
Performance Analysis of Secure Web Server
Based on SSL

Xiaodong Lin1, Johnny W. Wong1, and Weidong Kou2

1 Department of Computer Science,
University of Waterloo, Waterloo, Ontario, Canada N2L 3G1

{xdlin,jwwong}@bbcr.uwaterloo.ca
2 E-Business Technology Institute,

University of Hong Kong, Pokfulam Road, Hong Kong
wdkou@eti.hku.hk

Abstract. In recent years, protocols have been developed to ensure se-
cure communications over the Internet, e.g., the secure sockets layer
(SSL) and secure electronic transaction (SET). Deployment of these pro-
tocols incurs additional resource requirements at the client and server.
This may have a negative impact on system performance. In this pa-
per, we consider a scenario where users request information pages stored
on a web server, and some of the requests require secure communica-
tion. An analytic model is developed to study the performance of a web
server based on SSL. In our model, the details of the client-server inter-
actions found in a typical SSL session are represented explicitly. Input
parameters to this model are obtained by measuring an existing SSL im-
plementation. Numerical examples on the performance characteristics of
SSL are presented.

1 Introduction

In recent years, we have witnessed a general acceptance of the Internet by bu-
sinesses and consumers. A key requirement to the success of Internet business is
secure communication. It is generally known that messages sent on the Internet
are subject to three types of security threats, namely eavesdropping, modifica-
tion, and impersonation [1]. Trusted security mechanism and protocols have been
developed to ensure secure communications over the Internet. An important se-
curity protocol is the secure sockets layer (SSL) [2,3]. It has been implemented
in all the major web browsers and in web servers like Apache [4], Lotus Domino
server [5] and IBM HTTP server [6]. Another important security protocol is
secure electronic transaction (SET) [7].

Deployment of security protocols, such as SSL and SET, incurs additional
resource requirements at the client and server. This may have a negative impact
on system performance, e.g., increased response time. Performance evaluation
of SSL, SET or other security mechanisms, has not received much attention
until recently. In [8], the performance improvement of SSL when caching of
session keys is used, is evaluated. In another study [9], performance results for a

J. Pieprzyk, E. Okamoto, and J. Seberry (Eds.): ISW 2000, LNCS 1975, pp. 249–261, 2000.
c© Springer-Verlag Berlin Heidelberg 2000



250 X. Lin, J.W. Wong, and W. Kou

transport layer security protocol are presented. That study was based on the use
of a benchmark tool SPECweb96 [10]. In addition, a performance comparison of
SSL and SET is reported in [11].

Our work is different from those in [8,9,11] in the sense that analytic mo-
deling is used to study the performance of SSL. More specifically, we consider
a scenario where users request information pages stored on a web server, and
some of the requests require secure communication. A model is developed to re-
present the details of client-server interactions during a typical SSL session. As
part of our investigation, we obtain input parameters to our model by measu-
ring an existing SSL implementation. Analytic results are then obtained; these
results are used to evaluate the performance penalty incurred by SSL. The issue
of scalability is also investigated. The advantages of our model include (i) the
effects of implementation are represented by the actual measurements and thus
the model does not have to consider implementation details, and (ii) the mean
response time results are valid for arbitrary distribution patterns of user think
time and the various service time parameters.

The rest of this paper is organized as follows. In section 2, the details of
a typical SSL session are described with a view to capturing the client-server
interactions. Our model is described in section 3. Exact analytic results for the
mean response time are derived. System measurement techniques to obtain input
parameters are also described. In section 4, numerical examples showing the
performance characteristics of a secure web server based on SSL are presented.
These examples are designed to show the impact of the number of users, the
fraction of user requests that require secure communication, the type of crypto-
graphic algorithms used, and the size of the html file retrieved, on response time
performance. Finally, section 5 contains a summary of our findings and some
concluding remarks.

