Multilevel Generalized Low-Density Parity-Check Codes

R. Y. S. Tee, F. C. Kuo and L. Hanzo

Department of Electronics and Computer Science, University of Southampton, Southampton SO17 1BJ, United Kingdom
1lh@ecs.soton.ac.uk, http://www-mobile.ecs.soton.ac.uk

Abstract
Multilevel Coding (MLC) invoking Generalized Low-Density Parity-Check (GLDPC) component codes is proposed, which is capable of outperforming the classic LDPC component codes at a reduced decoding latency.

Introduction: Multilevel Coding (MLC) was proposed by Imai and Hirawaki [1] as a bandwidth efficient coded modulation scheme designed for protecting each bit of a non-binary symbol with the aid of binary codes, while maintaining different target Bit Error Rates (BERs). Parallel Independent Decoding (PID) [2] is employed as an efficient decoding strategy with reduced decoding delay, where there is no information exchange across the different protection classes.

MLC schemes may be constructed using different component codes. Recently, classic Low-Density Parity-Check (LDPC) codes [3] have been commonly used as component codes [4] owing to their flexible code rates and good BER performance. Belief Propagation (BP) [3] may be used for iterative soft decoding at each different BER protection level. Against this background, we propose a novel MLC design using Generalized LDPC (GLDPC) codes rather than classic LDPC codes [5] as component codes, which has the benefit of an improved BER performance and an implementationally attractive shorter parallel decoding structure.

As a benefit of their block-based nature and random generator matrix construction, no channel interleaver is required for LDPC or GLDPC component codes. For our GLDPC codes, instead of using Gallager’s single-error detecting parity check code [3], we employ binary BCH error-correcting codes [6] as the constituent codes. Simple iterative Soft-Input Soft-Output (SISO) decoders [6] are used for each constituent BCH code of the MLC scheme. We invoke both inner-iterations within the LDPC/GLDPC component codes and outer-iterations exchanging information between the LDPC/GLDPC block codes and the demapper, as seen in Figures 1 and 2. Gray Mapping (GM) of the bits to modulated symbols is used for non-iterative decoding, while Set Partitioning (SP) based mapping is used for iterative decoding, because it provides improved iteration gains.
Multilevel GLDPC: We propose a MLC invoking GLDPC component codes [5] having a parity check matrix (PCM) with binary BCH codes \(C_0(n, k) \) as the constituent codes. The PCM was constructed with the aid of \(J \) GLDPC superblocks. We opted for using \(J=2 \), since it results in a high minimum distance [5], despite its low decoding complexity. The \(J=2 \) superblocks are defined by two PCMs, which satisfy \(H^2 = \pi H^1 \), where \(H^1 \) and \(H^2 \) denotes the matrices of the first and second superblock respectively while \(\pi \) represents a pseudo-random permutation. This code construction requires \(L=N/n \) constituent codes, where \(N \) denotes the total coded block length.

Each BCH constituent code of the first GLDPC superblock seen in the upper half of Figure 1 has an associated SISO decoder and the BCH constituent codes are decoded in parallel, before the resultant extrinsic information is fed into the second interleaved GLDPC superblock portrayed at the bottom of Figure 1. The substantial implementational benefit of this is that a number of cost-efficient, low-speed parallel SISO decoders may be used instead of a single high-speed decoder. The reduced processing block length of a constituent BCH SISO decoder is equivalent to \(N/n \), as opposed to \(N \) in a LDPC or turbo constituent decoder.

Figure 1 portrays the \(L \) number of SISO decoders of the \(L \) constituent BCH codes. Since we have \(J=2 \) GLDPC superblocks, the channel’s output information \(y \) is fed directly into the \(L \) number of parallel BCH SISO decoders of the first GLDPC superblock, while after deinterleaving in the block \(\pi^{-1} \) into the second GLDPC superblock of Figure 1. The extrinsic outputs \(\text{Ext}^1 \) of the first superblock’s SISO decoders are de-interleaved and used as a priori information \(\text{Apr}^2 \) for each of the BCH constituent decoders of the second GLDPC superblock in Figure 1. During the next inner iteration, the extrinsic information \(\text{Ext}^2 \) arriving from the second superblock is used as the a priori information \(\text{Apr}^1 \) for the BCH constituent decoders of the first GLDPC superblock of Figure 1, as in classic turbo detectors [6].

Modulation and demodulation: Figure 2 shows the MLC/PID system model, employing the iterative GLDPC scheme of Figure 1 for each MLC protection class and having an additional outer decoding loop. A 3 bit/symbol encoded data is transmitted using 8-PSK modulation. Both an iterative and a non-iterative scheme are studied and Gray Mapping is employed in the non-iterative scheme, where the parallel decoding of the three bits is implemented without outer iterations. However, for the sake of achieving an outer iteration gain in the decoder of our scheme, we also propose an iterative scheme employing SP based mapping [6].

