
1

Overhead and Performance Study of the General
Internet Signaling Transport (GIST) Protocol

Xiaoming Fu, Member, IEEE, Henning Schulzrinne, Fellow, IEEE,
Hannes Tschofenig, Christian Dickmann, and Dieter Hogrefe, Member, IEEE

Abstract— The General Internet Signaling Transport (GIST)
protocol is currently being developed as the base protocol compo-
nent in the IETF Next Steps In Signaling (NSIS) protocol stack to
support a variety of signaling applications. We present our study
on the protocol overhead and performance aspects of GIST. We
quantify network-layer protocol overhead and observe the effects
of enhanced modularity and security in GIST. We developed
a first open source GIST implementation at the University of
Göttingen, and study its performance in a Linux testbed. A
GIST node serving 45,000 signaling sessions is found to consume
average only 1.1 ms for processing a signaling message and 2.4
KB of memory for managing a session. Individual routines in the
GIST code are instrumented to obtain a detailed profile of their
contributions to the overall system processing. Important factors
in determining performance, such as the number of sessions,
state management, refresh frequency, timer management and
signaling message size are further discussed. We investigate
several mechanisms to improve GIST performance so that it is
comparable to an RSVP implementation.

I. INTRODUCTION

The Internet was designed to have simple packet forwarding
nodes and complex end systems. However, over the years these
design principles have been challenged by new application
requirements and evolving demands on the infrastructure [1]–
[4].

There is an ever increasing demand to provide configu-
ration and maintenance of flow-specific control state in the
network (i.e., signaling services) along the data path in IP-
based networks. Examples include resource reservation for
Quality of Service (QoS) provisioning and the configuration
of various middleboxes such as stateful packet firewalls and
Network Address Translators (NATs) [5]. Although the Re-
source ReSerVation Protocol (RSVP) [6], [7] has been devel-
oped, usage of RSVP has more focused on QoS reservation
models – initially IntServ [8], later DiffServ [9]) and their
performance [10], [11] – rather than the underlying signaling
services. Apart from this, shortcomings in the RSVP design,
e.g., lack of a solid security framework and mobility support
have also played a role in contributing to the limited market
adoption. Approaches like RSVP refresh overhead reduction

X. Fu, C. Dickmann and D. Hogrefe are with the Institute
of Computer Science, University of Göttingen, Germany, Email:
{fu,cdickman,hogrefe}@cs.uni-goettingen.de.

H. Schulzrinne is with the Department of Computer Science, Columbia
University, New York, USA, Email: hgs@cs.columbia.edu.

H. Tschofenig is with Nokia Siemens Networks and University of
Göttingen, Germany, Email: hannes.tschofenig@nsn.com.

Manuscript received on December 6, 2006, revised on September 30, 2007,
and accepted on December 21, 2007. This is a revised version of [65].

extensions [12], BGRP [13], Yessir [14], Boomerang [15],
Beagle [16], MRSVP [17], Insignia [18] or RSVP Mobility
Support [19] investigate QoS signaling with the goal to re-
duce overhead, improve performance, or extend the signaling
scheme to support mobility. These extensions are based on the
idea of discovering QoS-aware nodes along the data path by
using end-to-end addressed messages (mostly equipped with a
Router Alert option) that deliver QoS parameters and rely on a
flow identifier to identify a signaling session state. In addition,
protocol complexity has been a concern, especially due to the
support for multicast flows [20]. These design principles have
been a source of limited flexibility, security and mobility. More
importantly, although these approaches individually may meet
the needs of certain signaling purposes, they lack an extensible
framework which allows easy extensions for future signaling
applications. Thus, in 2001 the IETF formed a new working
group – Next Steps in Signaling (NSIS) [21] – to investigate
the architecture and protocols for generic and application-
specific signaling. One pioneering work has been presented
by Braden and Lindell [22], who attempted to split RSVP
into a two-layer architecture allowing any type of signaling
application rather than being QoS centric.

Due to the shortcomings of RSVP and its current exten-
sions, we have presented an alternative extensible signaling
approach [23], [24] – Cross-Application Signaling Protocol,
or CASP – for ensuring modularity, flexibility and security
without changing the conventional path-coupled signaling
paradigm. There are three key ideas that underpin our proposed
approach: decoupling message transport from next signaling
hop discovery, reuse of existing transport and security proto-
cols, and the introduction of a location-independent session
identifier. This approach enables us to effectively support
generic IP signaling that can be used for various signaling
scenarios, with enhanced protocol flexibility. The NSIS work-
ing group reused many ideas from CASP and is standardizing
a General Internet Signaling Transport (GIST)1 [25] as the
base protocol component of NSIS protocol stack to support a
variety of signaling applications.

In this paper, we study the protocol overhead and perfor-
mance aspects of GIST and compare them with RSVP. While
some results are specific to our implementation, we believe the
tests and results should approximate some common behavior
in other GIST implementations. The results confirm that GIST
is meeting its major design goals. Our experience has been that

1The protocol described here was known as GIMPS (General Internet
Messaging Protocol for Signaling) until its final name was chosen in August
2005.



implementation details are very important to achieve all of the
benefits of GIST.

The organization of the paper is as follows. Section II
provides a short introduction to GIST, Section III discusses the
results of a study which indicate that the additional overhead in
GIST are largely due to modularity and security. Furthermore,
it delineates the limitations of QoS-centric approaches in
providing generic signaling services. We then elaborate our
GIST implementation details and performance study in Section
IV.

II. AN INTRODUCTION TO GIST

A. NSIS: A Two-Layer Signaling Framework

In order to meet the requirements for an extensible, generic
signaling protocol, the design of the NSIS protocol suite sepa-
rates the transport functionalities, such as reliability, fragmen-
tation, congestion control and integrity, for signaling message
transport from signaling applications. Thus, following [22],
[23], signaling functions in NSIS are split into two protocol
layers [26]:

• An NSIS Transport Layer Protocol or NTLP, primarily
composed of a specialized messaging layer, denoted as
GIST [25], which is used to transport the signaling ap-
plication layer messages. The GIST layer is running over
standard transport and security protocols. Examples of
such protocols are UDP, TCP, SCTP [27] and DCCP [28],
with or without IP security (IPsec) or Transport Layer
Security (TLS) mechanisms; in the current version, usage
of UDP, TCP, TLS over TCP [25] and SCTP [29] are
specified.

• NSIS Signaling Layer Protocols or NSLPs, each run
signaling application-specific functionality. Examples of
NSLPs include the QoS NSLP for resource reserva-
tion signaling [30], the NAT/Firewall NSLP [31] for
middlebox configuration, and the NSLP for Metering
Configuration Signaling [32].

The different layers are depicted in Fig. 1.

 

GIST 
(General Internet Signaling Transport Protocol) 

 

Transport Layer Security 

IP 

IP Layer Security 

GIST 
API 

NSIS 

NTLP 

NSLP 

NAT/Firewall 
NSLP 

 QoS NSLP 
 

Metering NSLP 
 

UDP TCP SCTP DCCP 

Fig. 1. NSIS: a Two-layer Signaling Framework

B. GIST Overview

The GIST protocol forms the fundamental building block of
the NSIS protocol suite. The main task of GIST is to deliver
signaling messages for various NSLPs between neighboring
GIST nodes that support the same NSLP. The NSLP itself is
responsible for pushing the signaling message from the NSIS
Initiator (NI) towards the NSIS Responder (NR), typically the
flow source and destination, respectively, as GIST just provides
means to transport messages from one node to the next on the
path. The NI and NR can, however, also be represented by
proxies, e.g., to support end systems that do not themselves
have NSIS capabilities.

Instead of building a new transport protocol, GIST reuses
existing transport and security protocols to provide a universal
message transport service. Like RSVP, GIST is a soft-state
protocol. It creates and maintains two types of states related to
signaling transport: a per-session message routing state (MRS)
for managing the processing of outgoing messages, and a mes-
sage association (MA) state for managing the per-peer state
associated with connection mode messaging to a particular
peer, including signaling destination address, protocol and port
numbers, internal protocol configuration and state information.
In addition to its neighboring GIST peer information, GIST
also maintains certain message routing information, such as
flow identifier (flow ID), NSLP type and session identifier
(session ID), to uniquely identify the signaling application
layer session for a flow.

GIST has two modes of operation; a datagram mode (D-
mode), which uses an unreliable unsecured datagram transport
mechanism, with UDP as the initial choice, and a connection
mode (C-mode), which uses any stream or message-oriented
transport protocol (currently TCP as the initial choice) and
may use IPsec security or TLS. It is possible to mix these
two modes along a chain of nodes, without coordination or
manual configuration. This allows, for example, the use of D-
mode at the edges of the network and C-mode in the core of
the network.

