-write])

Doc declare ordered
list ([Deptl,[read]),

([DocSys ^ Research],[*]),
default::([*],[-*])

Figure 1: Specification of an Example using GACL

keyword dec la re ; and (2) a list part identified by the
keyword list.

The declaration part contains a (possibly empty)
list of predefined keywords that provide information
for interpreting the gacl. In this paper, we discuss in
detail only two such keywords: "ordered" and "anony-
mous". An "ordered" declaration specifies that the
list part of the gacl is an ordered list. Tha t is, in deter-
mining authorization, its entries should be examined
in a sequential order starting from the first to the last.
By default, a gacl is interpreted as "unordered". For
an unordered gacl, all entries in its list part should
be examined "together" in making an authorization
determination. This would be made clearer as we ex-
amine the example more closely below.

The list part contains a list of entries, some of which
resemble those of ordinary acl's, while others are new.
We informally explain their meanings below using the
example in Figure 1.

A n E x a m p l e

Consider a set of objects {P.exe, P.doc, P.src, Doc}.
P.exe, P.doc and P.src together constitute a software
package with P.exe being the executable, P.doc the
documentation and P.src the source. Doc is a central-
ized documentation control system in which P.doc is a
part. Alice and Bob are individual users while Research
and Dept are groups. DocSys is a server responsible for
maintaining the documentation control system (e.g.,
performing version control). Though DocSys is not
an actual user, it is considered a user in our frame-
work. We consider only three types of access, namely,

read, write and execute, highload is a system pred-
icate whose (boolean) value is continuously updated
by some system component that monitors the load of
the system. For brevity, in the following, we refer
to an entry by its position in the list. For example,
with respect to gacl P.src, entry 2 refers to the entry
([-Dept],[-write]).

Consider gacl P.exe in Figure 1. Entries 1 and 2
are similar to those in ordinary ACL. Entry 1 spec-
ifies that both Alice and Bob are not permit ted to
execute P.exe, while entry 2 specifies that members
of group Dept are allowed to execute P.exe. Entry 3
specifies that if the value of highload is true, then no
subject is allowed to execute P.exe. (* stands for all
subjects.) Entry 4 specifies that any subject who can
write P.sr¢ can inherit the same access (i.e., write) to
P.exe. Since "ordered" is declared, these entries should
be examined in order from entries 1 to 4 in determin-
ing authorization. For example, Alice will be denied
execute right for P.exe even if she belongs to Dept or
has write access to P.src.

Consider gacl P.doc in Figure 1. Entry 1 specifies
that any subject who has execute right for P.exe can
also read P.doc. (_x is a variable that can be instanti-
ated to any subject.) Entry 2 specifies that members
of Dept cannot write P.doc. Entry 3 specifies that
any subject who is denied read access to Doe will in-
herit the same denial to P.doc. Entry 4 specifies that
any subject who has write access to Doc can inherit
on demand the same access to P.doc. Tha t is, a de-
mand inheritance is activated only if no other write
authorization has been specified in other entries. For
example, members of Dept would not be able to inherit
their write access to Doe (even if they do have it) be-
cause of entry 2. Note that gacl P.doc is unordered,
thus its entries must be considered together in mak-
ing a determination. For example, if Alice has execute
right to P.exe (cf. entry 1) but is denied read access
to Doe (cf. entry 3), then a read request from Alice
for P.doc would generate an error as entries 1 and 3
together specify contradictory read authorizations for
Alice.

The "anonymous" declaration does not affect the
semantics of authorization. It indicates that an end
server is willing to accept authorizations certified by
an authorization server even without precise knowl-
edge of the client making the request. For example, if
a client other than Alice or Bob presents itself only as
a member of Dept without saying who it is, it will still
be acceptable to the end server and be granted read
access.

114

Consider gacl P.src in Figure 1. Entry 1 specifies
that members of Research can read and write P.src.
Entry 2 specifies tha t any subject not belonging to
Dept is denied write access to P.src. Again, gacl P.src
is unordered. Thus a write request for P.src from any
member of Research who is outside of Dept would gen-
erate an error.

