
D.-K. Baik (Ed.): AsiaSim 2004, LNAI 3398, pp. 478�486, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Design and Implementation
of an SSL Component Based on CBD*

Eun-Ae Cho1, Young-Gab Kim1, Chang-Joo Moon2, and Doo-Kwon Baik1

1 Software System Lab. Dept. of Computer Science & Engineering,
Korea University 1, 5-ga, Anam-dong, Seongbuk-gu, Seoul, 136-701, Korea

{eacho,ygkim,baik}@software.korea.ac.kr
2 Center for Information Security Technologies (CIST),

Korea University 1, 5-ga, Anam-dong, Seongbuk-gu, Seoul, 136-701, Korea
mcjmhj@korea.ac.kr

Abstract. SSL is one of the most popular protocols used on the Internet for se-
cure communications. However SSL protocol has several problems. First, SSL
protocol brings considerable burden to the CPU utilization so that performance
and speed of the security service is lowered during encryption transaction. Sec-
ond, SSL protocol can be vulnerable for cryptanalysis due to the fixed algo-
rithm being used. Third, it causes a problem of mutual interaction with other
protocols because of the encryption export restriction policy of the U.S. Fourth,
it is difficult for developers to learn and use cryptography API for SSL. To
solve these problems, in this paper, we propose an SSL component based on
CBD. The execution of the SSL component is supported by Confidentiality and
Integrity component. It can encrypt data selectively and use various mecha-
nisms such as SEED and HAS-160. Also, it can complement the SSL protocol�s
problems and, at the same time, take advantage of component. Finally, in the
performance analysis, we present a better result than the SSL protocol as the
data size is increased.

1 Introduction
In recent years, SSL (secure socket layer) protocol has been mainly used as a security
protocol for secure communications over the Internet with OpenSSL by Eric A.
Young, JSSE (java secure socket extension) by Sun Microsystems, etc. While SSL is
the most common and widely used protocol between web browsers and web serv-
ers[1], it has several problems: First, SSL protocol brings considerable burden to the
CPU utilization so that performance of the security service in encryption transaction
is lowered because it encrypts all data which is transferred between server and cli-
ent[2][3]. Second, SSL protocol can be vulnerable for cryptanalysis due to the fixed
algorithm being used. So, developer cannot use the other mechanisms such as SEED
and HAS-160. Third, it causes a problem of mutual interaction with other protocols
due to the encryption export restriction policy of the U.S[4]. Finally, it is difficult for
developers to learn and use cryptography API (application program interface) for
SSL. Hence, we need a new method which is different from the existing one to use
SSL protocol more efficiently in design and implementation of applications.

In this paper, we propose an SSL component based on CBD (component based de-
velopment) in order to solve the problems mentioned above. The component is im-

* This work was supported by the Ministry of Information & Communications, Korea, under

the Information Technology Research Center (ITRC) Support Program.

Design and Implementation of an SSL Component Based on CBD 479

plemented on the application level where it can encrypt and decrypt data. Users can
choose various algorithms of encryption. The SSL component provides convenience
to the developers who are not accustomed to security concepts. It can also easily pro-
vide SSL services when interlocked with other business components because of its
component based implementation. The SSL component is reusable and increases the
productivity and it decreases the cost[5]. In addition, as component developers need
platform-independent methods to support their developments regardless of platform�s
cryptography APIs, it can support the component platform independently irrespective
of the kind of subordinate encryption APIs. As a result, the component makes it easy
to interact and interlink between protocols.