Let us have a look at a standard GIST operation using
an example (cf. Fig. 2), where A is QoS NSLP while B
is another type of NSLP. Assume a QoS NSLP RESERVE
message is generated by GIST at the NI, the flow sender. The
GIST module first constructs a GIST-query message, namely a
UDP datagram addressed to the flow destination and includes
an IP Router Alert Option [33], similar to RSVP. The next
downstream NSIS peer supporting the QoS NSLP, R2 in this
case, recognizes this message and replies to it with a GIST-
Response message. Upon the receipt of this response, the NI
creates a message association (MA) with R2. After that, all
subsequent GIST-Confirm or GIST-Data messages, i.e., GIST
messages with NSLP payload, between these two peers can
be sent over this MA. Upon receipt of such GIST messages
in R2, NSLP payload and the flow ID are passed to its QoS
NSLP processing. Note it is the responsibility of the NSLP
layer to determine the action upon receipt of a GIST message.
If the QoS NSLP in this node determines that it has enough
resources as requested by QoS NSLP RESERVE message,
it will make a tentative reservation for the session. The

2



QoS NSLP RESERVE message will be delivered to the next
QoS NSLP node along the path, according to the procedure
described above. When the NR QoS NSLP eventually receives
the RESERVE message, it responds along the reverse path
towards the NI with a RESPONSE message to finally confirm
the establishment of the reservation. In this example, the QoS
NSLP payload (e.g., for signaling IntServ would be primarily
Sender TSpec and RSpec) is delivered, examined and possibly
modified in intermediate nodes, across a chain of QoS NSLP
aware nodes.

Non-NSIS 
nodeNSLP A

GIS T

NI R1

NSLP A

GIS T

R2

NSLP B

GIS T

R3

NSLP A

GIS T

NR

Fig. 2. An example of GIST operation

A GIST message consists of a common header and
a sequence of type-length-value (TLV) objects. The
common header indicates the message type such as
Query/Response/etc., as well as the NSLP identifier (NSLP
ID) and hop counter to avoid message loops. In addition,
GIST can use query- and response-cookies for protection
against spoofing and denial of service attacks.

GIST-Query messages are retransmitted with exponential
backoff if a corresponding GIST-Response is not received on
time. Whenever possible, re-use of existing reliable transport
and security protocols is recommended via the C-mode in
GIST. This is necessary with larger data objects, when a
fast state setup in the face of packet loss is desirable, or
when channel security is required. A querying node (Q-
node) can choose to refresh the message routing state by
resending a GIST-Query. Local policy can determine whether
it is necessary to maintain an MA. For example, a node may
choose to keep the MA open if there are sessions still in place,
which might generate messages that would use the MA. If no
MA exists between a Q-node and the responding node (R-
node), and the Q-node desires to run over C-mode, it will
send a Query with a stack proposal (Q-stackp) and stack
configuration data (Q-stackcd) to negotiate the desired C-mode
transport protocol, e.g., TCP or TCP+TLS, with the R-Node
during the discovery phase (see Fig. 3(a)); TCP three-way
handshake is required to setup the MA.

A detailed GIST protocol description can be found in [25]
and its corresponding state machine operations are described
in [34].

C. GIST Security

Security mechanisms for GIST try to provide the following
properties:

1) Authentication of the two neighboring protocol peers;
2) Security association establishment to provide integrity,

confidentiality and replay protection for signaling mes-
sages exchanged between these entities;

Query (D-mode)
Q-stackp + Q-stackcd

Response (D-mode)
R-stackp + R-stackcd

(Open server 
port)

(TCP SYN)

(TCP SYN+ACK)

(TCP ACK) 
Confirm (C-mode)

R-stackp

GIS T 
MA + 

MRS state 
setup TCP 

connection 
setup

Query
(D-mode)

Response
(D- or C-mode)

Confirm 
(D- or C-mode)

GIS T 
MRS state 

setup

a) C-mode MRS+MA setup b) D-mode or C-mode (MA exists) MRS setup

Q-node R-node R-nodeQ-node

Fig. 3. GIST session setup

3) Denial of service protection;
4) Security protection for the discovery mechanism.
It is difficult to design a new security protocol to address

all these issues. Existing security protocols, such as TLS or
IKEv2/IPsec already provide a number of these features, such
as properties 1), 2) and 3), but at the cost of considerable
setup latency. The establishment of a secure channel between
signaling peers to protect all signaling messages, which may
belong to any signaling session, is recommended. An existing
security chanel saves the per-session security association setup
cost in C-mode.

Authorization at the GIST layer aims to ensure that a GIST
R-node only establishes communications with a legitimate
GIST Initiator. It is even more difficult to ensure that the
GIST Initiator sends signaling messages to the “right” GIST
peer, i.e., one which supports a specific NSLP; this requires
authorization information to be provided along with the au-
thentication and key exchange process, e.g., as part of the
authorization certificate. These aspects are described in [35].

Relaxing assumptions regarding the desired protection
against man-in-the-middle adversaries might often be required
and desired. Furthermore, in most cases it is difficult for
GIST to make an authorization decision without consulting
the NSLP layer.

Channel Security

Q-node R-node

GIS T-Query 
(NSLP-ID/SID/MRI, Cookie(Q),...)

GIS T-Response
(Cookie(R), Cookie(Q),...)

(Authentication and Key Exchange)

GIS T - Confirm (Cookie(R))

Fig. 4. Protection of the GIST discovery procedure

In order to deal with adversaries that redirect signaling
messages, a cookie mechanism has been integrated into the
discovery exchange. This mechanism (see Fig. 4) can be
illustrated as follows. The cookies provided by the querying
and responding node (Cookie(Q) and Cookie(R)), e.g., 256-
bit cryptographically random nonces, are used to prevent DoS
attacks, similar to those used by other protocols, e.g., SCTP or
IKEv2. Cookie(Q) is included in the GIST-Response message

3



to prevent off-path adversaries from flooding the querying
node with bogus responses. The initiator uses this cookie to
match a request with a pending response. Once a security
association has been established, Cookie(R) is transmitted
from the querying node to the responding node. This allows
the responder to verify that it has actually participated in the
discovery exchange, binding the discovery procedure to the
subsequent exchange. More details of authentication and key
exchange as well as possible cookie construction in Fig. 4 are
provided in the GIST specification.

III. PROTOCOL OVERHEAD

Every signaling protocol imposes some overhead in the form
of number and size of control messages, which is indicative of
the total bandwidth consumed by the signaling protocol and
must be processed in signaling-aware nodes. In this section
we discuss the sources and quantities of protocol overhead in
GIST as opposed to RSVP 2. For convenience we consider
the primary signaling messages used for state setup and
maintenance: GIST-Query, Response, Confirm and GIST-Data
in comparison with RSVP-Path and RSVP-Resv; RSVP/GIST
Error, MAHello and RSVP PathTear/ResvTear messages are
omitted here for simplicity.

The detailed sources of overhead, including message and
memory overhead, in each of the layers of a GIST protocol
structure (based on the latest draft version of [25]) are given
in the Appendix, in comparison to RSVP. Table I summarizes
the overall message overhead for common message types.

With this information, we are able to analyze the overhead
of the two signaling protocols, GIST and RSVP. On the one
hand, layering in GIST makes it possible to provide the general
functionalities required for signaling transport, namely,

• Error control: GIST makes the “channel” more reliable
(by reusing reliable transport protocols);

• Flow control: GIST avoids flooding slower peer by sig-
naling message flow control,

• Fragmentation: Dividing large data chunks into smaller
pieces, and subsequent reassembly, e.g., TCP MSS frag-
mentation/reassembly for large sizes of NSLP payload,

• Multiplexing: Allow multiple sessions to share a single
message association between adjacent peers,

• Connection setup: Handshaking with peer, e.g., by TCP
three-way handshake.

More importantly, GIST provides richer security support,
which makes it easier to support mobility and allows high
modularity to allow any signaling applications with a compa-
rable requirement for state repository.

On the other hand, layering and more functionality support
increase message and memory overhead. For example, if C-
mode is desired, there are at least two possibilities for GIST
session setup with minimal security support, i.e., only the
cookie mechanism is used:

1) There is no TCP connection. This requires a
GIST-Query with stack proposal/TCP-SYN/TCP-
SYNACK/Response(C)/Confirm(C) process, which

2Note there are some small changes in this paper compared to the numbers
given in [65], to count for more fair and accurate comparison for QoS
signaling using GIST/NSIS and RSVP

in turn imposes 180+44+44+220+188=676 bytes
message overhead, in addition to the following memory
overhead:

• a new per-session GIST message routing state,
which comprises a MRI (32 bytes), a NSLP ID (8
bytes), and a Session ID (20 bytes), or 60 bytes in
total;

• a new per-connection TCP control block (TCB)
state [60], [61], which ranges from hundreds to
thousands of bytes depending on the underlying
TCP implementation;

• and a new GIST message association state, which
is implementation-specific and only a few hundred
of bytes in our implementation case.

2) A message association already exists.
This requires a GIST-Query(no stack pro-
posal)/Response(C)/Confirm(C) process, which imposes
148+220+188=556 bytes message overhead, in addition
to the memory overhead of a new GIST message
routing state (60 bytes).

Thus, for signaling session setup, GIST C-mode requires 4
(or 3, when MA already exists; same applies below respec-
tively) messages, totally 676 (or 556) bytes overhead, for the
scenario where no TCP connection exists (or there exists an
MA).

With GIST D-mode, no connection setup is required, but
three-way handshake in GIST layer is still needed, imposing
148+180+140=468 bytes message overhead, in addition to
the creation of per-session GIST MRS (60 bytes memory
overhead).

For convenience we assume the QoS NSLP payload is the
same as RSVP, namely, Sender TSpec and FlowSpec. Per [30],
the minimal QoS NSLP header length for the basic messages
to deliver these payloads is: QoS NSLP RESERVE: 16 bytes
(QoS NSLP common header + RSN) and

QoS NSLP RESPONSE: 16 bytes (QoS NSLP common
header + INFO SPEC)

Overall, QoS NSLP layer adds at least 32 bytes more
overhead in addition to the overhead incurred by GIST.

