Simulation with three real-world datasets (Facebook, Slashdot, Epinions) of up to 90,000 users
- Users’ online times power-law distributed

SOUP is able to
- (i) achieve ~99.5% data availability with ~6.5 replicas per node on average;
- (ii) do so for every node in the OSN;
- (iii) mitigate the departure of or DOS attack on up to the top 5% of mirrors; and
- (iv) deny manipulations on the recommendation scheme even if 50% of the links in the OSN are compromised

More results in our full paper [11] show that SOUP is
- (v) open to altruistically provided resources;
- (vi) able to defend against several other attack schemes; and
- (vii) outperforming related work quantitatively.

Deployed on campus at the University of Goettingen
- Small scale: 31 users, but quite active

Collection of several days of data, in total
- 282 friendship requests
- 204 photo uploads
- 1189 exchanged messages

The control traffic introduced by the DHT is low (includes relaying for mobile devices)

The bandwidth introduced by SOUP is manageable (highest when uploading and distributing multimedia)

The mirror sets are stable (prevents frequent re-transmission of the whole data of a user)

SOUP is also (viii) deployable and feasible
- Our systems provides all features of Table I.