In this paper, we propose the requirements for SSL component and design it based
on CBD. We have implemented internally SSL handshake protocol and SSL record
protocol in order to perform the same functions of the existing SSL implementations.
Further, we designed the main security component � Integrity and Confidentiality
service component � that supports the part of SSL component. Here, we add standard
algorithms used in Korea for cryptography such as SEED[6] and HAS-160[7] and
developers using the component can select the algorithm type and encoding/decoding
type. In other words, we provide variety cryptography mechanisms of SSL and im-
plementations to encrypt/decrypt data selectively, thus rendering data processing to be
more efficient. We used the Rational Rose 2000 as a design tool for the component
and sequence diagram[8], and implemented the SSL, Confidentiality and Integrity
component with EJB (enterprise java beans)[9]. Lastly, we tested the implementations
of each component with the appropriate scenario for SSL component and J2EE (java
2 platform, enterprise edition)[10] server according to our proposed design. We also
tested the efficiency against the standard SSL protocol.

The remainder of this paper is organized as follows. Chapter 2 explains the analy-
sis of requirements for SSL component and presents the proposed design of SSL
component, which solves the aforementioned problems. Chapter 3 presents the im-
plementation of SSL and the main security component according to the design of
Chapter 2, and then provides the test through the proper scenario. Further, perform-
ance evaluation results compared with SSL protocol are presented in Chapter 3. Fi-
nally, Chapter 4 concludes the paper with a brief discussion on the future work.

2 Design of SSL Component

In this chapter, we propose the requirements for the SSL component derived from the
problems of the SSL protocol, and design the SSL component and the main security
component (Confidentiality and Integrity service component). Then, we define the
main methods of the SSL component, and describe the whole movement and flow of
the messages between Confidentiality component, Integrity component, and SSL
component using a sequence diagram.

2.1 Requirements for SSL Component

We classified requirements for SSL component into two parts: first are requirements
for solving the SSL protocol problems, and second are requirements for the imple-
mentation of SSL component based on CBD.

480 Eun-Ae Cho et al.

1) Requirements for Solving the SSL Protocol Problems
Our purpose is to provide both convenience and compatibility and at the same time,
the performance should be improved without affecting the security issue.

− By encrypting data selectively, the amount of data processed by CPU should be
reduced without affecting the security problem.

− The SSL component should be standardized in order not to depend on a specific
mechanism, but it should be able to provide proper security mechanism according
to the encryption level.

− The security requirements such as confidentiality and integrity for SSL component
platform should be supported apart from the subordinate cryptography API in a
system.

− Programming which is related to security should be required at a minimum in the
code of application component, which exist or will be developed.

2) Requirements for Implementation of SSL Component Based on CBD
To implement the SSL component, which supports confidentiality and integrity in
J2EE platform environment, the following requirements are needed:

− It should be ensured that the reusability of SSL component using standardized
security component interface(IConfidentiality, IIntegrity) in business components.

− An application component developer should be able to detect the subordinate se-
curity component within the component code and set the desired security compo-
nent by the algorithm name.

− When message protocol (e.g. handshake, record protocol, etc.) is implemented, it
has to support the order of the messages which is defined in SSL standard.

− In this paper, SSL component focused on implementation of confidentiality and
integrity function by using anonymous Diffie-Hellman algorithm for key ex-
change in the server�s handshake protocol.

− It should create the MAC and perform encryption/decryption using the confidenti-
ality/integrity component implemented with standardized security component in-
terface in the record protocol.

− It should maintain and/or manage the session state parameter and the connection
state parameter between client and server environment, where it has an end-to-end
connection in SSL component. Thus, SSL component should be implemented with
EJB code in the form of the session bean that its inner states consist of a session
state and a connection state.

− It has to support Korea standard cryptograph algorithm such as SEED and HAS-
160.

2.2 Design of SSL Component

To satisfy the function mentioned in the requirements above, we designed and imple-
mented the component based on EJB. The whole SSL component based on CBD is
composed of main security components such as confidentiality and integrity compo-
nent as shown in Fig. 1.

Table 1 shows the major interface of SSL component based on the requirements.
According to SSL component interface, we designed EJB Component, which is called
SSLComponent to perform the same function as SSL protocol.

Design and Implementation of an SSL Component Based on CBD 481

Fig. 1. Component Diagram of SSL Component

Table 1. Description of the main method

Main Method Component
Name Name Description

startHandshake()
To exchange the session key and algorithm, server and
client start handshake protocol.

clientHello() To start handshake protocol, client calls server.

