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Objective: The objective of this study was to build a supervised machine learning-based classifier, which can ac-
curately predict the outcomes of antiepileptic drug (AED) treatment of patients with newly diagnosed epilepsy.
Methods: We collected information from 287 patients with newly diagnosed epilepsy between 2009 and
2017 at the Second Affiliated Hospital of Zhejiang University. Patients were prospectively followed up for at
least 3 years. A number of features, including demographic features, medical history, and auxiliary examinations
(electroencephalogram [EEG] and magnetic resonance imaging [MRI]) are selected to distinguish patients with
different remission outcomes. Seizure outcomes classified as remission and never remission. In addition, remis-
sion is further divided into early remission and late remission. Five classical machine learning algorithms,
i.e., Decision Tree, Random Forest, Support Vector Machine, XGBoost, and Logistic Regression, are selected and
trained by our dataset to get classification models.
Results:Our study shows that 1) comparedwith the other four algorithms, the XGBoost algorithmbasedmachine
learningmodel achieves the best prediction performance of the AED treatment outcomes between remission and
never remission patients with an F1 score of 0.947 and an area under the curve (AUC) value of 0.979; 2) The best
discriminative factor for remission and never remission patients is higher number of seizures before treatment
(N3); 3) XGBoost-based machine learning model also offers the best prediction between early remission and
later remission patients, with an F1 score of 0.836 and an AUC value of 0.918; 4) multiple seizure type has the
highest dependence to the categories of early and late remission patients.
Significances: Our XGBoost-based machine learning classifier accurately predicts the most probable AED treat-
ment outcome of a patient after he/she finishes all the standard examinations for the epilepsy disease. The
classifier's prediction result could help disease guide counseling and eventually improve treatment strategies.

© 2019 Elsevier Inc. All rights reserved.
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1. Introduction

Epilepsy is one of themost devastating neurological diseases, affect-
ingmore than 50million peopleworldwide [1]. Sixty to seventy percent
of the patients achieve control when using a single or a combination of
antiepileptic drugs (AEDs),while 12–63% of the patients still suffer from
epilepsy relapsing even with medication [2]. Seizure outcomes can be
classified into four different temporal patterns: early remission, late
remission, relapsing–remitting course, and never remission [3]. Beside
the therapeutic regimen, the clinical outcomes of patients with newly
diagnosed epilepsy are related to many factors, such as seizure types,
electroencephalogram (EEG) abnormality, multiple seizure types, intel-
lectual disability, higher seizure frequency before diagnosis, symptom-
atic etiology, etc. [4–7].
zju.edu.cn (Y. Guo).
In the majority of previous studies, researchers retrospectively in-
vestigated the prognostic factors, whichmay be related to the outcomes
following diagnosis. It would be interesting to accurately predict the
outcomes based upon patient's condition before AEDs treatment of pa-
tients with epilepsy. The booming development of artificial intelligence
makes it potentially possible. Machine learning, as an important branch
of artificial intelligence, has been applied to seizure detection [8,9], sur-
gical outcome prediction [10–13], and AED selection [14,15]. Machine
learning-based algorithms can combine patient's personal information
to predict the outcomes of AEDs treatment and, hence, help support
clinical decision making.

In the present study, we adopt supervised machine learning-based
algorithms to train a classifier using the collected patient's data to
predict the outcomes. We have carefully selected a number of features
to distinguish between different types of treatment outcomes. We im-
plemented and compared 5 representative classification algorithms,
i.e., Decision Tree [16], Random Forest [17], Support Vector Machine
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(SVM) [18], XGBoost [19], and Logistic Regression [20]. Based on our re-
sults, one can use the trained classifier tomake a prognosis of the newly
diagnosed epilepsy during the patients first visit to the epileptologists,
which could be valuable in helping clinicians design rational therapeutic
regimen for individual patient.