With RSVP, on the other hand, in order to carry the
signaled data (Sender TSpec and Guaranteed/Controlled-Load
Service FlowSpec) of 12+48=60 bytes (Guaranteed Ser-
vice)/12+12=24 bytes (Controlled-Load Service), every ses-
sion setup requires a Path+Resv pair of 64+72=136 bytes
(IPv4)/184 bytes (IPv6) message overhead, in addition to
creating a new PSB and a new RSB.

According to this analysis, a comparison of overhead for
GIST (D-mode and C-mode, including with and without MA)
+ QoS NSLP and RSVP is given in Fig. 5. It can be noted
that most of the protocol overhead of GIST results from the
lower levels of the protocol stack during the session setup
phase, while in steady state (session refresh case), all modes
of GIST operation have no significant difference in terms of
overhead compared with RSVP. For instance, using the GIST
D-mode together with QoS NSLP which is closest to RSVP
operation, it incurs overhead of 500 bytes for session setup
case and 136 bytes for session refresh case (compared with

4



TABLE I

OVERHEAD BY PROTOCOL LAYER (IN BYTES)

Message type\Protocol layer IP layer Transport layer GIST layer Overall overhead
GIST-Query (no stack proposal) 24 (IPv4), 48 (IPv6) 8 116 (IPv4), 156 (IPv6) 148 (IPv4), 212 (IPv6)
GIST-Query (with stack proposal) 24 (IPv4), 48 (IPv6) 8 148 (IPv4), 188 (IPv6) 180 (IPv4), 244 (IPv6)
GIST-Response (D-mode) 20 (IPv4), 40 (IPv6) 8 152 (IPv4), 192 (IPv6) 180 (IPv4), 240 (IPv6)
GIST-Response (C-mode) 20 (IPv4), 40 (IPv6) 20 180 (IPv4), 184 (IPv6) 220 (IPv4), 244 (IPv6)
GIST-Confirm (D-mode) 20 (IPv4), 40 (IPv6) 8 112 (IPv4), 152 (IPv6) 140 (IPv4), 200 (IPv6)
GIST-Confirm (C-mode) 20 (IPv4), 40 (IPv6) 20 108 (IPv4), 148 (IPv6) 188 (IPv4), 208 (IPv6)
GIST-Data (D-mode) 20 (IPv4), 40 (IPv6) 8 76 (IPv4), 122 (IPv6) 104 (IPv4), 168 (IPv6)
GIST-Data (C-mode) 20 (IPv4), 40 (IPv6) 20 72 (IPv4), 116 (IPv6) 112 (IPv4), 176 (IPv6)
(TCP-SYN/SYN+ACK) 20 (IPv4), 40 (IPv6) 24 – 44 (IPv4), 64 (IPv6)
(TCP-ACK) 20 (IPv4), 40 (IPv6) 20 – 40 (IPv4), 60 (IPv6)
RSVP-Path 24 (IPv4), 48 (IPv6) 0 – 64 (IPv4), 112 (IPv6)
RSVP-Resv 20 (IPv4), 40 (IPv6) 0 – 72 (IPv4), 108 (IPv6)

136 bytes in RSVP for both cases). The most heavy-weight
situation is when a GIST C-mode is desired but MA is not
yet established, GIST/QoS NSLP incurs 708 bytes for session
setup; when an MA already exists, the corresponding overhead
for session setup is 588 bytes, about 17% higher than D-mode
operation.

0

100

200

300

400

500

600

700

800

Session setup

Session refresh

Fig. 5. Overhead comparison of GIST and RSVP

This comparison demonstrates that GIST’s rich function-
ality, modularity, security, and mobility support is also ac-
companied by certain costs. Indeed, similar to other general-
purpose protocols, GIST does have its disadvantage of higher
protocol overhead in terms of large messages, more message
exchanges, additional parsing and processing. However, as
we will confirm in Section IV-C, with some appropriate
implementation considerations and optimizations, it is possible
to achieve comparable performance to RSVP in terms of sig-
naling performance of maximal number of supported sessions,
CPU and memory consumption in steady state. Furthermore,
it should also be noted that in many scenarios, signaling
application payloads are rather large (which can easily exceed
normal link MTU), e.g., certificates and active programming
packets, where the transport capability of GIST becomes of
greater use and the relative GIST protocol overhead becomes
much less. In addition, concepts of staged timers [12], [36],
state compression [37], and robust header compression [38]
can also be considered which may further improve GIST
performance.

IV. IMPLEMENTATION AND PERFORMANCE EVALUATION

In this section, we evaluate the quantitative performance
of a GIST implementation through benchmarks, and show its
performance is roughly comparable to KOM RSVP [11], and
scales well with the number of signaling sessions.

A. Implementation Overview

We have implemented the GIST protocol in C++, using
the Linux 2.6 kernel. Our implementation conforms to the
GIST protocol and its API; currently we support draft version
14 [25]. We have developed a benchmarking NSLP application
(“Ping”) [39] for testing purposes. If not otherwise mentioned,
this document discusses our original NSIS implementation
released as version 0.1.0. It consists of about 6,900 lines of
code in total, which comprises about 1,300 lines for the core
program, 2,000 lines for state machines, 700 lines for state
management, 1,400 lines for message parsing and processing,
and 1500 lines for the GIST-NSLP API. In addition to the
original version, this document covers an improved version
0.5.2, which incorporates a new timer management, as well as
many new features the original prototype lacked. The code is
publicly available in [40].

The implementation architecture is shown in Fig. 6. It has
been developed based on a single process approach using a
main event loop based on XORP [41] library, which is used
to implement socket maintenance and callbacks as well as
timer callbacks. This design has no additional overhead for
maintaining and synchronizing multiple threads, which results
in a high throughput and a rather simple implementation.

Besides the event loop, a key component in our GIST
implementation is state management. In order to support tens
of thousands of signaling sessions efficiently, we used a
hash table to manage the MRSs, associated with linked lists
to resolve conflicts. A standard lookup takes constant time,
however in the worst case, all table entries would be compared
to find a given MRS.

To search the MRS table, one needs to know the associ-
ated key information, namely the session ID, the NSLP ID
and message routing information (MRI). This is nevertheless
subject to some limitations, e.g., it is not possible to search
for all MRSs using a specific MRI. Such a search feature may
be useful to find MRSs that are affected by a detected link

5



Message routing state (MRS) Table

Flow #1 Sender FSM
Receiver FSM

Flow #3 Sender FSM
Receiver FSM

Flow #2 Sender FSM
Receiver FSM

Message asssociation (MA) Table

MA #1
UDP Socket

MA #2
TCP Socket

MA #3
TCP Socket

MA #4
TCP/TLS Socket

Event loop RAW Socket
Message Parser

Message <-> FSM
Distributor

GIS T-NSLP API

Fig. 6. GIST Implementation Architecture

failure. A possible solution is to maintain specialized hash
tables for link failures, which would allow for quick searches.
However, this approach would add maintenance overhead for
every MRS table which usually comprise a number of tables.

In addition to managing MRSs, a GIST implementation has
to manage MAs for C-mode operations. If two peers already
have an MA and a new session is being established on the same
path, the MA should be reused to minimize resource usage.
This feature implies that there should be a way to search the
MA table for an MA that can be reused for a certain session.
Our implementation uses a second hash table to accomplish
that goal. The upstream peer information (PI) serves as the
key information. The UDP socket is treated as a “virtual” MA
for the convenience of unifying the socket interface module.

Another important component of the GIST implementation
is the finite state machine (FSM) to maintain states for each
session. We implemented the GIST FSMs [34] based on a
combination of the XORP timer class and an FSM frame-
work that was originally written for the Linux ISDN device
driver [42]. Every MRS is associated with two FSMs, one for
the upstream peer and another one for the downstream peer.
There is no need for a global table of FSMs, because every
MRS provides pointers to the associated FSMs. In addition,
every MA is associated with a list of FSMs, so that the state
machines can be informed, e.g., when a loss of connectivity
with its current peer takes place.

B. Testbed Setup and Tools

The performance experiments were carried out on six low-
end PCs running Linux 2.6.8.1. They are equipped with the
following hardware:

• Via Eden CPU 533 MHz
• 3 Realtek 100 Mb/s NICs
• 256 MB SDRAM PC 133
• 20 GB HDD

Fig. 7 depicts how we connected the nodes for our experi-
ments. N1 and/or N2 was used as the sending host(s) – NI(s),
while one or more of N3, N4, N5 and N6 were the flow desti-
nation(s) – NR(s). In addition to the benchmarking tool “Ping”,

we have also developed an Ethereal GIST dissector [43] for
monitoring the GIST messages.

N1

N3

N5

N4

N2 N6

Fig. 7. Testbed Setup

The Ping tool is a light-weight NSLP protocol that sends
so-called Ping messages through a GIST aware network,
which emulates the ICMP Ping and Traceroute functions. The
traversed nodes insert a timestamp and information about the
local node (i.e., the IP address). When the message reaches
its destination host, it is redirected upstream and traverses the
network back to the original sender.