2 Secure Sockets Layer Protocol Session

Secure Sockets Layer (SSL) protocol is designed to provide secure communi-
cation. It performs server authentication, and optionally client authentication.
With SSL, private information is protected through encryption, and a user is
ensured through server authentication that he/she is communicating with the
desired web site and not with some bogus web site. In addition, SSL provides
data integrity, i.e., protection against any attempt to modify the data transferred
during a communication session.

Our investigation of SSL is based on a publicly available implementation
called SSLeay [12]. This would allow us to collect measurement data that can be
used to characterize the input parameters. Our measurement experiments are
based on SSLeay version 0.6.6b, which is an implementation of SSL v2. This
version is selected because it is a stable implementation and is therefore a good
candidate to illustrate our modeling approach. Our model can easily be extended
to study the behavior of later versions of SSL (v3 and transport layer security
[13]).



Performance Analysis of Secure Web Server Based on SSL 251

For convenience, we consider the case where an SSL session is set up to
request a web page (or https). To facilitate the development of our model, we
show in Figure 1 the events and activities as seen by the web server. The SSL
session starts at the end of a user think time, which is indicated by the reception
of a TCP connection request on port 443 - the default port number assigned to
https. The web server then proceeds with setting up the TCP connection, and
this activity ends when the TCP connection is established. The web server then
waits for a “client hello” message. When such a message is received, the server
parses the message, and prepares a “server hello” message for transmission back
to the client.

Server waits for client master key message from client

Server waits for client hello message

Connection set up time at server

Server waits for http request from client

Server prepares and transmits server hello message

Server decrypts client master key, and prepares and
transmits server verify message

Server prepares and transmits http response

Server prepares and transmits server finish message

Server waits for client finish message from client

Previous SSL Session ends

TCP connection request received

TCP connection established

Client Hello message received

Server Hello message transmitted

Client master key message received

Server verify message transmitted

Client finish message received

Server finish message transmitted 

http request received

http response transmitted
(SSL session ends)

ActivityEvent Time

User think time

Fig. 1. SSL session

After the “server hello” message has been transmitted, the web server waits
for a “client master key” message from the client. Upon receiving this message,
the web server decrypts the client master key, and prepares a “server verify”



252 X. Lin, J.W. Wong, and W. Kou

message and transmits it to the client. At end of transmission, the server waits
for a “client finish” message. When this message is received, the server prepares
a “server finish” message for transmission to the client. The SSL handshake ends
when this message is transmitted.

The web server next waits for an http request from the client. Upon receiving
this request, the web server prepares an http response. When this response is
transmitted, the SSL session ends and the user starts the next think time.

Similarly, we show in Figure 2 the events and activities for the case where
secure communication is not required, i.e., a normal http request.

Connection set up time at server

User think time

Time

Server waits for http request from client

Server prepares and transmits http response

ActivityEvent

Previous session ends

TCP connection request received

TCP connection established

http request received

http response transmitted
(session ends)

Fig. 2. Normal http request

3 Performance Model and System Measurement

3.1 Performance Model

Our performance model is a closed queueing network representing N users re-
questing web pages from a web server (see Figure 3). There are two types of
requests: type 1 requires secure communication and type 2 is normal http. A
request is generated at the end of a user think time. This request is of type 1
with probability p and of type 2 with probability 1 − p.

There are two service centres: the web server and a “delay” server. The delay
server represents all web server activities while waiting for the client, and any
network delays. Each type 1 request cycles through the web server and delay
server a number of times, following the activities shown in Figure 1. As a result,



Performance Analysis of Secure Web Server Based on SSL 253

... ..
.

2

N

Delay server

Web Server

User Terminal

1

N

1

2

Fig. 3. Performance model of secure communication sessions

a type 1 request visits the web server several times, as shown by the stages of
service in Figure 4. The type 1 request also visits the delay server a number
of times, shown by the stages in Figure 5. After visiting the web server for the
last time (which corresponds to the activity “server prepares and transmits http
response”), a type 1 request is complete, i.e., the http response is returned to
the user, and the user starts the next think time. Similarly, for type 2 requests,
the stages of service at the web server and delay server are shown in Figures 6
and 7 respectively.