2. Methods

2.1. Patients

In this study, patients with newly diagnosed epilepsy were included
between January 2009 to December 2014 at the Second Affiliated
Hospital of Zhejiang University in Zhejiang Province, China. Patients
were prospectively followed up until the end of December 2017,
i.e., for at least three years. All of the patients' epilepsies were diagnosed
by epileptologists according to the definition of International League
Against Epilepsy (ILAE) [21]. Epilepsy is defined with either the follow-
ing: (1) two or more unprovoked seizures occurring at least 24 h apart;
(2) one unprovoked seizure with a definite epileptic focus on brain
magnetic resonance imaging [MRI] or epileptiform discharges on EEG.
Our definition of epilepsy also meets the standard of the 2014 ILAE
definition [22]. Patients who have the following conditions were
excluded: 1) refused the treatment with AEDs; 2) took more than one
AED during the follow-up; 3) received epilepsy surgery during the
follow-up; 4) had severe hepatic or renal diseases [23]. This study was
approved by the Ethics Committee of the Second Affiliated Hospital of
Zhejiang University.

In order to predict the outcomes after AED treatment of patients
with epilepsy during their first epileptologist visit, we collect the fol-
lowing information of each patient: patient demographics (gender,
living area, occupation, and education level), age at seizure onset, past
medical history (brain trauma, stroke, intracranial infection, perinatal
hypoxia, and brain tumor), family history of epilepsy, seizure types,
number of seizures before treatment, febrile seizure, prior treatment
duration, multiple seizure type, and EEG and MRI findings. Seizure
type was classified into focal onset, generalized onset, and unknown
onset according to the ILAE 2017 classification of seizure types basic
version [24]. Multiple seizure type was defined as two or more seizure
types, which includes focal aware seizure, focal impaired awareness
Fig. 1. Theworkflow of machine learning-based classifier. (1) The original dataset is split into a
Five different machine learning algorithms are selected for training based on the training datas
according to the comparison of each trained model's prediction performance. (2) Upper pane
I; Lower panel: 140 early remission patients and 67 late remission patients' data were used t
model; model II, early/late remission prediction model.
seizure, focal to bilateral tonic–clonic seizure, generalized onset seizure,
and unknown onset seizure. Monotherapy was recommended for the
initial treatment, and the AED selection was determined by the caring
epileptologist. One of the following AEDs was selected as monotherapy
for each patient: carbamazepine, oxcarbazepine, sodium valproate,
lamotrigine, levetiracetam, topiramate, and gabapentin. For patients
who had seizure relapses with the first maintenance dose, dosage was
further increased up to the highest tolerated dose to achieve seizure
control. When the first monotherapy failed, another drug was given
to patient as an alternative monotherapy (preferred) or adjunctive
therapy based on the epileptologist's choice.

2.2. Definitions

In our study, we defined the timing point of epilepsy remission in
accordance with Brodie's classification [3]. Remission is considered a
seizure-free period if patients experience no seizures for at least one
year on unchanged treatment. We classify the outcomes of AED treat-
ment into three patterns: 1) Early remission is achieved either immedi-
ately or within six months of AED treatment; 2) Late remission means
seizure freedom is delayed for more than six months after the initiation
of treatment; 3)Never remissionmeans patients never become seizure-
free for any complete year until the end of follow-up. To simplify our
model, we do not consider patients who have a relapsing course after
remission achieved as a single type of outcome. Patients were evaluated
at 4weeks after treatment initiation and at 3-month intervals thereafter
during thefirst year. From the second year and later, patientswere eval-
uated at 6-months intervals. If patients' condition had been changed,
a visit would be arranged accordingly. During each visit, seizure fre-
quency, choice of AED, and response to AED were routinely recorded.
The label of each patient's outcome in this study was verified by
epileptologist based on medical records.

2.3. Machine learning-based classification

In this section, we evaluate the classification performance of our
system. In our dataset, there are 207 remission patients and 80 patients
who are never in remission; remission patients are further split into
140 early remission and 67 late remission patients (Fig. 1(2)). We
training dataset and a test dataset. Features are selected to describe patients' information.
et. Trained models are achieved after parameter tuning. The final classifier is determined
l: 207 remission patients and 80 never remission patients' data are used to obtain model
o obtain model II. ML, machine learning; model I, remission/never remission prediction



Table 1
Features of patients with newly diagnosed epilepsy.

