
G-COPSS: A Content Centric Communication
Infrastructure for Gaming Applications

Jiachen Chen, Mayutan Arumaithurai, Xiaoming Fu
Institute of Computer Science, University of Goettingen, Germany.

Email: {jiachen, arumaithurai, fu}@cs.uni-goettingen.de

K.K.Ramakrishnan
AT&T Labs Research, Florham Park, NJ, U.S.A.

Email: kkrama@research.att.com

Abstract—With users increasingly focused on an online world,
an emerging challenge for the network infrastructure is the need
to support Massively Multiplayer Online Role Playing Games
(MMORPG). This is an application domain that is attracting
more players than ever before, very often with players distributed
over a metropolitan area. Currently, MMORPG are built on
an IP infrastructure with the primary responsibility on servers
to do the work of disseminating control messages and having
to predict/retrieve objects in each player’s view. Limited server
resources significantly impair the user’s interactive experience.
Modern fast-paced action games that run on a client/server
architecture limit the number of players who can interact
simultaneously since the server needs to handle the frequent
updates and disseminate them. Scale and timeliness are major
challenges of such a server-oriented gaming architecture.

We propose Gaming over COPSS (G-COPSS), a communi-
cation infrastructure using a Content-Oriented Pub/Sub System
(COPSS) to enable efficient decentralized information dissemina-
tion in MMORPG, exploiting the network and the end-systems
for player management and information dissemination. We emu-
late an application that is particularly emblematic of MMORPG
– Counter-Strike – but one in which all the players share a
hierarchical structured map. Using trace-driven simulation, we
demonstrate that G-COPSS can achieve high scalability and
tight timeliness requirements of MMORPG. The simulator is
parameterized using the results of careful microbenchmarking
of the open-source CCN implementation and of standard IP-
based forwarding. Our evaluations show that G-COPSS provides
considerable performance improvement in terms of aggregate
network load and update latency compared to that of a traditional
IP server-based infrastructure.

I. INTRODUCTION

Supporting Massively Multiplayer Online Role Playing
Games (MMORPG) 1 is a significant challenge. MMORPGs
have become very popular because of their attractive struc-
turing and creative scenarios and the realization of real-
world human interactions. World of Warcraft and Counter-
Strike are examples of such games and are characterized by
the need for high interactivity (very low network latency),
since every action an individual player performs needs to
be communicated to all the related players and the players
need to react according to the ‘current’ environment and the
cumulative actions of all the players up to that point. Games
like Second Life involve a large number of players (possibly
within a metropolitan area, although not necessarily restricted

1http://en.wikipedia.org/wiki/Massively multiplayer online role-playing
game

as such) and require a persistent view of the world that is
usually managed by a dedicated server (e.g., one that is hosted
by the game’s publisher). The load on such a server for player
management and communication can be significant, and is
likely to be a source of substantial latency. One of the problems
in designing a MMORPG is that of determining the related
players for every action and disseminate these actions and
the changed environment to the relevant players in a scalable
manner with very low latency. As we observe in this paper,
for games where the environment is divided into regions that
different groups of players may have varying amounts of
visibility, it is desirable to sub-divide the environment into
hierarchical regions. We envisage incorporating the notion of
a “multi-layer hierarchical map”. While such capabilities exist
in some limited form in selected games, such as Second Life
(where players share a global map), they may be useful in
other interactive MMORPG. A server-based infrastructure is
likely to have more difficulty with providing this capability
because of the communication and processing (customized for
each individual player) requirements.

Publish/Subscribe (pub/sub) systems are particularly suited
for large scale information dissemination, and provide the
flexibility for users to only subscribe to the information of
interest to them. They decouple the information delivered to
them from all the other information available and transmitted
by a publisher. Moreover, with the use of an appropriate
interface, users can select and filter the information desired,
irrespective of the publisher of this information. We see that
such a capability is eminently suitable in our support of
MMORPG.

