
Design, Implementation and Performance Evaluation of IP-VPN

Jin-Cherng Lin , Ching-Tien Chang and Wei-Tao Chung

ABSTRACT

Network security has always been a significant

issue, but a recognized priority today due to the
popular of internet. The issue is not if security should

be implemented on a network; rather, the question to
ask is if security has been implemented properly and

the interoperability with today’s network architecture.

Although there are various ways to perform a secure
network environment, but the most popular and the

most progressive network security mechanism is

Security Architecture for IP (IPSec), offered by IETF
(Internet Engineering Task Force).

In this paper, we will discuss the problems when

combine IPSec into current TCP/IP module by
porting an IPSec shareware (FreeS/WAN) into a

router. Finally, in order to understand the impact on

router’s performance when using various services
and hash/encryption algorithms provided by IPSec,

we testing the throughput of the router before and

after applying IPSec.

1. Introduction

Two major elements are necessary to construct a

VPN: a tunneling protocol and a means to

authenticate that tunnel origin. Tunneling is a method

for sending data packets securely over the Internet or

other public network [Youn00]. The most popular

VPN protocols is IPSec (Internet Protocol Security)

currently. IPSec is a collection of protocols,

authentication and encryption mechanisms. It is an

extension to the standard IP protocols. In addition, the

IPSec packet may also have an authentication header,

which authenticates the validity of the entire IPSec

packet. This enables the receiver to verify that the

packet has not been modified en route [Youn00].

IPSec is a Layer 3 protocol standard designed as

an end-to-end mechanism for ensuring data security

in IP based communications. IPSec allows IP

payloads to be encrypted and encapsulated in an IP

header for secure transfer across the Internet (or a

corporate IP inter-network) [Youn00].

2. IPSec Implementation

2.1 The Architecture of IPSec Software

Module

Our IPSec module interfaces to the host’s IP

protocol stack are on IP packet basis. It provides a set

of APIs to interface with key management protocols

such as Internet Key Exchange (IKE) mechanism. It

also provides a set of APIs to configure and manage

security policies and system preferences. Generally,

as Figure 1 shows, the IPSec modules and the

modules of IKE protocol are dependent on each other.

However, it is possible to apply IPSec modules

independently. IPSec module can also be used with

another key management protocol.

Figure 1: IPSec and IKE Architecture

2.2 Implementing IPSec

The file ip_output.c contains many subroutines for

processing outgoing packets. There are three

subroutines which are directly called by upper layer

to send out the packets:

 ip_queue_xmit(): Queues a packet to be sent,

and starts the transmitter if necessary. This routine

also put the total length and computes the checksum.

 ip_build_xmit(): This subroutine is a faster way

to send ICMP and UDP packets while the packet does

not need to perform fragmentation.

 ip_build_xmit_slow(): This function is only

called by ip_build_xmit() when the packet need to be

fragmented.

In vLinux, the main receive routine in IP layer is

This work was supported in part by NSC under

Grant NSC90-2623-7-036-002- and by Tatung

University under Grant B90-1600-04

Proceedings of the17 th International Conference on Advanced Information Networking and Applications (AINA’03)
0-7695-1906-7/03 $17.00 © 2003 IEEE

ip_rcv() in ip_input.c. While receiving a packet this

routine:

1. Check the packet if it is for this host.

2. Check the packet length at least greater than the

size of IP header.

3. Check the version field in IP header.

4. Check the checksum.

5. De-fragment the packets if necessary.

6. Verify against the firewall rules (if any).

7. Process optional fields in IP header.

8. Deliver the packet to upper layer.

2.2.1 vLinux Firewall Process for Input, Output

and Forward Packets

There are three types of firewall checkings in

vLinux (kernel 2.2.14) IP layer:

 Input firewall checking,

 Forward firewall checking, and

 Output firewall checking.

The function registered for the input firewall

checking will be called immediately after receiving

the packet from lower layer. The ip_rcv() in the

vLinux IP layer functions calls call_in_firewall(),

which will call the user-defined registered input

firewall checking function. We then implement our

IPSec functions in the registered input firewall

checking function.

The forward firewall checking and output firewall

checking are processed in the same way.

