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Abstract – As the substrate of structured peer-to-peer systems, 

Distributed Hash Table (DHT) plays a key role in P2P routing 

infrastructures. Traditional DHT does not consider the location 

of the nodes for the assignment of identifiers, which will result in 

high end-to-end latency on DHT-based overlay networks. In this 

paper, we propose a design of locality-aware DHT called LDHT, 

which exploits network locality on DHT-based systems. Instead of 

assigning uniform random node identifiers in traditional DHT, 

nodes in LDHT are assigned locality-aware identifiers according 

to their Autonomous System Numbers (ASNs). As a result, each 

node will have more nearby neighbors than faraway neighbors in 

the overlay. We evaluate the performance of LDHT on different 

kinds of typical DHT protocols and on various topologies. The 

results show that LDHT improves the traditional DHT protocols 

a lot in terms of end-to-end latency, without introducing 

additional overhead. It is indicated that LDHT is fit for different 

kinds of DHT protocols and can work effectively on all structured 

P2P systems including Chord, Symphony and Kademlia.  

I. INTRODUCTION 

Distributed Hash Table (DHT) is the substrate of structured 

P2P systems. It supports the scalable storage and retrieval of 

{key, value} pairs on the overlay network. DHT-based 

systems are an important class of P2P routing infrastructures.  

In DHT-based systems, nodes are assigned uniform random 

identifiers from a large identifier space. Data object (or value) 

is placed at the node with identifier corresponding to its 

unique key, which is chosen from the same identifier space. 

Lookup queries are forwarded across the overlay paths to 

nodes in a progressive manner, with the identifiers closer to 

the key in the identifier space.  

DHT-based systems can guarantee that any data object can 

be located in small O(logN) overlay hops on average, where N 

is the number of nodes in the system. However, overlay hop 

count is not enough to evaluate the performance of DHT-

based systems. Another efficient metric is the end-to-end 

latency of the overlay path. Routing algorithms that ignore the 

latency of individual hops will result in high-latency paths.  

Without considering network locality in DHT, the 

underlying network path between two nodes can be 

significantly different from the path on the overlay network. 

Therefore, the lookup latency in the overlay network could be 

quite high and adversely affect the performance of the 

applications running over the DHT.  

In this paper, we propose a design of an ASN-based 

locality-aware DHT called LDHT, which exploits network 

locality in DHT-based systems. We assign the node identifiers 

in a geographic layout manner to ensure nodes close in the 

network topology to be close in the identifier space. We use a 

node's ASN to generate the prefix of the identifier in order to 

make nodes in a same AS have close identifiers. As a result, 

nodes in LDHT-based systems will have more close neighbors 

than faraway neighbors in the network topology. The end-to-

end latency for the query on the overlay network will thus be 

reduced. We use three typical DHT-based systems, Chord [1], 

Symphony [2] and Kademlia [3] as the basic DHT protocols to 

evaluate our design. According to the simulation results on 

different topologies, it is indicated that LDHT can improve the 

performance of DHT-based systems on both path length and 

Relative Delay Penalty (RDP) significantly, without adding 

overlay hops. 

The rest of this paper is organized as follows. First we 

review related work in Section II. Then we present the design 

of LDHT in detail in Section III and evaluate its performance 

in Section IV. We conclude the whole paper in Section V.   

II. RELATED WORK 

Three basic approaches have been suggested for exploiting 

network locality into typical DHT protocols [4]. 

A. Proximity Routing 

 Proximity routing is the approach that the routing choice is 

based not only on which neighboring node makes the “most” 

progress towards the key, but also on which neighboring node 

is “closest” in the sense of latency. At each hop, a nearby node 

is chosen among the ones in the routing table. This approach 

strikes a balance between making progress towards the 

destination in the identifier space and choosing the closest 

routing table entry according to the network locality.  

Proximity routing has been used in a version of Chord [1]. 

A set of alternate nodes are maintained for each finger table 

entry rather than one, and then queries are routed by selecting 

the closest node among the alternate nodes according to some 

network proximity metric. 