We use this tool in our experiments to model the scenario
of a real NSLP application without introducing unnecessary
overhead. Our main goal was to measure the maximum num-
ber of sessions a backbone router can maintain. In addition,
the tool was intentionally designed to involve other aspects a
real NSLP application would likely require, including:

• GIST layer session lookup;
• GIST layer session refreshes;
• Communication between GIST and the NSLP layer;
• NSLP layer message processing.

In order to focus on these goals, we neither maintain NSLP
layer timers nor store NSLP layer state, but allow the sending
node to send a Ping message for each session every 30 seconds
in order to simulate NSLP behavior; this message can be
regarded as a refresh message in the NSLP layer. As a result,
we were able to use this tool to study the GIST performance
and scalability. It is expected that a real NSLP application
would have additional overhead, including timers, parsing and
state management, all in the NSLP layer, resulting in some
worse results in terms of round trip times and maximal number
of sessions that can be maintained at a time.

A simple PHP script measures the CPU and memory
utilization every second using the proc-filesystem entries, in
the same fashion as the popular top program. After completing
the test, the script uses the debugging component of the GIST
implementation to fetch internal statistical information like the
average number of entries in the used hash table buckets.

To calculate the round trip times (RTTs), the information
contained in every Ping message is saved on the sender and
after the test is completed the collected timestamps are used
to calculate the round trip times. As the measurements were
conducted in lab environments without intervenience from the
background traffic, the standard deviations for the obtained
values were very small, for example less than 0.3ms for the
RTTs, thus the results are meant as the mean values.

6



C. Performance Study

1) Scalability in Number of Sessions: As signaling proto-
cols maintain and manage soft state in network nodes, the most
critical performance metric for GIST is the upper limit on the
number of sessions a GIST node can maintain. Additionally,
we would like to evaluate how the CPU load and memory
consumption scale with an increasing number of concurrent
sessions. Other parameters like average RTTs were collected
too. We performed three experiments for this test.

In the first experiment, we used N1 as the NI and N3 as
the NR, and let the NI first established a configured number
of sessions and then emulated refreshes for all of them and
measured performance of N3. The refresh intervals for NSLP
and GIST MRS were set 30 and 180 seconds, respectively.

The results are shown in Fig. 8-10. The first observation
is that the increase in CPU load and memory consumption is
nearly linear. With the original implementation, the consump-
tion of CPU time reached 70% (C-mode) – 71% (D-mode) of
the whole system when serving 60,000 sessions at a same time
in our test. Serving the same number of session, the improved
version 0.5.2 consumed 75% (D-mode) of overall CPU time.
While similar in overall performance, the new version is
slightly slower than the original one. The assumption that
optimizations in timer management and message composition
compensate for the increased complexity in message validation
and GIST logic is backed by the per-routing processing time
study presented later.

The second observation is that the RTTs were very small
(4.8-5.2 ms) before the session number reached 50,000. It
increased to 56.2 ms when serving 55,000 sessions, then in-
creased rapidly afterwards, reaching 7.0 seconds when serving
60,000 flows, indicating approaching the exhaustion of system
resources (memory/CPU/interface) in network nodes.

Fig. 8. Effect of concurrent sessions on CPU consumption

In the next experiment, we studied the case where two
senders (N1 and N2), one intermediate node (N3), and one
receiver (N4) were involved. NSLP refresh interval was 30
seconds, and GIST refresh rate was 180 seconds. We let each
sender serve 30,000 sessions, so the receiver had to handle
60,000 sessions. The measured RTT turned out to be about
5.5 ms. This confirms that the bottleneck for RTT in the tests
above is the sender and not the receiver.

Based on these observations, we obtain a rough estimate of
the upper limit of the supported session number in a GIST
node, which is at least 60,000. Note after the concurrent
session number of 45,000, the average RTT increases rapidly,

Fig. 9. Effect of concurrent sessions on memory consumption

Fig. 10. Effect of concurrent sessions on average RTT

thus, the effective session number that the system can support
is estimated as 45,000. This number may be improved by
introducing some optimizations, such as the ones suggested
in Section IV-E.

Another experiment we performed was to measure the
approximate processing time required for a GIST message in
an intermediate node, i.e., the time difference from incoming
to outgoing message. Taking both the N1 and N2 as the flow
receiver and using ethereal dissector, we performed tests for
20,000 and 60,000 simultaneous GIST sessions in steady state,
respectively.

In the light traffic cases (20,000 sessions), the results show
that the average processing time for GIST-Query and Response
messages was very small, about 0.25 ms, whereas a GIST-Data
(carrying Ping NSLP) message took the average processing
time of 1.1 ms. This conforms to the RTT results obtained in
Section IV-C.1.

In the second set (the more heavy-load traffic case), the
processing time for Query/Response increased to 0.9 ms,
whereas for a GIST-Data message it increased to 20 ms. This
confirms our observation in the first experiment, namely when
entering the heavy load traffic range, RTT is starting to be
much larger than the ligh traffic case.

We also did performance tests of a recent RSVP imple-
mentation, the KOM RSVP engine [11] in the same testbed
and PC hardwares. The results are also shown in Fig. 8-10
and we could conclude that we obtained roughly comparable
results. After fine tuning of the environment for running
KOM RSVP, we observed that KOM RSVP grows slower
for CPU consumption with session number increases: when
serving 60,000 simultaneous sessions, KOM RSVP just needed

7



about 20% of CPU time, in comparison with 70%. This
difference demonstrates certain properties of implementation-
specific design and the testing environment, for example: 1)
the use of XORP timer turned out to consume 50% of the
overall CPU usage in our GIST implementation, while the
fuzzy timer approach allowed KOM RSVP to manage timers
more efficiently [11], 2) in order to reach high signaling
loads, we did not change anything to the system environment,
while KOM RSVP was necessary to be deliberately tuned,
most likely due to a different development hardware/software
platform the KOM RSVP developers chose. On the other
hand, the required memory for KOM RSVP was found to
be rather similar to that for GIST: it was just 20% less
than GIST C-mode when both implementations served for
60,000 simultaneous sessions; for small numbers of sessions
(less than 15,000), it required even more memory than our
GIST implementation. This is due to our introduction of
optimizations (see Section IV-E).

Ideally, the memory consumption in different signaling
loads should be straight linear, but Fig. 9 shows that there
were some turbulence over the time. This is likely caused
by the non-deterministic OS scheduling regarding the receipt,
queuing and delivery of each GIST/RSVP message, as both
KOM RSVP and GIST were implemented as user space
daemons.

2) Analysis of Session Setup Time: When GIST is used in a
real application (not just a Ping client), a critical metric is the
time required to finish the first signaling round trip (e.g., a QoS
reservation). This involves the GIST three-way handshake for
every hop-to-hop connection that is performed sequentially,
which could result in a rather long initial setup delay. Our
measurements show that this delay was between 3ms and 5ms
for D-mode or C-mode scenarios when an existing message
association can be reused. The number of sessions for this
measurement ranged between 15,000 to 25,000.

3) Impact of GIST Message Routing State Refreshes: The
main responsibility of GIST is to manage the MRSs and MAs
which are used in delivering NSLP messages from one peer
to another, where both states are soft states. We study the
effect of MRS state refreshes since MA state refreshes by
periodically GIST-Hello messages are not necessary if there
are some active signaling messages between the peer pair.

We chose 30 seconds as NSLP refresh interval and ran
tests under different refresh intervals for an overall number of
15,000 GIST sessions between N1 and N3, all links operating
on C-mode.

The measured CPU load in N3 are summarized in Table II.
This indicates a small refresh interval at GIST level only

introduces CPU load. Given the reliability properties of C-
mode, a relatively long refresh interval (e.g., 180 sec) at
GIST level for MRS maintenance which impose limited CPU
overhead should be enough, especially where route changes
are not frequently experienced.

We performed some more tests with similar results where
all the six nodes in the testbed were involved. A low CPU
load in intermediate nodes was observed when the GIST MRS
refresh interval was set about 180 sec (also the reason why we
selected this value as default refresh interval in other tests).

TABLE II

IMPACT OF GIST MESSAGE ROUTING STATE REFRESH INTERVAL ON

CPU LOAD

Refresh interval (sec) % of CPU load used by GIST
30 56%
60 47%
90 43%

120 42%
150 41%
180 40%
210 40%

4) Per-routine Processing Time: In order to study the
bottlenecks of the implementation, we profiled each routine
in the GIST code, using the gprof tool. Table III shows the
profiling results for each routine’s contributions to the overall
system processing. It reveals that the XORP library consumes
over half of the total running time, mostly for managing
XORP timer facilities. The reason is that XORP uses a sorted
heap to structure the timers – a more detailed profile shows
that maintaining this heap consumes up to 38 percent of the
overall runtime of our implementation. This is due to the fact
that, while adding and removing a heap element imposes a
time complexity of O(log(n)), the heapify algorithm costs
O(n log(n)), where n is the total number of timers.

TABLE III

RUNTIME PROFILES OF THE IMPLEMENTATION

Code component % of total running time
v. 0.1.0 v. 0.5.2

1. XORP / Own implementation 53% 10%
1.1 Timer Management 42% 5%
1.2 Socket Management 10% 5%

2. Receiving incoming message 8% 30%
2.1 Receiving and distribution to FSM 4% 13%
2.2 Message parsing 4% 17%

3. Message composing and internal reading 17% 16%

4. Hash tables (MRS and MA) 8% 18%

5. Finite state maschine 7% 15%

6. NSLP level processing (ping) 1% 6%

7. Miscellaneous 6% 5%

Table III also confirms that version 0.5.2 is slower than the
original version due to additional overhead spent on validation
during message parsing, as well as more complexity in the
GIST state machine. These kinds of performance penalties are
a common phenomenon of maturing software, caused by more
and more corner cases being detected and handled properly.