Content Centric Networking (CCN [1], NDN [2]) is a novel
networking paradigm centered around content distribution
rather than host-to-host connectivity. This change from a host
centric to a content centric communication capability removes
the need for receivers to know and establish context with spe-
cific sources of information and for publishers to have an apri-
ori knowledge of the intended recipients. Our recent proposal
of a Content-Oriented Publish/Subscribe System (COPSS) [3]
enhances NDN with a push based multicast capability and uses
the notion of hierarchical Content Descriptors (CDs) that are
employed by users to subscribe to information that is published
by any end-system in the network. COPSS facilitates a highly
dynamic and large scale pub/sub environment and is able to
deliver content in a timely manner. In this work, we develop

http://en.wikipedia.org/wiki/Massively_multiplayer_online_role-playing_game
http://en.wikipedia.org/wiki/Massively_multiplayer_online_role-playing_game

G-COPSS, a content centric communication infrastructure for
a decentralized gaming environment leveraging the advantages
provided by COPSS. We evaluate the performance of G-
COPSS by using a data trace of the Counter-Strike game and
show performance gains in terms of aggregate network load
and update latency.

The key contributions of G-COPSS to provide an efficient
communication infrastructure for MMORPG include:

• G-COPSS is designed as a decentralized gaming platform
that leverages the content-centric push-based multicast
capability provided by COPSS. Additionally, G-COPSS
adapts COPSS to provide the features necessary for a
gaming environment.

• G-COPSS provides games with “multi-layer hierarchical
map” functionality which is a further step of current
map partitioning solution. This enables players to have
different size of vision based on their altitude and thus
only need to send/receive updates pertaining to that
vision. The hierarchical CD based multicast provided by
COPSS allows G-COPSS to send updates efficiently in
such hierarchical map.

We review the related work in §II and present a brief
background of COPSS. We present the design of the G-COPSS
infrastructure in §III and evaluation results are given in §IV.
We conclude our work and outline future work in §V.

II. RELATED WORK

Modern fast-paced action games that run on a Client/Server
(C/S) architecture limit the number of players who can interact
simultaneously since the server needs to handle the frequent
updates and disseminate it. Feng et. al. in [4] show that
Counter Strike (CS), which is a popular server based game can
host on an average of 22 players/game on a server. Another
popular MMORPG, Second Life (SL), has dedicated servers
to support each of its 18,000 regions [5]. Nevertheless, studies
such as [5]–[7] show that SL makes intensive use of network
resources and that an Avatar action consumes about 20Kbps
in the down-link and a movement made by the avatar could
consume upto 110 Kbps on the down-link. Stenio et. al.
in [6] also show that the management of a region with only
5,000 rigid-body objects requires about 72% of the server
computational power.

Peer-to-peer (P2P) approaches such as those proposed
in [8]–[12] manage the virtual worlds in a distributed man-
ner by leveraging end-user resources and therefore provide
a scalable and cheap alternative to C/S approaches. E.g.,
Varvello et. al. propose a DHT based architecture for SL in
[12], [13] to overcome the limitations of a client/server based
SL. Bharambe et. al. proposed Donnybrook [11], a system
that is designed to handle games without server support.
The shortcomings of such DHT based solutions are that in
incurs management overhead and network overhead since it is
agnostic to the underlying topology.

G-COPSS leverages the network layer based content centric
benefits provided by both NDN [2] and COPSS [3] and adapts
COPSS to provide a decentralized gaming platform that is

R1

R6

R2

R7

R8

R9

R3

R5

R4

3

3

4

2 1
6

8 3
2

4

3 5

9
1

4

3

S1

S2

Pub

ST for /sports FIB for /rpx ST for /sports/football

Fig. 1: One step dissemination model of COPSS.

scalable for use by MMORPG. G-COPSS is therefore also
able to utilize the network topology to provide efficient and
timely content dissemination.