Request-KeyExchange() To exchange the key, client transfers its public key to
server.

getPubKey() To create the public key for the other part.

encryptSSLMessage() After handshake, both server and client encrypt the real
data to SSL message using the set key and algorithm.

decryptSSLMessage() After handshake, both server and client decrypt SSL
message to the real data using the set key and algorithm.

finishHandshake() Both server and client send the current cipher spec, and
set up the security connection.

decisionAlgorithm()
When helloMessage is sent, server decides the algorithm
of confidentiality and integrity component for current
session.

createMasterSecret() Both server and client create the master key to share the
algorithm and key for SSL.

preMaster()
Both server and client create the pre-master key using
their own private key and the other part�s public key
which is came from requestKeyExchange().

SSL
Component

setAlgorithm() To set a proper algorithm.
getAvailable-
Algorithms()

To get all available algorithm presently.

getAlgorithm() To get the algorithm that is currently set.

setNameType() To set the type of the algorithm name either OID(object
identifiers) or Name.

getNameType() To get the type of the current algorithm name.

initialize() To receive the key value and initiation value by the
parameter and then performs initialization.

update() To receive the message made for byte array and then
encrypts/decrypts the data as much as inner buffer allows.

Finalize() To pass the result for all message encryption including
the remainder of message in fixed buffer.

getLength() To get the length of the encrypted message.
setEncodingType() To set the encoding type either Raw or Base64.

Integrity
Component and
Confidentiality

Component

getEncodingType() To get the current encoding type.

482 Eun-Ae Cho et al.

SSL protocol provides the confidentiality, integrity and authentication function
(non-reputation is added at the user application level) in general[11][12]. In this pa-
per, we first implement a component, which provides the confidentiality and integrity
service. Then, we propose an SSLComponent. Key exchange uses anonymous Diffie-
Hellman algorithm for exchanging a key, therefore we made the concept of authenti-
cation simple.

Confidentiality is an information security service, which ensures that other people
cannot find out the content of message online and/or offline, and integrity is an infor-
mation security service that prevents other people illegally creating, changing or de-
leting the content of information transferred via the network.

Fig. 2 shows the actions between SSLComponent and confidentiality component in
the sequence diagram. It shows diagram that a message is encrypted or decrypted for
enabling confidentiality. In Fig. 2, on the left is the encryption process and on the
right is the decryption process for message. The kind and order of the message re-
ceived and sent is the same in the confidentiality component. First, SSLComponent
creates the home interface of confidentiality component, and checks available algo-
rithms, and then exchange current algorithm and finally selects the algorithm to be
used. Type of algorithm is selected can be chosen either as by the algorithm name or
algorithm OID chosen by the developer. After the algorithm selection, we can also
choose the encoding type either as Raw or Base64. After these processes, SSLCom-
ponent sends the encrypted message through the process such as initialize, update and
finalize process.

Fig. 2. Sequence diagram of confidentiality component

Fig. 3 presents the message process between SSLComponent and Integrity compo-
nent with the sequence diagram. It acts on the same message and order as confidenti-
ality component.

Design and Implementation of an SSL Component Based on CBD 483

We designed the EJB component called SSLComponent that behaves according to
the SSL protocol and according to the definition of SSLComponent interface. We
implemented the SSL record protocol and SSL handshake protocol as a part of the
SSLComponent, which provides the confidentiality and integrity service.

Fig. 4 shows the whole message flow according to the role of each SSLComponent
by the sequence diagram. We can classify the roles into SSLServer and SSLClient.

Fig. 3. Sequence diagram of integrity component

Fig. 4. Sequence Diagram of SSLComponent

484 Eun-Ae Cho et al.

Through the steps 2 to 11, SSLClient and SSLServer initialize the logical connec-
tion and execute the handshake protocol. The steps 5 to 7 show the asymmetric key
exchange between SSLClient and the SSLServer. We omitted the key exchange
method because anonymous Diffie-Hellman was used. The steps 9 to 11 are the proc-
ess to complete the security connection. The steps 12 to 15 are SSL record protocol.