5) C-mode versus D-mode: GIST is capable of operating
in both C-mode and D-mode. so that the difference in CPU
load between both modes of operation is of interest. We
implemented C-mode in both TCP and TLS/TCP but the
evaluation here focuses on using TCP as transport.

Fig. 8 shows the CPU load for a different number of
maintained sessions in C-mode and D-mode. From this figure
we can conclude that the CPU load does not make much
difference from each other.

Given that TCP offers a number of transport features desired
for signaling protocols, as outlined in Section III, the above

8



result suggests that C-mode should be used as much as
possible instead of D-mode for GIST message transport.

D. Bucket-based Timer Management

The results obtained during our initial performance study
clearly showed that the XORP timer management was a major
bottleneck in our implementation. Hence, we decided to switch
to a different, much more efficient mechanism. As already
discussed, XORP uses a heap to organize all active timers,
which requires to run the complex heapify algorithm for
each addition and removal of individual timers. While this
is reasonable for a diverse set of timers, it is very inefficient
in GIST, where many timers share the same structure: The
resolution of GIST timers is in seconds instead of milliseconds
and the firing interval for GIST timers is not diverse, i.e. many
flows are likely to share the same refreshing interval. Thus,
we decided to group timers based on the combination of two
properties: The interval and the starting offset. The offset is
defined as offset = time since startup mod interval. For
example, a timer which is created 50 seconds after the start
of GIST and which is supposed to fire every 30 seconds,
will have an offset value of 20 seconds. Every interval/offset
combination corresponds to a bucket which uses a linked-list
to store any number of timers.

The total number of buckets GIST has to manage is
drastically lower than number of timers. Imagine an optimal
case, where all intervals are the same. In our case we used
an interval of 180 seconds for GIST refreshes, which means
that there are no more than 180 buckets (i.e. one for every
possible offset). In order to insert a new timer, the matching
bucket needs to be found and the timer needs to be added
to the linked-list. To check which timers have to be fired,
the system needs to look at every bucket and check if
time since startup mod interval = offset holds. If the
condition holds, all timers contained in the bucket need to be
fired and otherwise the bucket is skipped. Execution of timers
is only done once per second, while adding new timers is
done many hundred times per second in heavy loaded GIST
nodes. Therefore, we decided to further optimize the lookup
of buckets matching a certain interval/offset combination. This
is done by organizing the buckets in a hash table. As we need
to walk through all buckets when firing timers, the hash table
should be densely populated to avoid checking hash values
which do not contain any bucket. Hence, we decided to use a
hash table size of 60. Using the example from above (refresh
interval of 180 seconds), we end up with approx. 3 buckets
per hash value.

Table III shows that our new timer management is much
more efficient for managing GIST refreshes than the general
purpose heap-based XORP timers. While XORP timers used to
consume over 40% of overall CPU time, the new timers con-
sume less than 10% CPU time in our most recent implemen-
tation. Please note, that the two measurements are not entirely
fair, as the new numbers are obtained with version 0.5.2 of our
implementation, while the XORP numbers where measured
with the original 0.1.0 release. As seen in Section IV-C.1, due
to increased complexity in GIST handling, the overall CPU

consumption of the 0.5.2 version is slightly higher compared
to the original one. Nevertheless, the performance gain due
to switching to the new bucket-based timer management is
significant.

E. Performance Optimizations

During the performance experiments we introduced several
optimization techniques and thus were able to significantly
reduce the CPU load of our implementation. The first op-
timization was to reduce data copying between processing
routines. When designing an object oriented implementation,
the tendency is to design every class with its own copy of the
data to ensure integrity. Network protocol implementations,
however, cannot afford to waste CPU and memory resources.
As a result, ideally there should be just one copy of every
incoming and outgoing packet and all code parts should use
pointers to the part they want to use. The zero-copy approach,
which has not been fully implemented in our code, reduced
CPU load by about 20 percent.

Another performance bottleneck was found to be a poor
design of the implemented hash table – initially we used the
standard hash function, where 1 byte array as the hash key and
dense size in rehash turned out to consume much computation
resources. The hash function used now is still simple but
efficient: The key is treated as a 4-bytes array and the hash
value is the sum of the values in the array reduced modulo
the hash table size. Let k1, k2, . . ., kn be the values of the
integer array and p be the hash table size. Then the (current)
hash function is given by:

hash(k) = (k1 + k2 + . . . + kn) mod p

This results in a possible output range of values from 0 to
232−1. The original hash function based on an array of 1 byte
values, in contrast, results in a very limited range of output
values: because all the ki are just in the range of 0 to 255 and
a typical number of bytes is 16, the range of the hash function
was 0 to 4080. This means that a huge part of a large hash
table was never used and so the distribution along the range
was not uniform.

The hash table is rehashed with a higher hash table size
whenever the load factor exceeds a certain limit (i.e., 0.5).
The load factor is given by:

load factor =
stored elements

hash table size

Originally, the list of supported hash table size was dense,
which resulted in the need to rehash very often. The solution
was to rapidly increase hash table sizes exponentially (i.e. the
hash table size is more than doubled from one value to the
next) to quickly achieve the necessary size while minimizing
rehashing turns, which turned out very effective.

By optimizing the hash table, the average number of items in
one hash table bucket was reduced by one magnitude and the
overall GIST performance increased by approximately 20%.

The most important optimizations discussed above were also
accompanied by less significant changes. Some functions were
called several million times within a few minutes of operation,

9



which resulted in a large amount of overhead. Using the
inline statement to integrate the function body directly into
the calling code reduced this overhead and the performance
gain was up to 10 percent of overall performance. In the
current implementation, some small code optimizations such
as making common functions inline and replacing memcpy()
calls by direct assignments, which reduce readability but
improve performance, were carried out in frequently used code
sections.

These optimizations cut CPU load by half by incorporating
the well-known principle of zero-copy and optimizing central
data structures and frequently used code parts. As already
mentioned in the above subsections, further optimizations in
memory management and introduction of thread pooling ought
to contribute to more promising results.

V. RELATED WORK

Over the last decade, various issues for signaling in the
Internet, especially for QoS resource reservation, have been
widely investigated, They have ranged from soft state model-
ing [45], [46], scalability enhancements (e.g., by reservation
aggregation and more efficient refreshes) [13], [47]–[49], to
complexity [14]–[16], [20] and applicability [50]–[52]. A lot
of works have attempted to simplify or extend RSVP (even
under other protocol names). For example, today there are 44
RFCs with the word “RSVP” in their titles, while the index
of Internet drafts lists 16 documents with “RSVP” in their
titles. These works employed either a server-based or a router-
based approach. A server-based approach relies on centralized
entities (known as “bandwidth brokers”) to perform admission
control, while the router-based approach installs packet filters
either on a per-flow or aggregated basis in a hop-by-hop way.
Although there has been much focus on modularity for specific
QoS or multicast models (e.g., [53]), generic signaling support
has acquired little focus. Furthermore, the dominant way of
using the Router Alert Option and coupling discovery with
discovery have lead to a number of security and complexity
problems [20], [54]. Derived from RSVP concepts, the Label
Distribution Protocol (LDP) [64] was standardized by the IETF
for distributing MPLS labels (later for several other signaling
purposes), but it does not address the next signaling hop
discovery problem nor adequate security, leaving them for the
administrators’s concern.

Recently, several authors have addressed modular design,
using either an RSVP-based or a CASP-based approach. In
RSVP-based approaches, RSVP has been extended with a
per-hop reliablility mechanism [12] and general signaling
support [22]. This approach removes the QoS- and multicast-
specific processing burden from the original RSVP, and has
the advantage of better compatibility with existing protocol
and implementations. Nonetheless, issues concerning security,
congestion control and fragmentation of signaling messages
may be more complex. No simple solution is available and
RSVP still has to deal with these issues, since RSVP en-
capsulates its messages using raw IP or UDP, and couples
message delivery with next-hop discovery. Variations of the
RSVP-based approach have been described in [22], [55]. The

latter proposal suggests a decoupled system where a signaling
message is just sent to next CASP hop (discovered by some
next-hop discovery mechanism) using an existing transport
protocol which provides capabilities such as fragmentation,
congestion control, and easier security when desired. Both
proposals, however, leave the actual mechanism undefined.
The present GIST design has followed many ideas of the
CASP-based approach and reuses RSVP concepts wherever
possible [25]. Nonetheless, the tradeoff between performance,
security, complexity and modularity is still an issue in both
approaches. Fault recovery, especially in dealing with re-
routing [56] remains one major concern in the layered archi-
tecture.

These studies have been accompanied by some researchers
on performance evaluation, in particular with RSVP. For
example, Chiueh et al. [10] reported an empirical study of
RSVP, which measured performance of a Cisco RSVP-capable
router, including RSVP control packet latencies (under loaded
and unloaded cases) and throughput impact delivered for QoS
objectives. Pan et al. [14], [36], [57] extensively studied pro-
cessing performance and scalability issues of RSVP and pos-
sible protocol improvements. Karsten et al. [11] implemented
a user-level RSVP protocol engine (which allows multi-
threading processing) in Linux C++, evaluated its performance
to find out the upper limits of the reservation requests and
profiled the system for different parts of protocol operations.