B. Proximity Neighbor Selection 

This is a variant of the above idea, but the proximity 

criterion is applied when choosing neighbors, not just when 

choosing the next hop. Routing table entries are chosen to 



refer to nodes nearby in the network topology, among all live 

nodes with appropriate identifiers. 

Proximity neighbor selection has been used in the routing 

table construction of Tapestry [5] and Pastry [6]. They choose 

the closest node in the network topology according to some 

network proximity metric among the nodes whose identifiers 

have the appropriate prefix. 

C. Geographic Layout 

Geographic layout is the way exploiting network locality 

into node identifiers. In this approach, nodes’ identifiers are 

assigned in a manner which ensures nodes close to each other 

in the network topology are also close in the identifier space. 

In [7], the authors propose a hierarchical location-based 

node ID assignment to encode physical topology. A location-

based node ID is a concatenation of a hierarchical prefix 

assigned to a node’s region and a suffix of randomly generated 

bits. The scheme is based on geography, that is, different 

prefixes are assigned to different geographical regions. 

Chord6 [8] is an IPv6-based modified version of Chord 

with the approach of geographic layout. It exploits the 

hierarchical feature of IPv6 address. In Chord6, a node’s 

identifier contains two parts: the higher bits are obtained by 

hashing the node’s IPv6 address prefix of specific length, 

while the remaining lower bits are the hash of the rest of that 

IPv6 address. 

III. DESIGN OF LOCALITY-AWARE DHT 

A. Basic Idea 

The basic idea of LDHT is to exploit network locality on 

DHT-based systems in a geographic layout manner. Different 

DHT-based systems have different routing strategies and 

neighbor selection schemes, but they could have the same way 

of node identifier assignment. Once the routing strategy and 

neighbor selection scheme is determined, nodes choose 

neighbors only according to the identifiers of each other. Our 

purpose is to make LDHT compatible for all DHT-based 

systems, no matter what routing strategies and neighbor 

selection schemes they use. While proximity routing and 

proximity neighbor selection are approaches altered for 

different DHTs. So we choose the approach of geographic 

layout to exploit network locality. 

In traditional DHT, no information about a node’s network 

location or its proximity to other nodes can be deduced 

through its random identifier. Randomness in node identifiers 

will probably lead to high end-to-end routing latency. In 

LDHT, we construct a structured identifier space. Each node is 

assigned a locality-aware identifier, thus its network topology 

information can be embedded into its identifier.  

When nodes are choosing neighbors in DHT-based systems, 

they will choose more nodes with identifiers close to 

themselves. So if we assign close identifiers to nodes close to 

each other in the network topology, they will have more close 

neighbors than faraway neighbors in the network topology. In 

LDHT, neighborhood relations of regions along the identifier 

ring reflect their proximity relations in the network topology. 

When DHT routing makes progress in the identifier space, 

similar progress is made in the network topology and thus 

overlay path costs are bounded. 

B. Identifier Assignment 

We use a node’s ASN to represent its network locality for 

the reasons below. First, a node’s ASN can be easily obtained 

by itself using WHOIS, which is a TCP-based query/response 

protocol widely used for querying a database in order to 

determine the owner of a domain name, an IP address, or an 

ASN in Internet. With abundant WHOIS databases available 

in Internet, this approach will not result in a single point of 

failure problem. In the worst case, if a node can not access any 

WHOIS database, it can generate a random number as its ASN, 

which will not effect the normal operation of the whole system. 

While if using the geographical information like the scheme in 

[7], we will need to either deploy and maintain a dedicated 

centralized database to partition the regions and assign 

prefixes, or have each end host maintain this kind of up-to-

date database by itself.  A centralized database will lead to 

single point of failure, and, maintaining the database by each 

end host is too costly. Second, when using ASNs, LDHT can 

work on both IPv4 and IPv6 networks. While depending on 

the hierarchical feature of IPv6 address, Chord6 [8] can only 

work on IPv6 networks. 

We divide each node’s identifier into two parts, Global 

Part and Local Part. Assuming that the length of the identifier 

is n bits, Global Part covers the highest m bits of the identifier, 

and Local Part covers the remaining n-m bits. Local Part is 

the prefix of the hash of the node’s IP address, which is the 

same as most traditional DHTs. Global Part is generated 

according to the node’s ASN. We assign a same Global Part 

to nodes in a same AS, in order to make them close to each 

other in the identifier space.   