Category Feature n (%)

Demographic
features

Gender
Female 141 (49.1%)
Male 146 (50.9%)

Living area
Urban area 144 (50.2%)
Rural area 143 (49.8%)

Occupation
Student 128 (44.3%)
Employment 121 (34.7%)
Unemployment 38 (13.2%)

Educational level
Illiteracy or primary school 37 (12.9%)
Secondary school 143 (49.8%)
College or above 103 (35.9%)

Medical history

Age at seizure onset
≦16 82 (25.6%)
N16 205 (71.4%)

Past medical history
Negative 193 (67.2%)
Positive (brain trauma, stroke, intracranial
infection, perinatal hypoxia, and brain tumor)

94 (32.8%)

Family history
Negative 276 (96.2%)
Positive 11 (3.8%)

Seizure type
Focal onset 242 (84.3%)
Generalized onset 30 (10.5%)
Unknown onset 15 (5.2%)

Number of seizures before treatment
≦3 128 (44.6%)
N3 159 (55.4%)

Febrile seizure
Negative 20 (7.0%)
Positive 267 (93.0%)
Prior treatment duration
≦6 months 153 (53.3%)
6~12 months 45 (15.7%)
N12 months 89 (31.0%)

Multiple seizure type
No 210 (73.2%)
Yes 77 (26.8%)

Auxiliary
examination

EEG
Normal 77 (26.8%)
Epileptiform discharge (185) 185 (64.5%)
NA 25 (8.7%)

MRI
Normal 169 (58.9%)
Abnormal 70 (24.4%)
NA 48 (16.7%)

NA: not available.
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aimed to build a binary classifier that is able to distinguish between the
following: 1) remission and never remission patients; 2) early and late
remission patients, accurately. The workflow is described in Fig. 1(1).
There are four key steps of our machine learning-based classification
model, i.e., data preprocessing, feature selection, algorithm selection,
and parameter tuning. Finally, we evaluate the prediction performance
of our model. Scikit-learn, a Python-based machine learning library,
was used to train the classification model [25] (refer to the website:
http://scikit-learn.org/stable/).

2.3.1. Data preparation
We split the entire dataset into a training dataset and a test dataset.

As in [26–28], we use 80% of the patients for training, and the other 20%
of the patients for test. For both the training set and the test set, we
ensure that there are equal amounts of two types of patients. We
oversample the minority type by picking samples at random. We fur-
ther used the 5-fold cross-validation method to prepare our training
dataset, where the training datasetwas randomly divided into 5 subsets
with equal sizes. Of the 5 subsets, a single subset is retained as the
validation data for evaluating the model, and the remaining 4 subsets
are used for training. The cross-validation process is repeated 5 times,
with each of the 5 subsets used once for validation.

2.3.2. Feature selection
We aimed to select a number of features that could distinguish be-

tween different outcomes after AED treatment. The following features
with categorical variables are manually selected: patient's demographic
information (gender (female/male), living area (urban area/rural
area), occupations (student/employment/unemployment) and educa-
tional levels (illiteracy or primary school/secondary school/college or
above)), medical history (age at seizure onset (≦16/N16), past medical
history (negative/positive), family history (negative/positive), seizure
type (focal onset/generalized onset/unknown onset), number of sei-
zures before treatment (≦3/N3), febrile seizure (negative/positive),
prior treatment duration (≦6months/6~12months/N12months), mul-
tiple seizure types (no/yes)), auxiliary examination results (EEG abnor-
mality (normal/epileptiform discharge/not available), andMRI findings
(normal/abnormal/not available)). Table 1 shows the details of selected
features.

2.3.3. Algorithm selection
There are a number of supervisedmachine learning-based classifica-

tion algorithms available. In our study, we investigated several classical
algorithms including the Decision Tree, Random Forest, Logistic Regres-
sion, and SVM. We also studied one emerging algorithm, i.e., XGBoost.
XGBoost is a scalable end-to-end tree boosting system. It has been
widely used in recent machine learning competitions on Kaggle.