After we developed an open source CASP implementation
and evaluated its running properties [58], the present paper
elaborates the overhead study and performance results of the
evolved IETF GIST protocol through a detailed evaluation. To
our knowledge, this is the first empirical study of the GIST
protocol.

VI. CONCLUSIONS

This paper presented the overhead, implementation and
performance study of GIST, a generic IP signaling protocol
being developed by the IETF. In contrast to traditional meth-
ods, GIST provides a modular architecture to support any
application (NSLP) requesting signaling services, and reduces
complexity by relying on existing security and transport pro-
tocols for achieving signaling functionalities. The modularity
design of the GIST implementation provides a flexible way
for state management and message processing. The result is
improved extensibility, security, and transport properties at the
cost of additional overhead. The implementation performed
efficiently when serving a number of sessions (at least 60,000)
and the profiling shows the detailed processing and round-
trip times for different numbers of signaling sessions. C-
mode is concluded to be preferred to D-mode due to its
richer functionality despite slightly higher overhead during the
session setup.

The focus of this paper has been on GIST properties,
such as protocol overhead, scalability and other performance
issues. Composing signaling application protocols (NSLPs)
and its effect on overhead and performance will certainly pose
imminent concerns once the overall system has materialized,
which will also effect its deployment.

10



In addition, a number of issues were encountered when
investigating the GIST protocol, which went beyond the
scope of this study. It is clear to say that further study will
be necessary with respect to a more sophisticated network
topology, as well as the interaction with underlying transport
and security protocols (effects of applying IPsec/TLS and
different TCP variants in particular). In addition, studies are
being carried out on other issues connected with GIST/NSIS,
such as mobility support [25], [59], fault handling and route
change, as well as the QoS and NAT/Firewall NSLPs under
standardization [30], [31], and a comprehensive performance
evaluation of the whole NSIS protocol stack in comparison
with RSVP.

ACKNOWLEDGMENT

We would like to thank Bernd Schlör, Henning Peters and
Andreas Westermaier for their assistance in the implementa-
tion, as well as Elwyn Davies, Cedric Aoun, Tseno Tsenov,
Fabian Meyer and Sebastian Willert for their contributions. We
would also like to thank anonymous reviewers and members of
the IETF NSIS working group for their helpful comments, and
Martin Karsten for sharing his experience and kind support for
KOM-RSVP experiments.

REFERENCES

[1] D. Clark, “The Design Philosophy of the DARPA Internet Protocols,”
in Proc. of SIGCOMM 1988, Stanford, CA, Aug. 1988.

[2] R. Braden, D. D. Clark, and S. Shenker, “Integrated services in the
Internet architecture: an overview,” Internet Engineering Task Force,
RFC 1633, June 1994.

[3] B. E. Carpenter and S. Brim, “Middleboxes: Taxonomy and Issues,”
Internet Engineering Task Force, RFC 3234, Feb. 2002.

[4] M. Blumenthal and D. Clark, “Rethinking the design of the Internet:
The end to end arguments vs. the brave new world,” ACM Transactions
on Internet Technology, vol. 1, no. 1, pp. 70–109, Aug. 2001.

[5] J. Kempf and R. Austein, “The Rise of the Middle and the Future of
End-to-End: Reflections on the Evolution of the Internet Architecture,”
Internet Engineering Task Force, RFC 3724, Mar. 2004.

[6] L. Zhang, S. Deering, D. Estrin, S. Shen, and D. Zappala, “RSVP: A
New Resource ReSerVation Protocol,” IEEE Network, vol. 7, no. 5, pp.
8–18, Sept. 1993.

[7] R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin, “Resource
ReSerVation Protocol (RSVP) – Version 1 Functional Specification,”
Internet Engineering Task Force, RFC 2205, Sept. 1997.

[8] J. Wroclawski, “The use of RSVP with IETF integrated services,”
Internet Engineering Task Force, RFC 2210, Sept. 1997.

[9] S. Blake, D. L. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss,
“An architecture for differentiated service,” Internet Engineering Task
Force, RFC 2475, Dec. 1998.

[10] T. Chiueh, A. Neogi, and P. Stirpe, “Performance Analysis of an RSVP-
Capable Router,” in Proc of IEEE RTAS, Denver, Colorado, USA, June
1998.

[11] M. Karsten, J. Schmitt, and R. Steinmetz, “Implementation and Eval-
uation of the KOM RSVP Engine,” in Proc of IEEE INFOCOM,
Anchorage, Alaska, USA, Apr. 2001.

[12] L. Berger, D. Gan, G. Swallow, P. Pan, F. Tommasi, and S. Molendini,
“RSVP refresh overhead reduction extensions,” Internet Engineering
Task Force, RFC 2961, Apr. 2001.

[13] P. Pan, E. Hahne, and H. Schulzrinne, “BGRP: A Tree-Based Aggre-
gation Protocol for Inter-domain Reservations,” Journal of Communica-
tions and Networks, vol. 2, no. 2, pp. 157–167, June 2000.

[14] P. Pan and H. Schulzrinne, “YESSIR: A Simple Reservation Mechanism
for the Internet,” in Proc of ACM NOSSDAV, Cambridge, UK, July 1998.

[15] G. Feher, K. Nemeth, M. Maliosz, I. Cselenyi, J. Bergkvist, D. Ahlard,
and T. Engborg, “Boomerang – A Simple Protocol for Resource Reser-
vation in IP Networks,” in Proc of IEEE RTAS, Vancouver, British
Columbia, Canada, June 1999.

[16] P. Chandra, A. Fisher, and P. Steenkiste, “A Signaling Protocol for
Structured Resource Allocation,” in Proc of IEEE INFOCOM, New
York, NY, USA, Mar. 1999.

[17] A. Talukdar, B. Badrinath, and A. Acharya, “MRSVP: a Resource
Reservation Protocol for an Integrated Services Network with Mobile
Hosts,” Wireless Networks, 7(1): 5–19, 2001.

[18] S. Lee, A. Gahng-Seop, X. Zhang, and A. Campbell, “INSIGNIA: An
IP-Based Quality of Service Framework for Mobile Ad Hoc Networks,”
Journal of Parallel and Distributed Computing, Special issue on Wireless
and Mobile Computing and Communications, 60(4): 374–406, 2000.

[19] W.-T. Chen and L.-C. Huang, “RSVP Mobility Support: A Signaling
Protocol for Integrated Services Internet with Mobile Hosts,” in Proc of
IEEE INFOCOM 2000, Tel-Aviv, Israel, Mar. 2000.

[20] J. Manner and X. Fu, “Analysis of Existing Quality-of-Service Signaling
Protocols,” Internet Engineering Task Force, RFC 4094, May 2005.

[21] The IETF Next Steps in Signaling (NSIS) Working Group. [Online].
Available: http://www.ietf.org/html.charters/nsis-charter.html

[22] B. Braden and B. Lindell, “A Two-Level Architecture for Internet
Signaling,” Internet draft (draft-braden-2level-signaling-01), work in
progress, Oct. 2002.

[23] H. Schulzrinne, H. Tschofenig, X. Fu, and A. McDonald, “CASP –
Cross-Application Signaling Protocol,” Internet draft (draft-schulzrinne-
nsis-casp-01), work in progress, Mar. 2003.

[24] X. Fu, H. Tschofenig, and D. Hogrefe, “Beyond QoS Signaling: a
Generic IP Signaling Framework,” Computer Networks, 50(17): 3416-
3433, Dec. 2006.

[25] H. Schulzrinne and R. Hancock, “GIST: General Internet Signaling
Transport,” Internet draft (draft-ietf-nsis-ntlp-15), work in progress, Feb.
2008.

[26] R. Hancock, G. Karagiannis, J. Loughney, and S. Van den Bosch,
“Next Steps in Signaling (NSIS): Framework,” Internet Engineering Task
Force, RFC 4080, June 2005.

[27] R. Stewart, “Stream Control Transmission Protocol,” Internet Engineer-
ing Task Force, RFC 4960, Sept. 2007.

[28] E. Kohler, M. Handley, and S. Floyd, “Datagram Congestion Control
Protocol (DCCP),” Internet Engineering Task Force, RFC 4340, Mar.
2006.

[29] X. Fu, C. Dickmann, and J. Crowcroft, “General Internet Signaling
Transport (GIST) over SCTP,” Internet draft (draft-ietf-nsis-ntlp-sctp-
04), work in progress, Feb. 2008.

[30] J. Manner, G. Karagiannis, and A. McDonald, “NSLP for Quality-of-
Service signaling,” Internet draft (draft-ietf-nsis-qos-nslp-16), work in
progress, Feb. 2008.

[31] M. Stiemerling, H. Tschofenig, C. Aoun, and E. Davies, “NAT/Firewall
NSIS Signaling Layer Protocol (NSLP),” Internet draft (draft-ietf-nsis-
nslp-natfw-16 ), work in progress, Feb. 2008.

[32] A. Fessi, G. Carle, F. Dressler, J. Quittek, C. Kappler, and H. Tschofenig,
“NSLP for Metering Configuration Signaling,” Internet draft (draft-
dressler-nsis-metering-nslp-05), work in progress, Mar. 2007.