The length of the Global Part m is a tradeoff between end-

to-end performance and load balancing of nodes, which can be 

adjusted according to the scale of the application system. In 

our simulation described in Section IV, we construct the node 

identifier with m=7. An ASN is an integer between 0 and 

65536. We use a node’s ASN modulo 2
m
, which is converted 

to binary code, as its Global Part. 

We concatenate Global Part and Local Part together, and 

form the whole locality-aware identifier. 

C. Workflow of LDHT 

Fig. 1 shows the workflow of LDHT. When a node joins 

LDHT, it first obtains its ASN and generates Global Part by 

the ASN in the length of m bits. Then, it will generate its 

Local Part, which is the prefix of the hash of its IP address in 

the length of n-m bits. Then, the node joins the two parts 

together to form a whole identifier. With this locality-aware 

identifier, it joins the DHT-based system and works the same 

way as in the original DHT protocol, such as neighbor 

selecting, message routing, etc.  



With the API interfaces provided by our locality-aware 

DHT, distributed structured P2P applications will have better 

end-to-end performance. We will evaluate the performance of 

LDHT in next section. 

 

Fig. 1 Workflow of LDHT 

IV. PERFORMANCE EVALUATION 

We use Chord, Symphony and Kademlia as the basic DHT 

protocols, and add our approach on them to form LDHT-based 

systems. Performance of LDHT is evaluated and compared 

with that of the three original DHT protocols on two 

representative network topologies, one of which is generated 

by GT-ITM [9] and the other is collected from real-world 

Internet. 

A. Simulation Setup 

We use our own simulator to construct Chord, Symphony 

and Kademlia, and add our LDHT design to them respectively.  

To accurately prove the effectiveness of our scheme, we 

implement two network topologies for the performance 

evaluation, Topology1 and Topology2. 

Topology1 is generated by GT-ITM [9] with the scale of 

4000 nodes. It’s a two-level hierarchical topology. The top 

level of Topology1 consists of 200 ASes in 150 by 150 grids. 

The bottom level consists of a random number of nodes in the 

range of [13, 26] within each AS in 10 by 10 grids. 

We use a real-world Internet distance dataset of 226 

PlanetLab [10] nodes to construct Topology2 with the scale of 

4520 nodes. The dataset contains latencies between nodes in 

PlanetLab with ping method in real Internet. These 226 

PlanetLab nodes are distributed dispersedly in 80 different 

ASes. We use the location of the 226 PlanetLab nodes to 

generate a larger scale topology, which can still reflect the 

nodes’ distribution of the real Internet. The 226 PlanetLab 

nodes serve as transit nodes, and 20 stub nodes are assigned to 

each transit node. We assign different distances to the edges in 

Topology2: the distance of intra-stub edges is 1; the distance 

of the edges between a transit node and a stub node is a 

random integer within [5, 15]; and the distance between transit 

nodes is from the distance dataset. Topology2 consists of all 

the stub nodes.  

We use SHA-1 as the hash algorithm to generate the hash of 

IP address, with the length of 160 bits. For each system, we 

perform random queries for 4*10
4
 times to get the statistical 

and average simulation results. (In other words, we insert 

4*10
4
 random keys into the overlay network.) 

In the evaluation, we consider the following metrics: 

• Path length: the latency in an end-to-end overlay path of 

each query. It is an efficient yet accurate metric to 

measure network structure and data delivery 

performance in different overlays. 

• Relative Delay Penalty (RDP): the ratio of end-to-end 

routing delay between a pair of nodes over that of a 

direct IP path per query. RDP represents the relative 

cost of routing on the overlay. The smaller it is, the 

better the path on the overlay network fits the path on 

the IP network. 

• Hop count: the number of overlay hops in an end-to-end 

path of each query.  

B. Simulation Results 

We complete our simulations on Topology1 and Topology2 

described in Section IV-A. 