In general, processing of a user request requires usage of resources such as
processor, memory and database servers. For convenience, we assume that the
required resources are approximated by a number of service time parameters,
one for each of the web server or delay server stages. Furthermore, the web server
is modeled by a single server queue with processor-sharing discipline [14]. This
discipline provides fair sharing of resources among all outstanding user requests.
The user terminal is modeled as an “infinite server”, or no queueing. This is a
well-accepted model for interactive systems. The delay server is also modeled as
an “infinite server”. This assumption can be justified as follows. The time spent
by a request at the delay server has two components: processing at the client
and network delay. Each client is assumed to be running on a dedicated machine,
and hence, there is no queueing at the client. As to the network delay, we assume
that the time spent at the server machine to transmit or receive packets is small
compared to that required for SSL protocol processing, similarly for time spent
in the transport network. The no queueing assumption can therefore be used for
the network delay component also.

For our queueing network model, the input parameters are the number of
users N , the mean think time h, the fraction of user requests that require secure
communication p, and the mean service time of each stage at the web server and
delay server for each of the two types of requests (as shown in Figures 4 to 7).



254 X. Lin, J.W. Wong, and W. Kou

Server prepares and transmits server hello message

Server decrypts client master key, and prepares

and transmits server verify message

Server prepares and transmits server finish message

Server prepares and transmits HTTP response

(measured)

0.406 msec

0.480 msec

11.815 msec

0.278 msec

1.937 msec

Connection set up time at server

Mean service time
Stage of service at web server

Fig. 4. Stages of service at web server for type 1 requests

Server waits for client master key message

Server waits for client finish message

Server waits for http request

Mean service time
(measured)

2.536 msec

12.407 msec

0.472 msec

3.921 msec

Server waits for client hello message

Stage of service at delay server

Fig. 5. Stages of service at delay server for type 1 requests

Connection set up time at server

Server prepares and transmits http response

Mean service time
(measured)

0.322 msec

1.911 msec

Stage of service at web server

Fig. 6. Stages of service at web server for type 2 requests

3.2 Analytic Results

Our model belongs to the types of queueing network models analyzed in [14].
Specifically, each web server or delay server stage is represented by a seprate
customer class, and the class change feature allows us to model the customer
routing between the web server and delay server, as characterized by the orde-
ring of activities shown in Figure 1. The results from [14] are therefore directly
applicable.



Performance Analysis of Secure Web Server Based on SSL 255

Server waits for http request

Mean service time
(measured)

0.094 msec

Stage of service at delay server

Fig. 7. Stage of service at delay server for type 2 requests

For our investigation, the state description of interest is S = (n0, (n11, n12),
(n21, n22)) where n0 is the number of users in the thinking state, and n1r and
n2r are the number of type r requests at the web server and the delay server
respectively, r = 1, 2. Using the results in [14], we obtain P (S), the steady state
probability that the system is in state S. From P (S), one can readily obtain the
mean values for n0, n11, n12, n21 and n22 (denoted by n0, n11, n12, n21 and n22
respectively).

Let T r be the mean response time of type r requests, we use Little’s formula
[15] to obtain:

T 1 =
(n11 + n21)h

n0p
(1)

and

T 2 =
(n12 + n22)h

n0(1 − p)
(2)

Finally, the mean response time over all requests is

T =
(N − n0)h

n0
(3)

It should be noted that response time is measured from the beginning to end
of an SSL session (or a normal http session). It includes the delays while waiting
for the client process, and any network delays.

It should also be noted that the formulas for the mean response time (T 1,
T 2 and T ) are valid for a wide range of distributional assumptions for the think
time, and for the service times at the various web server and delay server stages.
The reason is that the steady state probability P (S) depends only on the mean
think time and the mean service times at these stages [14].