[33] D. D. Katz, “IP Router Alert Option,” Internet Engineering Task Force,
RFC 2113, Feb. 1997.

[34] T. Tsenov, H. Tschofenig, X. Fu, C. Aoun, and E. Davies, “GIST State
Machine,” Internet draft (draft-ietf-nsis-ntlp-statemachine-05), work in
progress, Feb. 2008.

[35] C. Aoun, E. Davies, and H. Tschofenig, “Securing Middlebox
Discovery for Path-Directed Signaling in the Internet,” in IEEE ASWN
2005 Workshop Proceedings, Paris, France, July 2005.

[36] P. Pan and H. Schulzrinne, “Staged Refresh Timers for RSVP,” in Proc
of IEEE Global Internet, Phoenix, AZ, USA, Nov. 1997.

[37] L. Wang, A. Terzis, and L. Zhang, “A New Proposal for RSVP
Refreshes,” in Proc of IEEE ICNP, Toronto, Canada, Nov. 1999.

[38] L-E. Jonsson, G. Pelletier, and K. Sandlund, “The RObust Header
Compression (ROHC) Framework,” Internet Engineering Task Force,
RFC 4995, July 2007.

[39] C. Dickmann, I. Juchem, S. Willert, and X. Fu, “A stateless Ping tool
for simple tests of GIST implementations,” Internet draft (draft-juchem-
nsis-ping-tool-02), work in progress, July 2005.

[40] OpenNSIS Implementation, University of Göttingen,
http://user.informatik.uni-goettingen.de/∼nsis

[41] The eXtensible Open Router Platform (XORP). [Online]. Available:
http://www.xorp.org/

[42] P. Marques, “Kernel ISDN subsystem and device drivers.” [On-
line]. Available: http://kernel.org/pub/linux/kernel/people/marcelo/linux-
2.4/drivers/isdn/

[43] Ethereal Dissector for GIST. [Online]. Available:
http://user.informatik.uni-goettingen.de/∼nsis/ethereal.html

11



[44] G. Varghese and A. Lauck, “Hashed and hierarchical timing wheels:
Data structures for the efficient implementation of a timer facil-
ity”, in Operating Systems Review, Special Issue: Proceedings of the
Eleventh Symposium on Operating Systems Principles, Austin, TX,
USA, 21(5):25-38, Nov. 1987

[45] S. Raman and S. McCanne, “A model, analysis, and protocol framework
for soft state-based communication,” in Proc. of SIGCOMM, Cambridge,
MA, USA, Aug. 1999.

[46] P. Ji, Z. Ge, J. Kurose, and D. Towsley, “A Comparison of Hard-state
and Soft-state Signaling Protocols,” in Proc. of SIGCOMM, Karlsruhe,
Germany, Aug. 2003.

[47] Y. Bernet, P. Ford, R. Yavatkar, F. Baker, L. Zhang, M. Speer,
R. Braden, and B. S. Davie, “A framework for integrated services
operation over diffserv networks,” Internet Engineering Task Force,
RFC 2998, Nov. 2000.

[48] F. Baker, C. Iturralde, F. L. Faucheur, and B. Davie, “Aggregation
of RSVP for IPv4 and IPv6 reservations,” Internet Engineering Task
Force, RFC 3175, Sept. 2001.

[49] Z.-L. Zhang, Z. Duan, and Y. H. Hou, “Decoupling QoS Control from
Core Routers: A Novel Bandwidth Broker Architecture for Scalable Sup-
port of Guaranteed Services,” in Proc. of ACM SIGCOMM, Stockholm,
Sweden, Aug. 2000.

[50] A. Mankin, F. Baker, B. Braden, S. Bradner, M. O‘Dell, A. Romanow,
A. Weinrib, and L. Zhang, “Resource ReSerVation protocol (RSVP)
– version 1 applicability statement some guidelines on deployment,”
Internet Engineering Task Force, RFC 2208, Sept. 1997.

[51] D. Awduche, L. Berger, D. Gan, T. Li, V. Srinivasan, and G. Swallow,
“RSVP-TE: extensions to RSVP for LSP tunnels,” Internet Engineering
Task Force, RFC 3209, Dec. 2001.

[52] A. Terzis, J. Krawczyk, J. Wroclawski, and L. Zhang, “RSVP operation
over IP tunnels,” Internet Engineering Task Force, RFC 2746, Jan. 2000.

[53] D. Mitzel, D. Estrin, S. Shenker, and L. Zhang, “An architectural
comparison of ST-II and RSVP,” in Proc. of IEEE INFOCOM, Toronto,
Ontario, Canada, June 1994.

[54] T.-L. Wu, S. F. Wu, Z. Fu, H. Huang, and F.-M. Gong, “Securing
QoS: Threats to RSVP messages and their countermeasures,” in Proc.
of IWQoS, London, UK, June 1999.

[55] M. Shore, “The NSIS Transport Layer Protocol (NTLP),” Internet draft
(draft-shore-ntlp-00), work in progress, May 2003.

[56] S. Nelakuditi, S. Lee, Y. Yu, and Z.-L. Zhang, “Failure insensitive
routing for ensuring service availability,” in Proc. of IWQoS, Monterey,
CA, June 2003.

[57] P. Pan and H. Schulzrinne, “Processing Overhead Studies in Resource
Reservation Protocols,” in Proc. of International Teletraffic Congress
(ITC), Salvador, Brazil, Sept. 2001.

[58] X. Fu, D. Hogrefe, and S. Willert, “Implementation and Evaluation of
the Cross-Application Signaling Protocol (CASP),” in Proc. of IEEE
ICNP, Berlin, Germany, Oct. 2004.

[59] T. Sanda, X. Fu, S. Jeong, J. Manner, and H. Tschofenig, “Applicability
Statement of NSIS Protocols in Mobile Environments,” Internet draft
(draft-ietf-nsis-applicability-mobility-signaling-09), work in progress,
Feb. 2008.

[60] J. B. Postel, “Transmission Control Protocol,” Internet Engineering
Task Force, RFC 793, Sept. 1981.

[61] J. Touch, “TCP control block interdependence,” Internet Engineering
Task Force, RFC 2140, Apr. 1997.

[62] H. Balakrishnan and S. Seshan, “The Congestion Manager,” Internet
Engineering Task Force, RFC 3124, June 2001.

[63] R. Braden and L. Zhang, “Resource ReSerVation Protocol (RSVP) –
Version 1 Message Processing Rules,” Internet Engineering Task Force,
RFC 2209, Sept. 1997.

[64] L. Andersson, P. Doolan, N. Feldman, A. Fredette and B. Thomas,
“LDP Specification,” Internet Engineering Task Force, RFC 3036, Jan.
2001.

[65] X. Fu, H. Schulzrinne, H. Tschofenig, C. Dickmann and D. Hogrefe,
“Overhead and Performance Study of the General Internet Signaling
Transport (GIST) Protocol,” in Proc. of IEEE INFOCOM, Barcelona,
Spain, Apr. 2006.

APPENDIX – SOURCES OF PROTOCOL OVERHEAD IN GIST
IN COMPARISON WITH RSVP

Here we give the details on how each of the layers of
GIST and RSVP protocol structures contributes to their overall
protocol overhead.

1) IP: Both RSVP and GIST messages need an IPv4 or
IPv6 header, which is 20 bytes or 40 bytes without options,
routing, fragmentation and security headers. For GIST-Query
and RSVP-Path messages, the IP layer requires additional 4
bytes (for IPv4) or 8 bytes (for IPv6) in order to accommodate
the IP Router Alert Option.

2) Transport Layer: GIST-Query messages are encapsu-
lated using UDP, thus the transport layer overhead is 8 bytes.
Other GIST messages can use either D-mode (UDP) or C-
mode (TCP by default), resulting in a default transport layer
overhead of 8 bytes (UDP header) or 20 bytes (a minimum
TCP header). Note that C-mode messages in GIST require
additional transport layer messages to accomplish the trans-
port functionality, such as connection setup and reliability.
Under normal circumstances (e.g., no loss, non-congested, no
fragmentation), a TCP connection setup requires an additional
TCP SYN, a SYN+ACK message and a TCP ACK message,
whereas each GIST-layer message exchange needs an underly-
ing TCP ACK message. SYN or SYN+ACK messages carry an
MSS option (4 bytes) in addition to the normal TCP header,
thus their overall overhead is 24 bytes plus IP header. The
overhead of TCP ACK is 20 bytes plus IP header.

By default, RSVP messages are encapsulated directly using
IP, so normally there is no transport layer overhead in RSVP.
(Note the use of UDP for RSVP signaling is not discussed
here.)

3) GIST: The GIST layer overhead can differ from one
GIST message type to another, from one NSLP to another.
Firstly, for D-mode messages it attaches a magic number (4
bytes) which is the first 32-bit datagram payload. It also relies
on the used lengths of query-cookie and response-cookie as
well as peer identity (PI, part of the NLI – the network layer
information) and message routing method (MRM, used for
managing message routing state) [25]. In our work we choose
36 bytes as the length for both query-cookie and response-
cookie objects. We use the peer’s IP address as the PI, thus a
PI object length is 8 bytes (for IPv4) or 20 bytes (for IPv6).
Among the optional fields of a basic path-coupled MRM, we
choose to use only destination port (2 byte) for IPv4 and only
flow label (3 bytes) for IPv6, which is suggested for usage by
some other protocols as well, e.g., [7], [23]. All the mandatory
fields are used in below discussions.