Since the a priori information \(\tilde{u} \) fed to demapper of Figure 2 is not equiprobable after the first
outer iteration, the achievable iteration gains may be expected to increase by efficiently exploiting the \textit{a priori} probabilities, provided that an appropriate mapping scheme is used. The extrinsic probability expression P_e of the MLC demapper of Figure 2 providing new information for enhancing our confidence in y was given by [7].

With the aid of the so-called equivalent capacity rule [2], we obtain the desired code rate of each component for 8-PSK modulation using Gray mapping, yielding $R_0/R_1/R_2=0.510/0.745/0.745$. Given that the total number of uncoded input bits is k_i and the total number of channel coded output bits is n_i for the GLDPC encoder at the i^{th} MLC protection level, the coding rate of the i^{th} GLDPC component code is $R_i = 1 - J(1 - k_i/n_i)$ [5]. The overall effective throughput of the system is therefore 2 bits/symbol. The BCH constituent codes employed in our scheme are $C_0(20,15)$, $C_1(48,42)$ and $C_2(48,42)$ respectively.

Simulation results: The proposed MLC/PID GLDPC scheme using 8-PSK modulation was investigated, when communicating over both AWGN and uncorrelated Rayleigh fading channels. We employed ten GLDPC-BCH inner iterations, a single outer iteration using Gray demapping and six outer iterations employing SP mapping in our scheme. Figure 3 shows that at BER=10$^{-5}$, the proposed scheme demonstrates an E_b/N_0 improvement of around 0.5dB in AWGN channels compared to our MLC-LDPC benchmarker system. When employing SP based mapping and six outer iterations over AWGN channels, both systems achieve a further 2-2.5 dB performance improvement and the proposed MLC-GLDPC scheme retains its performance advantage. When communicating over uncorrelated Rayleigh fading channels, our MLC-GLDPC scheme outperforms the MLC-LDPC benchmarker by about 1dB in both the single outer-iteration Gray mapping and the six outer-iteration aided SP based scenarios at BER=10$^{-5}$. This might appear to be a modest gain, but it is achieved with the aid of a more convenient parallel architecture.

Since the number of inner iterations required for generating the next reliable extrinsic output for the outer iterations determines the required delay imposed on the overall system, we further investigate the effects of inner iterations in our MLC-GLDPC scheme with reference to the MLC-LDPC benchmarker. We employ $I_{outer}=6$ outer iterations in our MLC-GLDPC scheme, each invoking a different number of inner iterations I_{inner} using the SP mapping scheme. Figure 4 demonstrates that when transmitting over AWGN channels, our MLC-GLDPC scheme requires an E_b/N_0 value of around 4.6dB at BER=10$^{-5}$, in conjunction with $I_{inner}=5$ inner iterations. The MLC-LDPC benchmarker converges slowly at an E_b/N_0 close to 4.6dB, requiring up to $I_{inner}=20$
inner iterations for achieving BER=10^{-5}. In other words, the classic MLC-LDPC requires a quadrupled number of total iterations (I_{outer}, I_{inner}) compared to our MLC-GLDPC scheme for the sake of achieving a similar performance of BER=10^{-5}.

Let us now extend these investigations to the uncorrelated Rayleigh fading channel where both schemes invoke the same number of $I_{outer}=6$ outer iterations. The MLC-GLDPC scheme, achieves a coding advantage of 2dB compared to the MLC-LDPC scheme at BER=10^{-5}, when invoking $I_{inner}=5$ inner iterations, as shown in Figure 4. This coding advantage is reduced to about 1dB, when $I_{inner}=8$ inner iterations are employed.

Conclusions: In conclusion, MLC GLDPC schemes were proposed. Our simulations results suggest that the attainable SNR improvement compared to a random LDPC component code based MLC benchmarker ranged between 0.5dB and 2dB, which was achieved using the same number of iterations and an implementationally beneficial parallel architecture. Multilevel Gray mapping combined with parallel decoding and dispensing with turbo/channel interleavers is attractive in low-latency real time services, such as lip-synchronous wireless video telephony, where employing low complexity parallel decoding in the context of short BCH block constituent codes may become paramount.

References

Figure 1: SISO BCH decoder of the GLDPC component codes

Figure 2: System model of MLC/PID using iteratively detected GLDPC inner codes as well as outer iterations, where \(u_i \) denote source bit \(i \) and \(v_i \) denotes coded bits \(i \). The decoded output bits are represented by \(\hat{u}_i \). The iterative GLDPC decoder is seen in Figure 1.
Figure 3: BER of both MLC-GLDPC and MLC-LDPC over an AWGN Channel and uncorrelated (UC) Rayleigh fading channel invoking $I_{outer}=1$ or 6 outer and $I_{inner}=10$ inner iterations. The effective throughput was 2 bits/symbol and the BCH codes were the (20,15), (48,42) and (48,42) schemes, respectively.

Figure 4: BER of both MLC-GLDPC and MLC-LDPC over an AWGN Channel and an uncorrelated (UC) Rayleigh fading channel invoking $I_{inner}=5$, 8 or 20 inner and $I_{outer} = 6$ outer iterations.