Consider gacl Doc in Figure 1. Entry 1 specifies
that all members of Dept have read access to Doc. En-
try 2 illustrates authorizations for compound subjects.
A compound subject can informally be understood as a
subject who has authori ty to act as each of its compo-
nent subjects. Thus, entry 2 specifies that any subject
who has authori ty to act both as DocSys and as a
member of Research can be granted all accesses to
Doe. Typically, a compound subject is constructed by
delegation. For example, a member of Research who
has obtained delegation from DocSys to act on be-
half of DocSys is an instance of the compound subject
DocSys A Research. Entry 3 specifies that by default,
every subject should be denied all accesses. Since "or-
dered" is declared, this default serves as a negative
catch-all, and provides the "denial by default" seman-
tics of ordinary ACL. Defaults are typically used in an
unordered gacl; its activation is then similar to that
of demand inheritance. For an ordered gacl, the key-
word d e f a u l t is optional; it serves as a comment . For
example, the semantics of gacl Doc is unchanged if the
d e f a u l t modifier is dropped from entry 3.

3 . 2 A u t h e n t i c a t e d D e l e g a t i o n

The basic idea of an authenticated delegation is fairly
straightforward. Consider two processes P and Q. Af-
ter performing mutual authentication, P and Q share
a secret channel k. 2 If P wants to delegate to Q, it
can generate a new secret key kd and send it to Q
via channel k. Since channel k is integrity-protected
and secret, only Q can receive kd. Thus, any mes-
sage later received by P that has been encrypted by
kd must have come from Q, and can be accepted by
P as according to the delegation.

Indeed, Q can further delegate to another process R
by generating a new delegation key ka and providing
R with k~ and a delegation certificate. A delegation
certificate is of the form

ccrt = {ka, T, L, other-info}k~

where T is a t imes tamp and L a lifetime. If cert is
presented to P, P can easily verify (by the encryption

2For simplicity, we use the session key dis t r ibuted in the
mu tua l au thent ica t ion to refer to the channel.

kd) that it has been issued by its delegate Q. And
R can further prove tha t it is the legit imate "owner"
of cert by demonstrat ing its knowledge of ka using
an authenticator of the form {T~}ka, where T ~ is a
t imestamp.

In our framework, authenticated delegation is used
in two protocols: (1) In the contracting protocol be-
tween an end server and an authorization server. This
allows the delegation of authorization function from
an end server to an authorization server. (2) In the
protocol between a client and an authorization server.
This provides the client with the authori ty to present
its request to the desired end server. We explain both
uses in greater details in Subsection 4.2.

A similar scheme but with the name proxy is used
in [6].

4 O v e r v i e w of Our F r a m e w o r k

4 . 1 A r c h i t e c t u r e

Figure 2 shows the architecture of our framework. Be-
low, we give a functional description of the various
servers in the figure. An operat ional description of
these servers is provided in Subsection 4.2.

Service Locator - - A service locator assists clients
in locating servers implementing a particular ser-
vice. A service locator obtains such information
either statically from some configuration file or
dynamically from registration messages sent out
by active servers. A service locator functions in
a manner similar to a name server 3 or a remote
procedures registry. It responds to a client's re-
quest with a list of end servers that implement
the requested service, and possibly also a list of
authorization servers for the end servers (for end
servers that have elected to offioad their autho-
rization functions).

Authentication server - - An authentication
server performs two basic functions: (1) To au-
thenticate users during their initial sign-on and
supply them with an initial set of credentials. (2)
To enable mutual authentication between clients
and servers. We note that all communications
should be authenticated, including those between
clients and servers (e.g., clients and group servers,

3Indeed, it can be easily implemented as pa r t of an exist-
ing name server mechan i sm (e.g., DNS) by including addit ional
forms of r e s o u r c e records .