3.3 System Measurement

In this subsection, we discuss our methodology to obtain the mean service time
for each of the web server and delay server stages. We built a web server based
on SSLeay [12]. The server is written in C and compiled with gcc 2.6 with
optimization. Our experimental system consists of a Sun Ultra 10 running SunOS
5.6, which works as the web server. The client machine is a Sun SPARCstation



256 X. Lin, J.W. Wong, and W. Kou

10 running SunOS 5.5. These two machines are connected to an 100 Mbit/s
Ethernet. The required service time parameters can be determined if we know
the event times of all the events in Figures 1 and 2. This can be accomplished
if we are able to measure the time at which a message is received at the server,
and the time at which transmission of a message at the server is finished.

To measure the time at which a message is received at the server, we use
the I/O multiplexing model of Unix network I/O [16]. This model allows us to
determine exactly when data for a given message are received. We thus modify
the available SSLeay source code and place a “select” system call before every
server subroutine that attempts to receive data from client. Each time a message
is received, the event time is obtained by using the “gettimeofday” system call
which returns the current time at a resolution of microseconds.

Measuring the time at which transmission of a message at the server is finis-
hed is quite straight-forward. One simply uses the “gettimeofday” system call
to get the event time when transmission is complete.

3.4 Measurement Results

We conducted two measurement experiments to obtain values for the service time
parameters. In these experiments, we used a scenario of only one user interacting
with a web server. The html file size is 1.0 Kbyte. Public-key cryptography is
based on 512-bit RSA [17], and secret-key encryption is based on RC4 [17].

Data were collected under the condition of no other applications running
on the server and client machines. The first experiment involves SSL sessions
(or type 1 requests) only, while the second experiment is concerned only with
normal http (or type 2 requests). The measured values of mean service time at
the various web server and delay server stages are included in Figures 4 to 7.

4 Numerical Examples

For closed queueing networks, the amount of computation required to obtain
numerical results for performance measures such as mean response time may
be substantial. Efficient computational algorithms are widely available. For our
model, numerical results are obtained by using the algorithm reported in [18].

We first investigate the effect of the number of users N and the parameter
p on the mean response time over all requests. The results for p = 0.1, 0.2 and
0.3, are shown in Figure 8. The mean think time h is assumed to be 2 seconds.1

It is observed that with a larger p, there is a performance penalty (i.e., a larger
mean response time) even when N is small. The incremental mean response
time increases with N and p. The performance penalty incurred by SSL can be
explained as follows.
1 This value of h is selected such that the amount of computation is not excessive

for reasonably large values of N . For a larger h, the performance characteristics are
similar, except the system is able to support more users.



Performance Analysis of Secure Web Server Based on SSL 257

0 50 100 150 200 250 300 350 400 450 500
0

100

200

300

400

500

600

700

800

900

1000

Number of users N

M
ea

n 
re

sp
on

se
 ti

m
e 

(m
se

c)

P=0.1
P=0.2
P=0.3

Fig. 8. Mean response time over all requests

Under SSL, significant processing time is required at the web server to
decrypt the client master key because public-key cryptography is used. As shown
in Figure 4, the mean service time for this activity is 11.815 msec compared to
1.937 msec for preparing an http response. Also, in SSL, secret-key cryptography
is used when the web server prepares (i) the “server finish” message and (ii) the
http response. This would add to the service times for the SSL session. Further
delays are incurred because cryptographic hash functions are computed for all
server activities except TCP connection establishment. In addition, an SSL ses-
sion has more client-server interactions than the normal http. This is a result
of the handshake protocol required to set up the SSL session. These additional
interactions will incur delay, not only because of the processing required, but
also the need to wait for network round-trip time, and any processing required
at the client.

To further illustrate the response time performance of SSL, we plot in Figure
9 and 10 the mean response time of type 1 and type 2 requests respectively. It is
observed that an increase in p results in performance degradation for both types
of requests.