To achieve communication efficiency, we proposed
Content-Oriented Publish/Subscribe System (COPSS)
in [3], which enhances NDN using hierarchical content
descriptors, and uses a push-based dissemination framework.
This also relieves the users in NDN from having to know
the name of every piece of data beforehand. Instead,
they express interests in Content Descriptors (CDs),
e.g., /sports/soccer. Data providers (publishers)
send announcements related to a CD when they have
a new piece of data. CDs are grouped in hierarchical
structure so that subscribers of higher level CDs can
also receive announcements of lower level CDs, e.g., a
subscriber of /sports can also receive announcements
of /sports/soccer, /sports/swimming, etc. NDN
requires a new forwarding engine to perform the basic
CCN-related operations. The forwarding engine contains a
FIB (Forwarding Information Base), a Content Store and PIT
(Pending Interest Table). The FIB is used to forward Interest
packets toward potential source(s) of matching Data. COPSS
aware routers are equipped with an additional Subscription
Table (ST) that maintains CD-based subscription information
downstream of them in a distributed, aggregated manner, as
in IP multicast.

Fig. 1 illustrates COPSS’s support for push-based informa-
tion delivery. R7 serves as the rendezvous point rpx that serves
CD /sports. R7 will then have to propagate this information
to the whole COPSS aware network that would then create a
shortest path tree in the FIB (prefix=/rpx) in a decentralized
manner. Note that R7 can serve as other rendezvous points (i.e.
rpy , etc.) too. When a subscriber sends Subscribe packet with
prefix /sports, its 1st hop router will update the ST and
send the Subscribe packet upstream based on the FIB entry
for /rpx. In Fig. 1, S1 subscribes to /sports implying
that he would like to receive all the data addressed with the
prefix /sports and S2 subscribes to /sports/football
thereby implying that he would like to receive all the data
addressed with the prefix /sports/football. When Pub
sends a Multicast packet, its 1st hop router (R3) will en-

capsulate it into an Interest packet with prefix /rpx and the
COPSS network will forward it to R7. R7, then decapsulates it
and sends Multicast packet(s) based on its ST. Although this
packet will have to be delivered to 2 groups, only one packet
will be sent to R9. On receiving the packet, R9 will perform
an ST lookup, replicate the packet and forward them to R4

and R5. Both S1 and S2 will thus receive this packet. If Pub
sends a Multicast packet with prefix /sports/swimming,
R9 will only send it to R5 and S1 will be the only recipient.

III. G-COPSS: AN EFFICIENT COMMUNICATION
INFRASTRUCTURE FOR MMORPG

Map partitioning (e.g. Binary Space Partitioning, k-d tree,
Octree) is a well-known technique to help increase the update
efficiency in 3D game engines like Quake-derived engines,
Cube 2, and Doom engines since it can relieve the server from
performing tasks such as location approximation and barrier
detection. However, it is desirable to further sub-divide the
environment into hierarchical regions which enables players to
have a different area of vision based on their altitude and thus
only need to send/receive updates pertaining to that vision. We
believe that it is even more desirable to have a content centric
network-layer support for this kind of feature. After mapping
areas into CDs, players can publish and subscribe to higher
level CDs representing the whole area instead of the leaf CDs
that compose that area. This helps to reduce the number of
states maintained in the network and the network load caused
by the dissemination of updates.

G-COPSS is designed as a decentralized framework to
support this feature. It utilizes the benefits provided by COPSS
for efficient content dissemination. While COPSS is designed
to support content oriented publish-subscribe environments in
general, G-COPSS fine-tunes COPSS to support the specific
needs of a game environment. G-COPSS utilizes COPSS as a
predominantly push based framework to ensure that the players
receive timely updates. It is a content-centric network solution
(which we envisage will eventually be part of a network layer)
which overcomes the disadvantages of server-based and P2P
solutions that are agnostic to the underlying network topology.