2.3.4. Parameter tuning
For a selected algorithm, we need to determine an optimal set of

parameters. Based on the training dataset, we apply grid search to go
through the parameter space. We select a finite set of values of each
parameter to form the parameter space. Grid search iterates through
each parameter combination. For each combination, we evaluate
the prediction performance. Finally, we record the parameters leading
to the maximum F1-score based on the training set. Afterwards, the
classifier can be used to judge the outcome of a patient with new
diagnoses.

2.3.5. Model evaluation
To evaluate the performance of the trained model, we use the

following representative metrics, i.e., precision, recall, F1-score, and
the area under the curve (AUC) value [29]. Precision, similar to positive
predictive value, is the fraction of model classified remission patients
who are real remission patients (or classified early remission patients
who are real early remission patients). Recall, similar to sensitivity,
means the fraction of remission patients (or early remission patients)
who have been identified by the model correctly. F1-score is the har-
monic mean of precision and recall, which is defined as follows:

F1 ¼ 2 ∙precision ∙ recall
precisionþ recall

The value of F1-score is between 0 and 1. The AUC denotes the
probability that this classifier will rank higher of a random positive
instance than a randomly chosen negative instance. From the per-
spective of clinicians, high precision means that our predictions
rarely over report and indicate that patients will go into remission
when they will in fact continue to achieve seizure freedom. Mean-
while, high recall means that our predictions rarely under report pa-
tients that will go into remission. The F1-score is a balance between
these two metrics. A higher value of F1-score indicates a better pre-
diction performance.

http://scikit-learn.org/stable/


Table 2
Comparison the performance of different machine learning algorithms for epilepsy remission prognosis.

Algorithm Parameters Precision/positive
predictive value

Recall/sensitivity F1-score AUC

XGBoost
‘colsample_bytree’: 0.5, ‘learning_rate’: 0.2, ‘min_child_weight’: 0.1,
‘n_estimators’: 100, ‘subsample’: 1, ‘max_depth’: 9, ‘booster’: ‘gbtree’

0.923 0.973 0.947 0.979

Random Forest ‘n_estimators’: 100, ‘criterion’: ‘gini’, ‘max_depth’: 8 0.951 0.886 0.918 0.974
Decision Tree ‘splitter’: ‘best’, ‘max_depth’: 10 0.971 0.829 0.895 0.908
SVM ‘C’: 100, ‘kernel’: ‘linear’ 0.738 0.838 0.785 0.897
Logistic Regression ‘C’: 1, ‘tol’: 0.001 0.711 0.865 0.780 0.908

Table 3
The ranking of feature importance (remission/never remission).

Rank Features Chi-square
value

Odds
ratio

95% CI

1
Number of seizures before
treatment (N3)

129.63 9.984 5.003–19.924

2 Multiple seizure type (yes) 26.77 3.446 2.212–5.369
3 Seizure type (focal onset) 7.58 0.500 0.243–1.028
4 Family history (positive) 2.57 0.096 0.012–0.754
5 Past medical history (yes) 1.78 1.192 0.790–1.797

95L. Yao et al. / Epilepsy & Behavior 96 (2019) 92–97
2.4. Statistical analysis

We use the Chi-Square (χ2) Statistics [30] to evaluate the depen-
dence of a selected feature and the categories of patients. We calculate
the χ2 value based on the patient category information and feature
values. A larger χ2 value indicates a better discriminative power of a fea-
ture. According to χ2 values, the top 5 ranked features,which contribute
most to differentiate remission and never remission patients or early
and late remission patients, are presented in Tables 3 and 5, respec-
tively. We also calculate the odds ratio and 95% Confidence Interval
(CI) of the above top five features in each prediction step, and presented
them in Tables 3 and 5.

3. Results

3.1. Patient demographics

A total of 320 patients were with diagnosed epilepsy, and none
of them had previously received AEDs. Thirty-three patients (10.3%)
were excluded from analysis because of lacking several follow-up infor-
mation. As a result, 287 patients with newly diagnosed epilepsy were
included for further analysis. The mean follow-up period was
5.76 years (standard deviation [SD] = 1.24 years). The mean age at
referral was 25.6 years (SD = 14.9 years). The database comprises 14
features, belonging to three different categories: 4 features from demo-
graphic features, 8 features from medical history, and 2 features from
auxiliary examinations. The number of patients having each feature
was shown in Table 1.