Our second set of results are concerned with the impact of increasing the
security strength on SSL performance. Consider first public-key cryptography.
The results in Figure 8 are based on measured data for an 512-bit RSA. The
longer the RSA key size, the more secure is the SSL protocol. We measured the
processing time required on a Sun Ultra 10 for three different RSA private key
sizes, and the results are shown in Table 1. Numerical results for mean response
time are then obtained for these three key sizes and for p = 0.2. These results are
shown in Figure 11. We observe that the response time performance degrades
significantly as the RSA key size increases. The reason is that RSA private
key cryptographic operation incurs a significant overhead at the web server.
The response time can be improved by using an RSA public key cryptography
accelerator that is implemented in hardware, e.g., CryptoSwift II [19].



258 X. Lin, J.W. Wong, and W. Kou

0 50 100 150 200 250 300 350 400 450 500
0

500

1000

1500

2000

2500

M
ea

n 
re

sp
on

se
 ti

m
e 

(m
se

c)

Number of users N

P=0.1
P=0.2
P=0.3

Fig. 9. Mean response time of type 1 requests

0 50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

250

300

350

Number of users N

M
ea

n 
re

sp
on

se
 ti

m
e 

(m
se

c)

P=0.1
P=0.2
P=0.3

Fig. 10. Mean response time of type 2 requests

Table 1. RSA private key cryptographic operation performance

RSA Key Size Performance

512 bits 11 msec
1024 bits 68 msec
2048 bits 481 msec

We next consider the performance impact of secret-key encryption. The re-
sults in Figure 8 are based on measured data for RC4. When a higher level of
security is required, recommended encryption algorithms include IDEA [17] and
Triple DES [17]. We measured the encryption rate on a Sun Ultra 10 for these
three algorithms, and the results are shown in Table 2. Numerical results for
mean response time are then obtained for these three cases, and for p = 0.2.



Performance Analysis of Secure Web Server Based on SSL 259

These results are shown in Figure 12. We observe that the mean response time
increases as stronger secret-key encryption algorithms are used. The increase
is mainly due to the overhead incurred by secret-key cryptographic operation
when applied to the html file. Compared to the results in Figure 11, we observe
that for the parameters under consideration, the performance penalty is small
compared to that incurred by public-key cryptography. However, the observation
may be different if the html file size is much larger. This is due to the higher
overhead incurred by secret-key cryptography, resulting in a significant increase
in the mean response time. To illustrate this point, we show in Figure 13 the
mean response time performance when the html file sizes are 1 and 2 Mbytes
instead of 1 Kbyte. Compared to the results in Figure 11, the performance pen-
alty resulting from secret-key encryption is comparable to that from public-key
cryptography.

Table 2. Performance of RC4, IDEA and Triple DES

Encryption Algorithm Encryption Speed

RC4 10568.51 Kbyte/sec
IDEA 2794.01 Kbyte/sec
Triple DES 809.23 Kbyte/sec

5 Conclusions

We have presented an analytic model for studying the performance of SSL. Our
model is based on a detailed representation of the client-server interactions re-
sulting from an SSL session. Numerical results showing the tradeoff between
security and response time performance have been obtained. These results pro-
vide useful insight into the performance characteristics of a secure web server
under a range of operating conditions.

Our analytic model is rather general because the results are valid for arbitrary
think time and arbitrary service time distributions at the web server and delay
server. In addition, our modeling approach can readily be extended to study
other secure communication protocols, e.g., SET.

Acknowledgements. This work was supported by the Natural Sciences and
Engineering Research Council of Canada. The authors would also like to thank
the anonymous reviewers for their constructive comments.



