Nonlinear Modeling of the Internet Delay Structure

Xiao Wang, Yang Chen, Beixing Deng and Xing Li Tsinghua University

1. Motivation

2. Solution: Kernel Methods (KM)

What are Kernel Methods?

A Alass of algorithms for pattern analysis (e.g. Support Vector Machine (SVM)).

- General task: to find and study general types of
- relations in general types of data. \qquad
Model the
Internet delay structure
;- Types of relations: clusters, tankings, principal
components, correlations, classifications
Models
-- Types of data: sequences, text documents, sets of points, vectors, images, etc.
- Kernel
- What is kernel?
instead of using a mapping $\phi: \mathcal{X} \rightarrow \mathcal{F}$ to represent $\mathrm{x} \in \mathcal{X}$ by $\phi(\mathbf{x}) \in \mathcal{F}$ - using $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ to represent Internet delay matrix by $k\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)$
- Interpretation: a mapping exerted on Internet delay matrix - Isotropic stationary kernel: $K(\vec{x}, \vec{z})=K_{S}(\|\vec{x}-\vec{z}\|)$ Euclidean norms: $K(\vec{x}, \vec{z})=\|\vec{x}-\vec{z}\|$
- The mapping: $\mathrm{K}_{\mathrm{S}}(\cdot)$
- Typical kernels:

Polynomial kernel, Gaussian kernel, exponential kernel, etc.

3. Methodology

- How to choose kernels?
- We define:
- Measured Internet delay matrix: $\mathrm{D}_{\text {MS }}$ Kernel: $\mathrm{K}_{\mathrm{s}}(\cdot)$
- Mapped matrix in feature space: D_{K}, thus $\mathrm{D}_{\mathrm{MS}}=\mathrm{K}_{\mathrm{S}}\left(\mathrm{D}_{\mathrm{K}}\right)$
- Current assumption: If there are less TIVs in D_{K}, such kernel $\mathrm{K}_{\mathrm{S}}(\cdot)$ is a good kernel, since Euclidean models can be embedded in D_{K}
- Example: a Euclidean based Network Coordinate system

Suppose: $\mathrm{K}_{\mathrm{S}}(\cdot)=(\cdot)^{2}$

- 2-D coordinates of $1,2,3$:
- 1: $(0,0)$
- 2: (-1.375,2.666)
- 3: $(4,0)$

Can be embedded!
4. Framework Design

5. Evaluation

- Data sets
- PlanetLab: 226 nodes
- Meridian: 2500 nodes
- Metrics:
- TIV ratios: the number of triples of nodes violating triangle inequality to the proportion of all triples
- TIV severity of edge AC:
$\underline{\sum d(A, C) /(d(A, B)+d(B, C))}$ $B \in S$ and $d(A, C)>d(A, B)+d(B, C)$ S : the set of all nodes

TIV ratios			
Data set	Real Internet	Euclidean systems	Poly Kernel
PlanetLab	0.2501	0	0.2745
Meridian	0.2350	0	0.2557

TIV severity

6. Further Works

- Delay prediction performance:
- Current results: not steady among different data sets;
- Future work: tune adaptive parameters
- How to search for good kernels:
- Current kernel: polynomial kernel
- Current methodology: - less TIVs in mapped matrix, better kernel. - But no guarantee: "if there is no TIV, Euclidean space can be embed"
- Future work: need further exploration
- Benefits: only Euclidean models?
- Hyperbolic, spherical: add kernels on them
- Dot-product: add kernels and guarantee non-negativity
- Future work: need further exploration

Acknowledgement: This work is supported by the Nationa Basic Research Program of China (No.2007CB310806) and the National Science Foundation of China (No.60473087, No.60703052, No.60850003).