In G-COPSS, we make the basic assumption that all players
have access to the game-map via the game client that was
downloaded apriori. For practical reasons, such as efficient
broadcast of updates, it is quite natural for game designers of
online games to partition the game map into various regions.
In G-COPSS, we take that optimization a step further by
introducing the need for a multi-layer hierarchical relationship
between the various areas in the environment. G-COPSS
therefore divides the game-map into a set of multi-layered
hierarchical areas as shown in Fig. 2 and uses the hierarchical
CD based groups of COPSS to represent these zones. Players
subscribe to the groups that represent the areas that they are
currently involved or located in.

We create prefix-free virtual rendezvous points (RP) that
are responsible for receiving updates from players and dis-
seminating it to the other players belonging to the same or
higher groups in the hierarchy. The term prefix-free mandates

(a) Map division.

/1/0 /1/1 /1/2 /1/3 /1/4 /2/0 /2/1 /2/2 /2/3 /2/4

/1 /2 /0

/

(b) Logical Hierarchy.

Flying on the top
 Pub: /0
 Sub: /
 E.g., Satellite, spaceship, …

Flying over 1
 Pub: /1/0
 Sub: /1, /0
 E.g., Plane, helicopter, …

Standing on 1/2
 Pub: /1/2
 Sub: /1/2, 1/0, /0
 E.g., Tank, ship, soldier…

(c) Hierarchical subscription.

Fig. 2: Hierarchical map partition.

that a prefix is served by only one RP, e.g., if an RP is
serving the prefix /1/1, there would not be RP serving /1
or /1/1/1, ensuring that messages will only be sent to one
RP for every CD associated with it. G-COPSS uses a central
server only to maintain an up-to-date snapshot of various zones
by subscribing to them. This is done to ensure that whenever a
player moves to a new zone, the server would be in a position
to send the current snapshot to the newly arriving player. This
significantly reduces the load on the server and thereby ensures
that the queueing delays at the server do not impair the playing
experience.

A. Hierarchy Creation
As explained above, G-COPSS exploits the game designer’s

partitioning of the game-map as a multi-layer hierarchy. This
allows the mapping of the zones/areas to hierarchical CD
based groups. G-COPSS allows map designers to divide map
into arbitrary layers, but for simplicity, we only use 3 layers in
this paper. Fig. 2a shows a world map which is first divided
into 2 regions (marked 1 and 2) and each region is further
divided into 4 zones (marked 1/1−2/4). The hierarchy created
for the map is shown in Fig. 2b. Note that we create a /0 for
every non-leaf CD in the hierarchy, i.e., /0 for top (/) and
/1/0 for /1. These /0s are used to represent the areas above
that e.g. represent the area where planes are flying(shown in
3D partition Fig. 2c) so that every area in the game world is
represented by a leaf node in the logical hierarchy. E.g., the
green area above 1/1 to 1/4 is represented by /1/0, and the
blue area above 1/0 and 2/0 is represented by /0.

B. Update Message Dissemination for Online Players
Using this modified hierarchy, a player can send an update

using a leaf CD representing the area that contains the object
he has modified. He can also subscribe to the leaf CDs that
represents the areas he has visibility into (his Areas of Interest

(AoI)). Furthermore, subscription to CDs can be aggregated at
some higher level in the hierarchy. According to [4], almost all
of the packets in a gaming application are under 200 bytes.
Therefore the one-step model of COPSS, where the data is
directly pushed to the subscribers, is used by G-COPSS to
disseminate update/control messages. Moreover, in a game, a
player is a publisher as well as a subscriber, and therefore G-
COPSS allows players to publish and subscribe using different
CDs according to the game semantics. Now, we describe
how G-COPSS maps the game logic onto COPSS pub/sub
relationships.

Hierarchical Publishing: Players need to publish the up-
dates they make to all interested-players (interested-players
are those that view the same AoI/objects). The player’s client
is therefore responsible for sending the updates to the RPs
that are responsible for the groups comprising the interested-
players. E.g., If a player moves a satellite in the blue area in
Fig. 2c, he will send the message to the RP serving the CD /0;
if he shoots at a plane in the green area, he will disseminate
the message using the CD /1/0; and if a soldier is moving
in the red area, he will disseminate it using the associated CD
/1/2.