260 X. Lin, J.W. Wong, and W. Kou

0 50 100 150 200 250 300 350 400 450 500
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

4

M
ea

n 
re

sp
on

se
 ti

m
e 

(m
se

c)

Number of users N

RSA Key Size:512
RSA Key Size:1024
RSA Key Size:2048

Fig. 11. Mean response time for different RSA private key sizes

0 50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

250

300

350

400

450

M
ea

n 
re

sp
on

se
 ti

m
e 

(m
se

c)

Number of users N

RC4
IDEA
Triple DES

Fig. 12. Mean response time for different symmetric key encryption algorithms

0 50 100 150 200 250 300 350 400 450 500
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

Number of users N

M
ea

n 
re

sp
on

se
 ti

m
e 

(m
se

c)

HTML FILE SIZE:1MB
HTML FILE SIZE:2MB

Fig. 13. Mean response time for different html file sizes



Performance Analysis of Secure Web Server Based on SSL 261

References

1. Gregory B. White, Eric A. Fisch, Udo W. Pooch. Computer System and Network
Security. CRC Press, Inc., New York, 1996.

2. Kipp E.B. Hickman. SSL 2.0 Protocol Specification. February 1995.
http://www.netscape.com/eng/security/SSL 2.html

3. Alan O. Freier, Philip Karlton, Paul C. Kocher. SSL 3.0 Protocol Specification.
March 1996. http://home.netscape.com/eng/ssl3/index.html

4. Apache Server. http://www.apache.org
5. Lotus Domino Server. http://www.lotus.com/home.nsf/welcome/domino
6. IBM HTTP Server. http://www.as400.ibm.com/products/http/httpindex.htm
7. MasterCard International Incorporated, Visa International. The SET Specification

1.0, Dec. 1997. http://www.setco.org/set specifications.html
8. Arthur Goldberg, Robert Buff, Andrew Schmitt. Secure Web Server Performance

Dramatically Improved by Caching SSL Session Keys. Workshop on Internet Server
Performance, SIGMETRICS ’98, Madison, Wisconsin, June 1998.

9. George Apostolopoulos, Vinod Peris, Debanjan Saha. Transport Layer Security:
How much does it really cost? Proc. INFOCOM ’99, New York, March 1999.

10. The Standard Performance Evaluation Corporation. SPECweb96 Benchmark,
1996. http://www.spec.org/osg/web96/

11. Chris Le Tocq, Steve Young. Set Comparative Performance Analysis: Gartner
Group White Paper. http://www.setco.org/download/setco6.pdf

12. T.J. Hudson, E.A. Young. SSLeay Programmer Reference. January 1996.
http://www.psy.uq.oz.au/∼ftp/Crypto/ssl.html

13. T. Dierks, C. Allen. RFC2246: The TLS Protocol Version 1.0, January 1999.
14. F. Baskett, K.M. Chandy, R.R. Muntz, F.G. Palacios. Open, Closed and Mixed

Network of Queues with Different Classes of Customers. Journal of the ACM 22(2),
April 1975, 248-260.

15. J.D. Little. A Proof of the Queueing Formula L = λW . Operations Research 9(3),
1961, 383-387.

16. W. Richard Stevens. UNIX Network Programming, Volume 1, Second Edition:
Networking APIs: Sockets and XTI. Prentice Hall, Upper Saddle River, New Jersey,
1998.

17. A.J. Menezes, P.C. van Oorschot, S.A. Vanstone. Handbook of Applied Crypto-
graphy. CRC Press, New York, 1997.

18. J.W. Wong. Queueing Network Models for Computer Systems. Ph.D. thesis, Uni-
versity of California at Los Angeles, 1975.

19. Rainbow Technologies Company. Secure Web Server and VPN (IPSec) Accelera-
tion. http://isg.rainbow.com/index.html

20. Special Issue on Web Performance, IEEE Network 14(3), May/June 2000.
21. The Standard Performance Evaluation Corporation. SPECweb99 Benchmark,

1999. http://www.spec.org/osg/web99/
22. R. Hariharan, W. K. Ehrlich, D. Cura, P. K. Reeser. End to End Performance

Modeling of Web Server Architectures. Performance Evaluation Review 28(2) Sep-
tember 2000, 57-63.


	Introduction
	Secure Sockets Layer Protocol Session
	Performance Model and System Measurement
	Performance Model
	Analytic Results
	System Measurement
	Measurement Results

	Numerical Examples
	Conclusions