3.2. Machine learning used to predict the prognosis of epilepsy remission of
patients with newly diagnosed epilepsy (remission vs. never remission)

In the present study, we adopted supervised machine learning al-
gorithms to predict the outcomes of AED treatment in patients with
newly diagnosed epilepsy. In our dataset, there are 207 remission pa-
tients, and the rest of the 80 patients never entered into the remission
stage during the follow-up (Fig. 1(2)). Firstly, we built a binary classi-
fier that was able to classify remission and never remission patients ac-
curately. Secondly, we further built a classifier to predict the outcomes
of remission patients (i.e., early remission and late remission). For the
first goal, we used five frequently-used machine learning algorithms —
Decision Tree, Random Forest, SVM, Logistic Regression, and XGBoost—
to build classification models. Our results showed that the F1-score
of each of these five models (Decision Tree, Random Forest, SVM,
Logistic Regression, and XGBoost) were 0.895, 0.918, 0.785, 0.780,
and 0.947, respectively (Table 2). Each model's parameters, the value
of precision, and recall were also described in Table 2. The AUC value
of each of these five models (Decision Tree, Random Forest, SVM,
Logistic Regression, and XGBoost) were 0.908, 0.974, 0.897, 0.908,
and 0.979, respectively. Our data indicates that Decision Tree, Random
Forest, and XGBoost were all effective in distinguishing potential re-
mission and never remission patients. However, XGBoost-based classi-
fier achieved the highest F1-score of 0.947 and an AUC value of 0.979,
thus offering the best prediction between remission and never remis-
sion patients.

Next, we employed Chi-Square analysis to identify the discrimina-
tive power of each feature to the categories of patients. In total, 14 dif-
ferent features were included in this study. The top 5 ranked features
that contribute most to distinguish remission and never remission pa-
tients are the number of seizures before treatment, multiple seizure
type, seizure type, family history, and past medical history, each with
Chi-square values of 129.63, 26.77, 7.58, 2.57, and 1.78, respectively
(Table 3). The odds ratios of these five features were also described in
Table 3. Higher number of seizures before treatment (N3) and having
multiple seizure type increase the risk for patients who will not experi-
ence remission, while focal onset seizure will lead to a better outcome.
The small odds ratio value of family history could be due to smaller sam-
ple size of patients who have positive family history (11 yes vs. 276 no
family history). Our results suggested that the number of seizures be-
fore treatment was the most discriminative feature to distinguish re-
mission and never remission patients.

3.3. Machine learning used to predict the prognosis of remission patients
(early vs. late remission)

XGBoost-based classifier can accurately predict whether patients
will have remission or not. For those patients who would have remis-
sion, we further predict if they would enter into early or late remission
stage. In our dataset, we have 140 early remission patients and 67 late
remission patients (Fig. 1(2)). As before, we used these data to train
Decision Tree, Random Forest, SVM, Logistic Regression, and XGBoost
algorithms to get precise binary classifiers. As a result, these models
gave F1-score of 0.724, 0.774, 0.716, 0.621, and 0.836; AUC value of
0.717, 0.728, 0.666, 0.619, and 0.918, respectively (Table 4). Our results
suggested that XGBoost-based classifier can better predict the outcomes
of remission patients, with an F1-score of 0.836 and an AUC value
of 0.918.

Finally, we analyzed each feature's dependence to the categories of
early and late remission patients. Chi-square analysis showed that the
top 5 ranked features were multiple seizure type, family history, age
at seizure onset, number of seizures before treatment, and past medical
history, with Chi-square values of 5.59, 3.60, 2.06, 1.89, and1.11, respec-
tively (Table 5). The odds ratios of these five features were described in
Table 5. Havingmultiple seizure type, higher number of seizures before
treatment (N3), and past medical history increase the risk for patients



Table 4
Comparison the performance of different machine learning algorithms for epilepsy remission prognosis (early/late remission).