3 Implementation and Performance Evaluation of SSLComponent
In this chapter, we propose the implementation based on CBD to overcome the limita-
tion of the problems of the existing SSL protocol. The main differences between pro-
posed SSLComponent and existing SSL protocol are shown in Table 2.

It is impossible to reuse existing SSL protocol within other software, since once the
SSL channel is set, all the data transported between the server and the client, is en-
crypted. Thus, we can�t provide the selective encryption. However SSLComponent
can be reused and provide the SSL service selectively for only certain messages. Thus
it is possible to customize the message transmission device according to the develop-
ment plan. In addition, it is precarious to ensure safety since existing SSL protocol
doesn�t have the flexible mechanism. On the other hand, SSLComponent does not
rely on a specific mechanism. Various security algorithms and mechanisms can be
selected and used including domestically standard cryptography algorithms used in
Korea according to developers� preference. Furthermore, it is possible to extend the
SSL protocol function in the form of the selective SSL service.

Table 2. SSLComponent Compared with SSL protocol

 SSLComponent Existed SSL protocol

Reusability Can be reused. Cannot be reused.

Flexibility
Can select the algorithm and key
according to developer�s intention
with confidence.

Use the fixed algorithm and fixed key
length.

Variety

Can apply and select the various
security mechanisms.(Also it can use
standard Korean crypto algorithms-
SEED, HAS-160.)

Cannot select the mechanism.
(It cannot use standard Korean algo-
rithms.)

Extensibility As an option, it can extend the SSL
service.

Cannot extend connection previously
set.

Generality
Developer can develop a system
without the prior knowledge related to
the cryptography API.

Developer needs to be familiar with
the cryptography API.

Efficiency Can reduce the CPU overhead and
time.

Reduce efficiency due to processing
of the whole data.

There is a problem that the SSL protocol could be implemented only by the devel-
opers who are fully aware of cryptography API. And sometimes the protocol even
lowered the performance because it processes and encrypts the whole data during the
SSL process. But SSLComponent can be developed by the developers who are not
even aware of API because the component uses a common and standard form. In
addition, using the proposed component, CPU utilization overhead can be reduced as

Design and Implementation of an SSL Component Based on CBD 485

well as the time overhead, because the developer can decide the API and the algo-
rithm selectively.

SSLComponent were built on the test server. Test server has the following con-
figuration: Xeon 2.2GHz Processor, 512KB L2 ECC Cache, 512MB ECC SDRAM
Memory, 36.4GB Pluggable Ultra320 SCSI 10k Universal Disk and Compaq 7760
10/100/1000 TX PCI NIC LAN Card.

We have chosen a scenario of online shopping (buying goods) to compare the pro-
posed SSLComponent efficiency with existing SSL protocol. The criterion for com-
parison is the process time, which is needed for safe transmission of the data. For
performance evaluation, we tested both SSLComponent and existing SSL protocol on
the same server hardware.

Although same server hardware was used, computing environments were different
for the two protocols being compared. In other words, SSL protocol is mainly used as
https in web server like Apache, while SSLComponent is executed in an application
server like J2EE based on Java. The Java environment may have the disadvantage in
the time factor due to virtual machine it is running on. Thus we had to consider those
differences for the clear and correct performance evaluation between both. We have
tested SSL protocol in Apache server environment and SSLComponent in J2EE
server environment for performance measurement. Fig. 5 shows the comparison result
between the pure Apache Tomcat 5.0 and the pure J2SDKEE1.3.1 server. For equiva-
lent application of execution environment, we take their difference into consideration
and perform our tests.

The difference value is calculated by subtracting Apache web server process value
from J2SDKEE1.3.1 server. The data is represented by function (1)

y=159.62ln(x)-766.3 (1)

y is the value of subtracting Apache web server from J2SDKEE1.3.1 server and x is
the value of data size.