2.2.2 IPSec Process for Input, Output and

Forward Packets

We define three IPSec functions:

ipsec_input_check(), ipsec_forward_check(), and

ipsec_output_check(). We use register_firewall() in

vLinux to register our IPSec processing routines (see

Figure 2 and Figure 3).

vLinux stack does not expect the user-defined

firewall checking routines to send out the packet

directly. It simply expects to receive a YES/NO return

value. However, for some kinds of reasons, we send

out the packet directly in our IPSec module and do

not use the vLinux TCP/IP stack process. We thus

return a FW_QUEUE value from our IPSec checking

routines since we do not want the vLinux TCP/IP

stack to send out the packet. Besides, when we send

the packet directly the sending routine frees the native

buffer (skbuff) and it should not be freed again in the

vLinux IP stack process after returning from our

IPSec checking routines. To avoid this double freeing

we change skbuff pointer to NULL before returning.

This necessitates some modification in the vLinux

TCP/IP stack. In the inline function kfree_skb() we

use one NULL check before freeing the memory.

Figure 2: firewall_ops structure

Figure 3: Register IPSec process

IPSec processing is not required for forwarding

packets, since all jobs are done in ipsec_input_check()

and ipsec_output_check(). So ipsec_forward_check()

is a dummy function.

3. Performance Evaluation

3.1 Testing Environment
Two VPN-routers, VPN-router(A) and

VPN-router(B), are used to build a security tunnel. A

PC, PC-2, is with FTP and HTTP servers, while

another PC, PC-1, uses FTP client and browser to

download various files from PC-2 via IPSec tunnel.

The hardware environment is configured as shown in

Figure 4. The specification of each hardware device is

shown as follows:

PC-1: CPU: PIII 850

 OS: Windows 2000 with service pack 2

 NIC: SiS 900 (NIC driver version: 1.14.1.0)

PC-2: CPU: PIII 850

 OS: Windows 2000 with service pack 2

 NIC: Intel(R) PRO/100 VE (NIC driver

version: 4.3.25.0)

 FTP server: Microsoft FTP Service Version

5.0

Proceedings of the17 th International Conference on Advanced Information Networking and Applications (AINA’03)
0-7695-1906-7/03 $17.00 © 2003 IEEE

 HTTP server: Microsoft IIS 5.0

 VPN-Router(A), VPN-Router(B):

 CPU: SAMSUNG S3C4510 (ARM7TDMI)

 OS: Vitals System Inc. vLinux kernel 2.2.14

with IPSec module

 LAN port NIC: ARM7 built-in NIC

100/10Mbps (NIC driver: vLinux built-in

driver)

 WAN port NIC: Realtek 8019AS (10BaseT)

(NIC driver: vLinux built-in driver)

Laptop: CPU: PIII 450

 OS: Windows 2000 with service pack 2

 NIC: Billionton-LNR100B2 (NIC driver

version: 5.374.303.2000)

 Packet monitor software: NAI Sniffer pro

4.5

Hub: Generic10/100 dual speed hub

Figure 4: Testing Environment

3.2 Experimental Objectives

We use FTP and HTTP protocols to perform data

download for various size files (1MB, 10MB, 100MB)

from PC-2 to PC-1 passing through VPN-router(A)

and VPN-router(B) using tunnel-mode and manual

key management method. Various security protocols

AH and ESP with various authentication and

encryption algorithms listed belows are tested to

verify their performance:

AH-MD5 AH-SHA1

ESP-NULL-MD5 ESP-NULL-SHA1

ESP-DES-NULL ESP-3DES-NULL

ESP-DES-MD5 ESP-DES-SHA1

ESP-3DES-MD5 ESP-3DES-SHA1

3.3 Experimental Data for Performance

Evaluation

We use FTP client and HTTP browser to

download file 20 times in each condition and

calculate the average throughput (Kbytes per second).

The experimental data are listed in Table 1 and Table

2.

Table 1: The average throughput of the security

gateway for various security protocol and

authentication/encryption algorithm combination

using FTP protocol.

Table 2: The average throughput of the security

gateway for various security protocol and

authentication /encryption algorithm combination

using HTTP protocol.

3.4 Data Analysis

3.4.1 Comparison of MD5 and SHA-1 [Stal99]

First, we can see the obviously different

performance between AH-MD5 and AH-SHA-1.

Because both SHA-1 and MD5 are derived from

MD4 algorithm, they are quite similar to each other.

Accordingly, their strengths and other characteristics

should be similar. We can compare the two

algorithms as belowing aspects:

 Security against brute-force attacks: The most

Proceedings of the17 th International Conference on Advanced Information Networking and Applications (AINA’03)
0-7695-1906-7/03 $17.00 © 2003 IEEE

obvious and most important difference is that the

SHA-1 digest is 32 bits longer than the MD5 digest.