Hierarchical Subscriptions: According to the semantics
of the hierarchical map, players should be able to see all
the updates below and vice versa. Therefore, a player will
subscribe to the area he is in and all the /0s along the
hierarchy. E.g., a player standing on 1/2 should subscribe to
/0, /1/0 (the /0s along the hierarchy) and /1/2 (the area
he is in). This allows him to see the units standing on 1/2, the
planes flying over zone 1, and the satellite at top (so that he
will not be shot without knowing who did that). Likewise, a
player flying over 1 will see the units standing on 1/1− 1/4,
those flying over 1 (area 1/0) and also those on top (area
0). Note that the CDs of /1/1 to /1/4 and /1/0 could
be aggregated to /1 implying that the player can therefore
subscribe to /0 (the /0s along the hierarchy) and /1 (the
area he is in).

C. Usage of COPSS vs. COPSS+IP
COPSS+IP was introduced in [3] as an incremental deploy-

ment step wherein the COPSS enabled routers at the edge
are used to provide content centric functionality while the
intermediate IP routers provide the forwarding efficiency. In
this section, we describe how G-COPSS can be designed to
function in a COPSS+IP environment.

The key to adopting G-COPSS in a COPSS+IP environment
(hybrid-G-COPSS) is to map the multitude of hierarchical CDs
to the limited IP multicast space. An ideal scenario would be
to perform a one-to-one mapping of the leaf CDs. But taking
into consideration the fact that billions of CDs could exist in
a content centric environment, this could result in more than
one CD being mapped to a single IP multicast address. In
G-COPSS, based on the available IP multicast address space,
the COPSS enabled edge routers would hash the high level
CDs on to a single IP multicast address rather than directly
hashing the leaf CDs. This allows the mapping tables at the

100

1000

10000

100000

1 51 101 151 201 251 301 351 401

o

f
U

p
d

at
e

s

Player ID

(a) # of updates per player.

0

50

100

150

0

5

10

15

20

25

1/0 2/0 3/0 4/0 5/0 0

o

f
O

b
je

ct
s

o

f
P

la
ye

rs

Area

of Players # of Objects

(b) # of players per area.

1/2

1/3

1/5

1/4

1/1

3/2

3/3

3/5

3/4

3/1

5/2

5/3

5/5

5/4

5/1

4/2

4/3

4/5

4/4

4/1

2/2

2/3

2/5

2/4

2/1

(c) Game map.

Fig. 3: Simulation Setup.

edge COPSS routers to aggregate mapping entries. Moreover,
this mechanism allows a message received by /1/1/1 to be
forwarded to the players subscribed to /1/1 and /1 too. Due
to the mapping of multiple CDs on to one IP multicast group,
unwanted messages too may be forwarded along branches of
the network. E.g, if /1 and /2 are mapped to one IP group, a
message to /1 would be sent to all the subscribers including
those subscribed to /2. The COPSS enabled router close to
the receiver side is then entrusted with the task of filtering out
the unwanted messages and forwarding only those messages
intended for the receiver.

IV. EXPERIMENTAL EVALUATION

A. Experimental Setup
To evaluate G-COPSS, we use a self developed simulator

and use a game model derived from the data trace of the
Counter-Strike (CS) game.

1) Event trace: We use a CS data trace obtained during
the peak of a day [14] as a representative trace of the stress
on a CS server. It consists of a Wireshark trace collected
on a busy CS server in a 7h05m25s period, which totaled
20, 000, 000 packets sent to and from the server by 32, 765
different addresses (59, 294 different address:port). Since the
packets contained indeciphearable information and represents
a server based game, we performed the following operations
to filter out packets that represent a de-centralized gameplay:
1) discarded all the packets sent from the server since G-
COPSS does not require a server, 2) discarded packets with
address:port that send less than 100 packets to obtain the trace
of the established connections (clients really play games) since
the trace consisted of many attempted connections (clients
echo server to get RTT) too, and 3) we assumed that every
unique address represents a unique player. This resulted in a
data trace consisting of 414 unique players and 10, 686, 950
packets (updates) in the same period of time as the original
trace. Fig. 3a shows the number of updates performed by the
the different players.