Fig. 5. J2EE Compared with Apache Fig. 6. SSLComponent Compared with Https

Fig. 6 shows the comparison between the execution result of SSLComponent in
J2EE server and the execution result of https protocol using SSL protocol in Apache
server. As shown in the graph, server�s process time is proportioned to the data vol-
ume. When data volume is small, data processing time is a little bit longer than com-
ponent performance time, but the more data volume is increased, the more the time
gap is narrowed. When data volume is very big, the processing time of SSLCompo-

486 Eun-Ae Cho et al.

nent is shorter than https. On the other hand, the processing time for a small data vol-
ume is not significantly improved. However, SSLComponent does not have any
worse performance efficiency than the SSL protocol, and the processing time for large
data is better than SSL protocol.

4 Conclusion and Future Works
In this paper, we proposed and implemented the model to provide the SSL service
through the system based on CBD. SSLComponent model based on CBD extends the
existing SSL protocol through the use of partial message encryption and Korean do-
mestic standard cryptography algorithms which wasn�t provided in the existing SSL
protocol. We also overcame the limitation of SSL protocol(e.g. it cannot be reused,
has atomic property, cannot use Korean domestic standard algorithm, cannot extend,
and etc.) through the software development which has the component concept. The
SSLComponent can be reused, encrypted selectively, applied for Korean domestic
standard algorithm and it can be extended.

As showed in the chapter 3, when the size of data becomes small we can reduce the
need for CPU resources by using the remote connection of a component. On the other
hand, when the data volume size is increased, proposed SSLComponent becomes
more efficient, since it can encrypt the selected data based on CBD. In this paper, we
used anonymous Diffie-Hellman algorithm, which is quite simple. As for future work,
we need to propose and design the complex authentication part more clearly. Further,
we need to present and implement the standard for the component that would provide
other security services such as non- reputation and availability.

References
1. A. Freier, P Karlton, and P. Kocher: The SSL Protocol Version 3.0, Internet Draft (1996)
2. Xiaodong Lin, Johnny W. Wong, Weidong Kou: Performance Analysis of Secure Web

Server Based on SSL. Lecture Notes in Computer Science, Springer-Verlag Heidelberg,
Volume 1975/2000, Information Security: Third International Workshop, ISW 2000, Wol-
longong, Australia, December 2000. Proceedings (2003) 249-261

3. K. Kant, R. Iyer and P. Mohapatra: Architectural Impact of Secure Socket Layer on Inter-
net Servers. Proc. IEEE 2000 International Conference on Computer Design (2000) 7-14

4. Kyoung-gu, Lee: TLS Standard Trend. KISA, The news of Information Security, vol. 19
(1999)

5. Chris Frye: Understanding Components. Andersen Consulting Knowledge Xchange (1998)
6. KISA: SEED Algorithm Specification. Korea Information Security Agency (1999)
7. TTA Standard: Hash Function Standard-Part 2: Hash Function Algorithm Standard(HAS-

160). Telecommunications Technology Association (2000)
8. Booch, G., Rumbaugh, J., and Jacobson, I.: The Unified Modeling Language User Guide.

Addison Wesley Longman (1999)
9. Enterprise Java Beans Specification Version 2.0 Final Release. Sun Microsystems Inc

(2001)
10. Sun, Java 2 Platform Enterprise Edition Specification, Version 1.4, Sun Microsystems Inc

(2004)
11. William Stallings: Cryptography and Network Security. Principles and Practice, 3rd edn,

Prentice Hall (2002)
12. R. W. Badlwin et C. V. Chang: Locking the e-safe. IEEE Spectrum (1997)

	1 Introduction
	2 Design of SSL Component
	2.1 Requirements for SSL Component
	2.2 Design of SSL Component

	3 Implementation and Performance Evaluation of SSLComponent
	4 Conclusion and Future Works
	References