Using a brute-force technique, the difficulty of

producing any message having a given message

digest is on the order of 2128 operations for MD5 and

2160 for SHA-1. Again, using a brute-force technique,

the difficulty of producing two messages having the

same message digest is on the order of 264

operations for MD5 and 280 for SHA-1. Thus,

SHA-1 is considerably stronger against brute-force

attacks.

 Security against cryptanalysis: MD5 is

vulnerable to cryptanalytic attacks discovered since

its design [RFC1321]. SHA-1 appears not to be

vulnerable to such attacks. However, little is

publicly known about the design criteria for SHA-1,

so its strength is more difficult to judge than would

otherwise be the case.

 Speed: Because both algorithms rely heavily on

addition modulo 232, both do well on a 32-bit

architecture. SHA-1 involves more steps (80 versus

64) and must process a 160-bit buffer compared to

MD5’s 128-bit buffer. Thus, SHA-1 should execute

more slowly than MD5 on the same hardware.

Because of these reasons, we can realize why

using SHA-1 digest is much slower than MD5

without respect to the security protocol being AH or

ESP.

3.4.2 Comparison of AH and ESP using the same

authentication algorithms

Nowadays some people claim to abrogate the AH

protocol, since ESP can support all the services those

AH can provides. We can see the problem from the

viewpoint of throughput. Although the AH header is

shorter than the ESP header, AH have to calculate the

digest of longer data (including new IP header field)

in the tunnel mode. In Table 1 and Table 2, we can

see clearly the AH and ESP (with null encryption)

using the same authentication algorithms to download

files to result in nearly equal throughput. It violates

the generic intuition of AH is simple such that AH

should have higher throughput than ESP.

3.4.3 Comparison of IPSec throughput via FTP

and HTTP

IPSec is working on ISO/OSI network layer 3,

this means its throughput will not be affected by

upper layer protocol and data. In other words, IPSec

protocol does not care about what its upper layer

protocols and data are. The data type of payload data

(i.e., upper layer protocols headers plus application

data) will not have any influence on IPSec’s

throughput.

We can compare the throughput data shown in

Table 1 and Table 2. The HTTP is generally slower

than FTP. The throughputs between HTTP and FTP

after applying IPSec are still keeping this gap

although they are quite close in every experimental

case.

4. Conclusion

In this article we discuss:

 how to implement IPSec module on vLinux

kernel,

 the throughput after applying IPSec, and

 the difference of the throughputs between

HTTP and FTP after applying IPSec.
Implementing IPSec on a gateway (e.g., router) is

a good solution for existing enterprise LAN network.

It is not necessary to change the original LAN

architecture. It is only to replace the original gateway

device by a VPN-gateway. All PC’s in the enterprise

LAN do not need to be changed or reconfigured. The

VPN functions are only handled on the VPN-gateway.

The PCs’ users in the enterprise do not need to have

any VPN knowledge and skill. Only one person is

involved to manage the enterprise-wide VPN

functions on the gateway. It is easy to be managed by

the system administrator. The entire enterprise utilizes

the advantage of VPN gateway, but no complex

training and costly devices/package purchase are

needed.

References

[Orti97] Sixto Ortiz Jr., “Virtual Private

Networks: Leveraging the Internet”,

IEEE Computer Magazine, pp.18-20,

Nov. 1997

[Cohe00] Reuven Cohen, "On the Cost of Virtual

Private Networks", IEEE/ACM

TRANSACTIONS ON

NETWORKING, Vol. 8(6), pp.775-784,

Dec. 2000

[Youn00] Roger Younglove, “Virtual Private

Networks-how they work”,

COMPUTING & CONTROL

ENGINEERING JOURNAL,

pp.260-262, Dec. 2000

[Venk01] R. Venkateswaran, “Virtual Private

Networks”, IEEE POTENTIALS,

pp.11-15, Feb. 2001

[Secu01] VPN Mailing Lists from

SecurityFocus.com, moderated by Tina

Bird, Counterpane Internet Security,

Inc.

[Gunt99] Manuel Günter, Torsten Braun, Ibrahim

khalil, “An Architecture for Managing

QoS-enabled VPNs over the Internet”,

IEEE Conference on Local Computer

Networks, pp.122-131, 1999

[Blac00] Uyless Black, “Internet Security

Protocols: Protecting IP Traffic”,

Prentice-Hall, Inc., New Jersey, 2001

Proceedings of the17 th International Conference on Advanced Information Networking and Applications (AINA’03)
0-7695-1906-7/03 $17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