Algorithm Parameters Precision/positive
predictive value

Recall/sensitivity F1-score AUC

XGBoost
‘colsample_bytree’: 1, ‘learning_rate’: 0.2, ‘min_child_weight’:
1, ‘n_estimators’: 100, ‘subsample’: 1, ‘max_depth’: 5, ‘booster’: ‘gbtree’

0.852 0.821 0.836 0.918

Random forest ‘n_estimators’: 50, ‘criterion’: ‘gini’, ‘max_depth’: 10 0.706 0.857 0.774 0.728
Decision Tree ‘splitter’: ‘best’, ‘max_depth’: 10 0.750 0.700 0.724 0.717
SVM ‘C’: 100, ‘kernel’: ‘linear’ 0.667 0.774 0.716 0.666
Logistic Regression ‘C’: 10, ‘tol’: 0.001 0.667 0.581 0.621 0.619
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who will enter into late remission. Younger age at seizure onset in-
creases the risk of experiencing late remission. Our data suggested
that the multiple seizure type feature has the largest discriminative
power for early or late remission patients.

4. Discussion

In the present study, five machine learning algorithms have been
carefully evaluated to predict the outcomes of AED treatment for pa-
tientswith newly diagnosed epilepsy. Based on our results, we conclude
the following: 1) Our XGBoost-based machine learning model offers
precise predictions of the outcomes of AED treatment between remis-
sion and never remission patients with an F1-score of 0.947 and AUC
value of 0.979. 2) The feature “number of seizures before treatment
(N3)” has the largest dependence to the patient categories (remission/
never remission ;). 3) The XGBoost-based machine learning model
also offers the best prediction of early and later remission patients;.
4) The feature “multiple seizure type” has the highest dependence to
the patient category (early remission/late remission). In short, we can
accurately predict the AED treatment outcomes, which reflect the
most probable prognosis when a patient receives treatment in tertiary
Grade-A hospitals at current medical level.

Among the 14 features we have selected, it is important to identify
which features are more relevant to the classification of patients. We
have used Chi-Square analysis to demonstrate the top 5 ranked features
which contributemost to distinguish remission and never remission pa-
tients, as well as early remission and late remission patients. Consider
the classification between remission and never mission patients, the
feature “number of seizures before treatment (N3)” had the highest
Chi-square value at 129.6 and odds ratio at 9.984, which indicates
patients who have a greater number of seizures before treatment are
more susceptible to severe disease conditions, and associated with
poor outcomes. Our result is consistent with a study that systematically
analyzed cohort studies from Medline and Embase [4], where they
found a greater number of seizures before diagnosis is a consistent pre-
dictor of less likelihood of remission, as well as consistent with a study
from two cohort studies performed by Geelhoed et al. [31]. Besides,
we have shown that the most relevant feature to distinguish early vs.
late remission is “multiple seizure types”. Shen C et al. identified more
than 3 seizure onsets prior to treatment or multiple seizure types
were two prognostic predictors associated with late remission using a
multivariable logistic regression model [23], which is also consistent
with our results. Based on our results, “multiple seizure type” ranks
Table 5
The ranking of feature importance (early/late remission).

Rank Features Chi-square
value

Odds
ratio

95% CI

1 Multiple seizure type (yes) 5.59 3.032 1.682–5.466
2 Family history (positive) 3.60 0.361 0.094–1.391
3 Age at seizure onset (N16) 2.06 0.449 0.268–0.752

4
Number of seizures before
treatment (N3)

1.89 1.598 0.992–2.575

5 Past medical history (yes) 1.11 1.523 0.923–2.514
first, and “number of seizures before treatment” ranks fourth to distin-
guish early vs. late remission. The possible reason of the ranking differ-
ence could be due to the fact that we used a different methodology to
rank features, as well as the different study population. In addition,
the Chi-Square values of the top 5 ranked features are fairly close,
other features also contribute to the final classification, but may be
with less significance.