115

Authen-
tication
Server

Service
Locator

Group
Server

Autho-
rization
Server

System
Monitor

r J I I I

Figure 2: Distributed Authorization Framework

clients and authorization servers), and those be-
tween servers (e.g., end servers and authoriza-
tion servers, system monitors and authorization
servers).

• Authorization server - - An authorization server
performs authorization on behalf of an end server.
Each end server can elect to offioad its authoriza-
tion to an authorization server. To do so, it needs
to contract an available authorization server for
this purpose. This requires the use of a contract-
ing protocol. We will say more about this protocol
in the next subsection. An authorization server
hands out authorization certificates to authorized
clients. These certificates are to be forwarded by
clients to end servers along with their requests.

of distributed computation. Rather, if a system
predicate is stable, then the monitor would even-
tually return its correct value.

We note that the above servers are only logically
disjoint, they could easily be implemented as an inte-
grated server or located on the same machine. To en-
hance efficiency, these servers can also be distributed 4
and/or replicated, s These servers are assumed to be
trusted. For example, a group server is trusted to
maintain and hand out correct membership informa-
tion. A standard technique to ensure such trustwor-
thiness is to implement these servers on dedicated
machines that are physically secure (cf. Kerberos
[2, 8]).

• Group server - - A group server maintains and
provides group membership information. From
the perspective of authorization, its main func-
tion is to hand out two types of certificates:
membership and nonmembership certificates. The
former asserts that a client belongs to a partic-
ular group while the latter asserts the opposite.
These certificates are requested by clients, and
are to be forwarded to the authorization server
together with their requests.

• System monitor - - A system monitor tracks the
values of system predicates. Typically, this is
done by the monitor as well as a set of pro-
cesses executing a distributed algorithm. Such a
system monitor, however, cannot be expected to
return the precise value of a system predicate at
a particular time due to the asynchronous nature

4 . 2 O p e r a t i o n a n d P r o t o c o l s

In this section, we describe operational aspects of our
framework, as well as the protocols needed in the
framework. Due to length limitation, we will discuss
just the the key ideas and omit details such as message
format, file format and encryption/decryption issues.

When an end server E (who has elected to of_
fload its authorization) starts up, it locates (possibly
through a service locator) and contracts an autho-
rization server A using a contracting protocol which
performs several functions:

4This refers to the parti t ioning of a distr ibuted system into
subsystems and the assignment of distinct servers to handle the
subsystems.

5This of course would bring in a number of s tandard dis-
t r ibuted system problems (e.g., consistency) that need to be
separately addressed.

116

• It mutual ly authenticates E and A, and dis-
tr ibutes a new secret session key k for use between
E and A.

• It establishes a delegation key kd between E and
A. The key kd will be used by A to sign autho-
rization certificates.

• It transfers an authorization specification spec
from E to A. spec contains a specification of au-
thorization requirements written in GACL, and
will be used by A to determine authorization.
The integrity of spec is protected by signing it
with the session key k. 6

Upon successful contracting, E notifies the service
locator that A is its authorization server. This allows
the service locator to direct clients of E to A first. 7

There are two basic approaches to determine autho-
rization using spec: compilation and interpretation.
Compilat ion refers to the translation of spec into some
form of executable specification that can be directly
activated in making authorization decision. Interpre-
tation refers to the use of a fixed algorithm to examine
spec each t ime an authorization is to be determined.
Compilat ion is preferred if spec is relatively static
(e.g., for authorization of fixed system resources like
printers) while interpretation is preferred otherwise.
A hybrid of these alternatives is possible. For exam-
ple, spec can first be translated into some intermediate
form which can then be interpreted, s

Before contacting E, a client C contacts A to obtain
the proper authorization. An authorization is typi-
cally in the form of an authorization certificate signed
by A using kd that contains, among other information,
an authorization key ka that is only known to C (and
A of course). C can later submit this certificate to
E to obtain the desired service. Knowledge of ka is
used by C to demonstrate to E that the authorization
certificate was indeed obtained from A.