GIST-Query message comprises a magic number (4 bytes),
common header (8 bytes), an MRM object (24 bytes for IPv4,
52 bytes for IPv6), a session ID object (20 bytes), a query-
cookie object (36 bytes) and a network layer information
object (24 bytes for IPv4, 36 for IPv6). For a node desiring
C-mode operation, the Querying node’s stack proposal object
(12 bytes) and stack configuration data object (20 bytes) are
also added. Therefore, the overall GIST layer overhead of a
GIST-Query message is as follows:

4 + 8 + 24 + 20 + 36 + 24(+12 + 20) = 116(+32, if stack
proposal exists) bytes for IPv4, and

12



4 + 8 + 52 + 20 + 36 + 36(+12 + 20) = 156(+32, if stack
proposal exists) bytes for IPv6.

A GIST-Response message echos the query cookie and
stack proposal objects, and additionally adds a response cookie
object (36 bytes) to the received query message. Thus, the
overall GIST layer overhead of a GIST-Response (C-mode) is
152 (+32 with stack proposal) bytes for IPv4 and 192 (+32
with stack proposal) bytes for IPv6.

A GIST-Confirm message differs from a GIST-Query in that
it contains a response cookie object instead of a query cookie
object (but of the same length), and removes the attached stack
configuration data, besides the NSLP payload. Therefore, the
overall GIST layer overhead of a GIST-Confirm is the same
as Query.

A GIST-Data message comprises a common header, MRM,
session ID and network layer information objects, excluding
NSLP payload. GIST-Data message overhead is then as fol-
lows:

8 + 24 + 20 + 20 = 72 bytes for IPv4, and
8 + 52 + 20 + 36 = 116 bytes for IPv6.
4) RSVP: A minimum RSVP-Path message contains the

IP layer (with overhead of 24 bytes for IPv4, 48 bytes for
IPv6 including router alert option), common RSVP header
(8 bytes), a session object (12 bytes for IPv4 and 24 bytes
for IPv6), TIME Values object (8 bytes) and a RSVP HOP
object (12 bytes for IPv4, 24 bytes for IPv6), in addition
to the actually signaled data, namely the SENDER TSpec
(12 bytes [8]). Therefore, a minimum RSVP-Path message
requires the following overhead for carry signaled data of 12
bytes:

24 + 8 + 12 + 12 + 8 = 64 bytes for IPv4, and
48 + 8 + 24 + 24 + 8 = 112 bytes for IPv6.
A minimum RSVP-Resv message for FF style (i.e., unicast)

contains the IP header, common RSVP header, a session
object, a RSVP HOP object, a STYLE object (8 bytes), and
a Filter Spec object (of 12 bytes length for IPv4, or of 24
bytes length for IPv6), in addition to the embedded signaling
data, i.e., a FlowSpec object (of 48 bytes length for GS,
the Guaranteed Service, or of 12 bytes length for CLS, the
Controlled Load Service [8]). This indicates that a minimum
unicast RSVP-Resv message imposes the following overhead
for carrying signaled data of 48 bytes (GS) or 12 bytes (CLS):

20 + 8 + 12 + 12 + 8 + 12 = 72 bytes for IPv4, and
20 + 8 + 24 + 24 + 8 + 24 = 108 bytes for IPv6.
5) Memory Consumption: Different from stateless proto-

cols (e.g., IP and UDP), TCP, GIST layer and RSVP layer
introduces memory requirements to store their layer-specific
states, besides their protocol engine repository. As the exact
presentation of these states is not part of the standards and
may differ from one implementation/computer architecture to
another, we estimate them below and validate them in the
evaluation (see Section IV-C).

In the TCP layer, each TCP connection maintains a data
structure for its state (TCP Control Block or TCB) [60], which
includes a combination of parameters, such as connection
state, current round-trip time estimates, congestion control
information, and process information. A TCB connection state
can vary in size between 256 bytes or less and more than

1 kilobytes. In GIST, TCP connections are recommended to
be shared across signaling sessions between the same GIST
pairs, where TCP Control Block Interdependence (TCBI) [61]
or Congestion Manager [62] may be used in order to reduce
connection state size, e.g., up to 512 bytes. Use of such mul-
tiplexing techniques allows a rather low memory consumption
for per-peer GIST state management.

The GIST layer in D-mode maintains a per-session state,
namely the message routing state. A minimum MRS state
entry contains MRI (e.g., 1-byte method identifier for “path-
coupled”, and 10-byte 5-tuple flow ID for IPv4 or 35-bytes
3-tuple flow ID for IPv6 comprising flow label, flow sender’s
address, flow receiver’s address), 16-byte session ID, 1-byte
NSLP ID, response direction (e.g., flow sender’s address, 4
bytes for IPv4 and 16 bytes for IPv6) and query direction (e.g.,
flow receiver’s address). This indicates that such an MRS entry
is 36 bytes (IPv4) or 85 bytes (IPv6) in size, in addition to a
validity timer.

In addition to the per-session state MRS (same as in D-
mode), GIST layer in C-mode also maintains a per-peer state
MA, which includes the GIST messages pending transmission
(the number can be zero) and MA active timer, which is rather
small in size when serving for a number of MRS sessions.

In contrast, each RSVP node maintains a per-session Path
State Block (PSB) and a Resv State Block (RSB) [63], each
with a validity timer and refresh interval. A minimum PSB
includes information about session (8 bytes for IPv4 and 20
bytes for IPv6), Sender Template (8 bytes for IPv4 and 20
bytes for IPv6), Sender Tspec (12 bytes), previous hop’s IP
address (4 bytes for IPv4, 16 bytes for IPv6) and logical
interface handle (4 bytes), remaining IP TTL (1 byte), and
several flags (assuming 1 byte), in total 38 bytes for IPv4
and 74 bytes for IPv6. A minimum RSB includes session (8
bytes for IPv4 and 20 bytes for IPv6), next hop IP address,
Filter Spec (12 bytes for IPv4 and 24 bytes for IPv6), style (4
bytes), and FlowSpec (36 bytes for CLS), in total 64 bytes
for IPv4 and 90 bytes for IPv6. This represents 82 bytes
for IPv4 and 164 bytes for IPv6 in overall RSB and PSB
excluding management overhead and timers. This conclusion
(i.e., slightly higher than GIST memory consumption) does
not appear surprising, since unlike GIST states, RSVP states
also include IntServ parameters.

13



Xiaoming Fu is professor and head of Computer
Networks Group at the University of Göttingen,
Germany. He received his Ph.D. Degree in Computer
Science from Tsinghua University, China in 2000.
He was a research staff at Technical University
Berlin, before moving to Göttingen as assistant
professor in 2002. His research interests include
network architectures, protocols, mobile communi-
cations and service overlays. He has served as TPC
member/session chair/chair for several networking
conferences such as INFOCOM, ICNP, ICDCS, and

MobiArch. He is currently editorial board member of Elsevier Computer
Communications Journal and a guest editor of IEEE Network Special Issue
on Implications and Control of Middleboxes in the Internet.

Henning Schulzrinne received his Ph.D. from
the University of Massachusetts in Amherst, Mas-
sachusetts. He was a member of technical staff
at AT&T Bell Laboratories, Murray Hill and an
associate department head at GMD-Fokus (Berlin),
before joining the Computer Science and Electrical
Engineering departments at Columbia University,
New York. He is currently chair of the Department
of Computer Science. Protocols co-developed by
him, such as RTP, RTSP and SIP, are now Internet
standards, used by almost all Internet telephony and

multimedia applications. His research interests include Internet multimedia
systems, ubiquitous computing, mobile systems, quality of service, and
performance evaluation. He is a Fellow of the IEEE.

Hannes Tschofenig received his Diploma degree
from the University of Klagenfurt, Austria. He
joined Siemens Corporate Technology in 2001 and
is currently a senior standardization specialist at
Nokia Siemens Networks and part-time researcher
at the University of Göttingen. His research interests
lie on network architectures, protocols, services and
related security issues. He is currently co-chair of the
IETF Emergency Context Resolution with Internet
Technologies (ECRIT), Provisioning of Symmetric
Keys (KEYPROV) and Diameter Maintenance and

Extensions (DIME) working groups, as well as secretary of the NSIS working
group. He is a co-author of several standard track RFCs and Internet drafts, and
contributed to EU funded projects including SHAMAN, Ambient Networks
and ENABLE.

Christian Dickmann received his bachelor’s degree
(with honors) in Computer Science in 2005 and is
working towards his master’s degree at the Univer-
sity of Göttingen. He was an intern at BMW Car IT
and Siemens AG. In 2007, he was a visiting research
scholar at Columbia University, New York.

Dieter Hogrefe received his Diploma degree and
Ph.D. from the University of Hannover, Germany.
His research activities are directed towards Com-
puter Networks and Protocol Engineering. In these
fields he has published several books and numerous
papers on Internet technology, analysis, simulation
and testing of formally specified communication sys-
tems. After years of research positions in Siemens,
he held professorships at the Universities of Dort-
mund, Berne and Luebeck. Since 2002 he is Pro-
fessor for Telematics at the University of Göttingen.

Since 1996 Prof. Hogrefe is chairman of the Technical Committee Methods
for Testing and Specification at the European Telecommunication Standards
Institute, ETSI.

14