The ultimate desired outcome of the patients with epilepsy is com-
plete seizure freedom without any further medications. Predicting the
outcomes based upon early features is of great interest. Machine
learning-based methods have been applied in the field of epilepsy
study to some degree [10,15,32–34]. In the present study, we focus on
the outcomes of AED treatment. By evaluating a number of algorithms,
we demonstrate the usefulness of using supervised machine learning
algorithms for the prediction. In particular, the three classification
algorithms (Decision Tree, Random Forest, and XGBoost) used in the
present study were all effective as tools to predict between remission
and never remission patients, with each showing an F1-score around
or above 0.9. The XGBoost-based model performs best not only in
predicting remission vs. never remission (F1-score of 0.947), but also
early vs. late remission outcomes (F1-score of 0.836). Actually, some
machine learning-based algorithms have been used to predict AED
treatment outcomes, but mainly for predicting remission and never re-
mission patients. For example, GeelhoedM et al. used classification tree
model and stepwise logistic regression model to predict the outcome
from two cohort studies of childhood epilepsy with 70% accuracy rate
[31]. Devinsky O et al. used Random Forest to identify AED regimens
from a large cohort of population, with 72% area under receiver operat-
ing characteristic (ROC) curve [14]. Berg AT et al. used logistic regression
model to study a cohort of 613 childrenwith newly diagnosed epilepsy;
the overall accuracy of their model ranges from 72% to 85% depends on
different feature selection [35]. Obviously, our classifier performsmuch
better compared with previous studies. The main reason could be due
to detailed scheme of feature selection, algorithms selection, and pa-
rameter tuning. First, we select a set of relevant features to distinguish
between different types of patients. These features cover patient's
demographic information, medical history, and auxiliary examinations.
Second, we carefully chose and compared 5 representative supervised
machine learning algorithms in this study. In particular, the XGBoost al-
gorithm is an implementation of gradient boosted decision trees, which
has recently been dominantly applied in Kaggle competitions due to its
great performance. Last but not least, we conducted grid search to go
through a number of parameter combinations, and obtain a set of
“best” parameters of the classification model. Hughes DM et al. used
baseline information plus follow-up data to predict patients who will
not achieve seizure remission within 5 years on AEDs. Their model cor-
rectly classified 95% of no remission patients [36]. Despite different fea-
ture selection and ranking, ourwork only used baseline information but
also achieved a good prediction performance. As a result, our XGBoost-
basedmodel can be used as an accurate classifier to predict the potential
outcome of a patient during her/his first visit to an epileptologist.

For the next step, we will collect more patient samples to train our
classifier and build a prediction software that connects to the hospital's
patient database. The software will automatically read patient's
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information and calculate the prediction outcome, which could be help-
ful for personalized therapeutic regimen design. For instance, if the pre-
dicted outcome by the classifier is never remission, epileptologist could
try strong dose at early stage of the treatment, which would improve
the prognosis of the treatment and bypass some unnecessary remedy
attempts. Besides, knowing the potential treatment outcome may also
affect patient and family members' psychology and reduce anxiety
level. As a result, machine learning-based methods described in this
study may become a powerful tool to be included in standard pretreat-
ment evaluation for patients with epilepsy.

The predictive accuracy of a model depends on the large scale of
dataset, the number and quality of features, and the design of the
algorithm. Our study still has some limitations. First, we included 14 dif-
ferent features, and theweight of each feature in the final model differs.
In the future, whenwe introducemore relevant features into ourmodel,
the value of F1-score will be further increased. Second, we collected
the information of 287 patients in our study, yet a larger sample size
of patients needs to be integrated into our dataset to increase the pre-
dictive accuracy. Third, we do not consider relapsing–remitting course
as a single type of outcome in this study. Epilepsy relapse may happen
at different time windows. At present, our classifier cannot predict if a
patient will have relapse or not. Fourth, our dataset was collected at
a local tertiary hospital, and the predictive accuracy may not be repre-
sentative for all the regions in China and other countries. In the future,
we will include more patient samples with longer follow-up years, in-
troduce more relevant features, and incorporate epilepsy relapsing
into our model. It is expected that our prediction classifier will become
more accurate, and easier-to-use for clinic purposes.

5. Conclusion

In this study, we proposed a supervised machine learning-based
approach that can accurately predict the outcomes of AED treatment
in patients with newly diagnosed epilepsy. The information provided
by our model is an important reference for neurologists and could be
useful for treatment regimen decision making. Our solution only relies
on general-purpose computers and open-source software, and can be
adopted by hospitals conveniently.
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