2) Game map and player distribution: The 414 unique
players share a global game-map shown in Fig.3c. The game-
map is converted to a hierarchical map by dividing it into

5 regions (marked 1 − 5) and further dividing every region
into 5 zones (marked 1/1− 5/5). This results in 31 leaf CDs
(twenty-five for bottom layer (“zones”) marked 1/1−5/5, five
for middle layer (“regions”) marked 1/0−5/0 and one for the
top layer (“world”) marked 0) in the hierarchy. At the start of
the simulation, the players are randomly distributed into the
various areas as shown in Fig.3b resulting in a maximum of
22 players and a minimum of 4 players per area. Furthermore,
as shown in Fig.3b, the areas are further divided into objects
ranging from 80 to 120. A player would be able to see and
modify these objects depending on his location in the game
and the hierarchy of the area he belongs to as defined in §III.

3) Network topology: We use the Rocketfuel [15] backbone
topology (id=3967) for the core routers. In addition, we have a
total of 200 edge routers that are homed on the 79 core routers,
with each core router having 1-3 edge router(s) connected to it.
We uniformly distributed the 414 players on the edge routers.
The link weights between the core routers were obtained from
the topology and interpreted as delays (in milliseconds). The
delay between each edge router and its associated core router
is set to 5 ms; the delay between each host and its associated
edge router is set to 10 ms.

We randomly distribute the RP(s) on the core routers to
evaluate COPSS. To make a fair comparison, we place the
server(s) on the router(s) which served as RP(s) for the COPSS
evaluation to perform the IP server based simulations. We also
use the same map (area-RP/Server) for both the evaluations.

B. Update Message Dissemination for Online players
In this section, we evaluate the performance gain of G-

COPSS in disseminating updates compared to that of a game
operating in an IP network with servers. Here, we assume a
stable state where all the players are attached to their areas
of interest and do not move for the whole duration of the
simulation.

The need for decentralization: We emulate the game-
play using the first 100,000 update packets from the event
trace to evaluate the average latency incurred in delivering an
update from the publisher (player who performed the update)
to all the other subscribers (players subscribed to the CDs the
update is intended for) for different number of RPs and servers.
The average update frequency observed in the event trace is
about 2.40ms. In our simulations, an RP’s processing time
(including FIB lookup, packet decapsulation and ST lookup)
is set to 3.3ms (based on benchmark measurements perfomed
on standard PCs [3]), and the the server processing time is
twice the RP processing time since it is an application layer
function. Table I shows that the update latency incurred in
the case of 1 or 2 RPs is high because of congestion at the
RPs (the processing time at an RP is higher than the update
frequency observed at each RP). When we added another
RP, this mitigated the effect of congestion. When the number
of RPs is equal to 3 or more, no congestion is observed.
Fig. 4 shows the minimum, maximum and average update
latency of every update in a 3-RP situation. We observe
that the update latency lies below 200ms which is below

TABLE I: Performance of G-COPSS and IP server with
different RP(s)/Server(s)

Type
of Update Latency Network Load

RP/Server (µs) (byte)

G-COPSS
1 47,680,290.87 5,590,798,485
2 558,179.55 5,657,133,239
3 94,885.80 5,557,641,484

IP Server
1 249,679,699.91 9,735,117,116
2 71,991,918.39 10,001,374,835
3 21,448,167.83 9,622,658,081

Fig. 4: Simulation Time vs. Update Latency (3-RP)

the generally considered acceptable latency for such games
(300ms to 1s [16]).