A only issues the appropriate authorization certifi-
cate to C after it has determined from spec that C can
be granted access to E. The determination procedure
may require C to submit certain group certificates to
satisfy A, and can be iterative. Tha t is, as A examines
the entries in a particular gaol, it may request from C

6This is s im i l a r to a zone transfer in DNS, excep t t h a t au-
t ho r i z a t i on d a t a are invo lved here.

?Such r ed i r ec t ion is s imi l a r to the use of MX records for mail
exchanges in DNS. A m a j o r difference is t h a t m a i l exchanges are
respons ib le for fo rward ing m a i l to the i r f inal des t ina t ions , while
a u t h o r i z a t i o n servers do not forward the i r decis ions d i rec t ly to
end servers.

SIndeed, some form of p r e - c o m p i l a t i o n of spec by E before
t r ans fe r to A is a lso poss ible .

additional group certificates. 9 Indeed, C may not be
aware of the group certificates that are required until
instructed by A. 1° Hence, several message exchanges
may be necessary before an authorization can be de-
termined. We illustrate this with several examples in
the next subsection.

Caching could be used to enhance efficiency. How-
ever, caching and the related issue of certificate ex-
piration have correctness implications. For example,
if cached group certificates are not invalidated when
group membership changes, there may be incorrect
grant or denial. Similarly, an unexpired authorization
certificate should be invalidated when the particular
authorization has been revoked. These issues are sim-
ilar to those concerning the use of capabilities, and are
beyond the scope of this paper.

4 . 3 A u t h o r i z a t i o n W a l k t h r o u g h

In this subsection, we present several authorization
scenarios. We use the example requirements specified
in Figure 1 as our authorization specification. Each
scenario corresponds to a client request. We describe
the messages exchanged in each scenario.

Let Charles be an individual who is a member of
Dept, and Diane another individual who is a member
of both Research and Dept. Also, let A denotes an
authorization server and G a group server.

Consider a request to execute P.exe from Charles.
We assume the request is accompanied by Charles's
own identity credentials. Since gacl P.exe is an or-
dered list, A examines the entries in a sequential or-
der. By checking the identity credentials of Charles, 11
A can easily determine that entry 1 does not ap-
ply. To dispose of entry 2, A requires knowledge of
Charles's membership s ta tus regarding Dept. To this
end, A sends Charles a group membership status re-
quest message regarding Dept and waits for a reply.
Upon receiving this request, Charles retrieves his group
membership certificate for Dept from his credential
cache and forward a copy to A. However, if no such
certificate can be found in the cache, Charles must re-
quest a fresh copy from G. This involves sending G
a certificate request message, together with the appro-
priate identity credentials. Authorization completes
when A receives Charles's group certificate for Dept.

9This is c o m m o n l y known as the push model . A pull mode l
is one in which A i tse l f g a t h e r s the re levan t cer t i f ica tes f rom
the group servers. However, i t a p p e a r s to be more des i rab le to
reduce the load of A so t h a t i t does no t become a bo t t l eneck ,
even a t the expense of the cl ients .

l ° T h i s is t yp ica l ly the case when n o n m e m b e r s h i p cer t i f ica tes
are needed by A.

1 a I n d i v i d u a l s w i t h different n a m e s are a s s u m e d to be d i s t inc t .

117

Alternately, the group membership status request
message from A can be saved if Charles "remembers"
to send along his group certificate for Dept together
with his initial request. This of course requires prior
knowledge on Charles's part .

We next look at an anonymous request. Suppose
Charles desires to read P.doc anonymously, 12 and iden-
tifies himself only as a member of Dept (i.e., by sending
only his group certificate for Dept along with his re-
quest, without his identity credentials). Since gad
P.doc is unordered, both entries I and 3 must be exam-
ined together to determine authorization. F o r entry
3, it is easy to see tha t no denial on read can be inher-
ited by any member of Dept z3 Thus entry 3 does not
apply. In disposing entry 1, A must be ascertained
tha t the anonymous requestor is not Alice or Bob. To
this end, A replies with a group membership status
request message regarding the group {Alice, Bob}. To
show that he is not Alice or Bob, Charles again goes to
G for a group (nonmembership) certificate regarding
the group {Alice, Bob}. With this, A completes the
authorization.

Lastly, we consider a write request to P.src from
Diane. Since gacl P.src is unordered, both entries i and
2 must be examined together. Similar to the above,
A sends two group membership status request mes-
sages to Diane, one regarding Research and the other
regarding Dept. 14 Again, Diane can simply forward
the required group certificates to complete the autho-
rization.

Alternately, if Research is always a subgroup of
Dept, then Diane needs only return her group certifi-
cate for Research together with a group relationship
certificate proving Research's subset relationship to
Dept. A can easily deduce Diane's membership regard-
ing Dept given her membership regarding Research and
the subset relationship. These group relationship cer-
tificates should be cached by A for future use.

5 C o n c l u s i o n

Distributed authorization is a relatively young area.
Many issues still need to be explored and studied. The
framework proposed in this paper is a first a t t empt at
identifying and solving some of the problems.

Due to length limitation, we have omit ted many
of the details in this paper. We are in the process

12Anonymous request to P.doc is allowed as indicated by the
declaration in its gacl.

13Specifically, entry 1 in the ordered gacl Doc grants every
member of Dept read access.

llThis can be combined in a single message for an optimized
implementation.

of implementing a prototype of our framework. Our
current effort is focused mainly on implementing an
authentication substrate upon which the authoriza-
tion framework Operates, and also on finding efficient
evaluation strategies for GACL. We plan to report our
implementat ion results in a future paper.

R e f e r e n c e s

[1] M. Gasser, A. Goldstein, C. Kaufman, and B.W.
Lampson. The Digital distributed system security
architecture. In Proceedings of the 12th National
Computer Security Conference, pages 305-319, Oc-
tober 1989.

[2] J.T. Kohl and B.C. Neuman. The Kerberos network
authentication service: Version 5 draft protocol spec-
ification. April 1993.

[3] B. Lampson, M. Abadi, M. Burrows, and T. Wobber.
Authentication in distributed systems: Theory and
practice. In Proceedings of the 13th ACM Symposium
o n Operating Systems Principles, pages 165-182, Oc-
tober 13-16 1991.

[4] J. Linn. Practical authentication for distributed com-
puting. In Proceedings of the 11th IEEE Symposium
o n Research in Security and Privacy, pages 31-40,
May 7-9 1990.

[5] R. Molva, G. Tsudik, E. Van Herreweghen, and
S. Zatti. KryptoKnight authentication and key distri-
bution system. In Proceedings of the European Sym-
posium on Research in Computer Security, Novem-
ber 23-25 1993.

[6] B.C. Neuman. Proxy-based authorization and ac-
counting for distributed systems. In Proceedings of the
13th International Conference on Distributed Com-
puting Systems, May 1993.

[7] W. Rosenberry, D. Kenny, and G. Fisher. Under-
standing DCE. O'Reilley & Associates, Inc., 1992.

[8] J.G. Steiner, C. Neuman, and J.I. Schiller. Kerberos:
An authentication service for open network systems.
In Proceedings of the USENIX Winter Conference,
pages 191-202, February 1988.

[9] 3.3. Tardo and K. Alagappan. SPX: Global authen-
tication using public key certificates. In Proceedings
of the 12th 1EEE Symposium on Research in Security
and Privacy, pages 232-244, May 20-22 1991.

[10] T.Y.C. Woo and S.S. Lam. Authentication for dis-
tributed systems. Computer, 25(1):39-52, January
1992.

[11] T.Y.C. Woo and S.S. Lam. Authorization in dis-
tributed systems: A formal approach. In Proceedings
of the 13th IEEE Symposium on Research in Security
and Privacy, pages 33-50, May 4-6 1992.

118