Another observation in Table I is that update latency and
aggregate network load in G-COPSS is smaller than that of
an IP server scenario with the same number of servers despite
the fact that IP routers are 50-500 times faster than NDN
routers according to [3]. This is mainly due to the fact that
the IP servers need to disseminate the information via unicast
to all the individual subscribers wherein G-COPSS is able
to perform hierarchical CD based multicast. The IP server
based approach needs more computational power and network
bandwidth even in decentralized case.

V. FUTURE WORK

In this work, we presented G-COPSS that functions as
an efficient decentralized communication infrastructure for a
gaming environment by leveraging the advantages provided
by a content-centric network. We showed that it is able to
outperform a pure IP server-based gaming environment in
terms of aggregate network traffic and update latency. We
are currently working on a full fledged gaming platform.
Additionally, we are performing extensive evaluations of the
proposed communication model and comparing it to the state
of the art gaming solutions.

REFERENCES

[1] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,
and R. L. Braynard, “Networking named content,” in CoNEXT, 2009.

[2] L. Zhang, D. Estrin, J. Burke, V. Jacobson, and J. Thornton, “Named
data networking (ndn) project,” PARC, Tech. Report NDN-0001, 2010.

[3] J. Chen, M. Arumaithurai, L. Jiao, X. Fu, and K. K. Ramakrishnan,
“Copss: An efficient content oriented publish/subscribe system,” in
ANCS, 2011.

[4] W. chang Feng, F. Chang, W. chi Feng, and J. Walpole, “A traffic
characterization of popular on-line games,” Networking, IEEE/ACM
Transactions, vol. 13, no. 3, pp. 488 – 500, 2005.

[5] S. Kumar, J. Chhugani, C. Kim, D. Kim, A. Nguyen, P. Dubey, C. Bienia,
and Y. Kim, “Second life and the new generation of virtual worlds,”
IEEE Computer, vol. 41, no. 9, p. 4653, 2008.

[6] F. Stenio, K. Carlos, S. Djamel, M. Josilene, and A. Rafael, “Traffic
analysis beyond this world: the case of second life,” in NOSSDAV, 2007.

[7] M. Varvello, S. Ferrari, E. Biersack, and C. Diot, “Exploring second
life,” Transaction of Networking, vol. 19, no. 1, p. 8091, 2010.

[8] J. Keller and G. Simon, “Solipsis: A massively multi-participant virtual
world,” in PDPT, 2003.

[9] A. Bharambe, J. Pang, and S. Seshan, “Colyseus: A distributed archi-
tecture for online multiplayer games,” in NSDI, 2006.

[10] S.-Y. Hu, J.-F. Chen, and T.-H. Chen, “Von: A scalable peer-to-peer
network for virtual environments,” IEEE Network, vol. 20, no. 4, p.
2231, 2006.

[11] A. Bharambe, J. R. Douceur, J. R. Lorch, T. Moscibroda, J. Pang,
S. Seshan, and X. Zhuang, “Donnybrook: Enabling large-scale, high-
speed, peer-to-peer games,” in Sigcomm, 2008.

[12] M. Varvello, S. Ferrari, E. Biersack, and C. Diot, “A distributed avatar
management for second life,” in Netgames, 2009.

[13] M. Varvello, C. Diot, and E. Biersack, “P2p second life: experimental
validation using kad,” in Infocom, 2009.

[14] W. Feng, “On-line games,” http://www.thefengs.com/wuchang/work/cstrike/.
[15] R. Mahajan, N. Spring, D. Wetherall, and T. Anderson, “Inferring link

weights using end-to-end measurements,” in IMW, 2002.
[16] M. Claypool and K. Claypool, “Latency and player actions in online

games,” ACM Communication, vol. 49, no. 11, p. 4045, 2006.

	Introduction
	Related Work
	G-COPSS: An Efficient Communication Infrastructure for MMORPG
	Hierarchy Creation
	Update Message Dissemination for Online Players
	Usage of COPSS vs. COPSS+IP

	Experimental Evaluation
	Experimental Setup
	Event trace
	Game map and player distribution
	Network topology

	Update Message Dissemination for Online players

	Future Work
	References