Fig. 2, Fig. 3 and Fig. 4 show the CDF of the path length of 

both original and LDHT-based Chord, Symphony and 

Kademlia. We also calculate the average path length of each 

protocol and topology and show the results in Table I. We use 

some short names due to the limited space. “TP1” and “TP2” 

means Topology1 and Topology2. “Orig” means original 

protocol and “LDHT” means LDHT-based protocol.  
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Fig. 2 Path length per query of Chord and LDHT-based Chord 
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Fig. 3 Path length per query of Symphony and LDHT-based Symphony 
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Fig. 4 Path length per query of Kademlia and LDHT-based Kademlia 

TABLE I AVERAGE PATH LENGTH (MS) 

Chord Symphony Kademlia 
 

Orig LDHT Orig LDHT Orig LDHT 

TP1 525 407 595 443 449 383 

TP2 1024 869 1083 897 884 853 

 

From the figures and the table, we can see that the LDHT-

based systems have smaller path length than the original ones 

for all of the three DHT protocols on both topologies. It 

indicates that LDHT is much more efficient in terms of end-to-

end latency. In fact, the query path on the LDHT overlay 

network has many intra-domain connections between 

neighbors, which are much shorter in terms of latency than 

inter-domain connections. As the original DHT overlay 

network doesn’t take network locality into account, many 

neighbor connections are high-latency inter-domain links 

instead. 

Fig. 5, Fig. 6 and Fig. 7 show the CDF of the Relative 

Delay Penalty (RDP) of both original and LDHT-based Chord, 

Symphony and Kademlia. Table II shows the average RDP of 

each protocol and topology. The meanings of the short names 

are the same as Table I.   

We can see that on both topologies, RDP of the three 

LDHT-based systems are smaller than the three original ones. 

It indicates that the end-to-end path between two nodes on the 

LDHT overlay network is closer than that on the original DHT 

to the underlying IP network path. The relative routing cost of 

LDHT overlay network is smaller than the original overlay 

network.  

Fig. 8, Fig. 9 and Fig. 10 show the comparison of hop count 

per query of both original and LDHT-based Chord, Symphony 

and Kadmlia on the two topologies. We present the results of 

the 10th, 50th and 90th percentiles of nodes. The results 

indicate that the hop count’s distribution of our LDHT-based 

system is the same as the original DHT. The reason is that our 

design only changes the manner in which the identifiers are 

assigned, but doesn’t change the original DHT’s routing 

strategy and neighbor selection scheme at all. 
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Fig. 5 RDP per query of Chord and LDHT-based Chord 
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Fig. 6 RDP per query of Symphony and LDHT-based Symphony 
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Fig. 7 RDP per query of Kademlia and LDHT-based Kademlia 

TABLE II AVERAGE RDP 

Chord Symphony Kademlia 
 

Orig LDHT Orig LDHT Orig LDHT 

TP1 10.71 8.22 12.19 8.64 9.11 7.50 

TP2 14.24 13.16 15.48 12.80 13.54 10.82 
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Fig. 8 Hop count per query of Chord and LDHT-based Chord 
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Fig. 9 Hop count per query of Symphony and LDHT-based Symphony 
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Fig. 10 Hop count per query of Kademlia and LDHT-based Kademlia 

C. Simulation Conclusion 

Results above clearly show that, LDHT is applicable for 

different DHT protocols and topologies. In comparison with 

original DHT, LDHT has better performance on end-to-end 

latency, without adding overlay hops.  

V. CONCLUSION AND FUTURE WORK 

In this paper, we propose a design of an ASN-based 

locality-aware DHT called LDHT, which exploits network 

locality on DHT-based systems. We assign a node’s identifier 

in a geographic layout manner that nodes with close identifiers 

in the identifier space are close in the network topology, so 

that they will have more close neighbors than faraway 

neighbors, and the end-to-end latency in a query can thus be 

reduced. We use a node’s ASN to generate Global Part of the 

identifier that makes the nodes in a same AS have a same 

identifier prefix. As a result, there are more intra-domain 

neighbor connections in the path on LDHT-based overlay 

network. 

We develop LDHT-based Chord, Symphony and Kademlia 

to evaluate the performance of our design in three metrics. Our 

simulations are done on both topologies generated by GT-ITM 

and real-world Internet. The simulation results prove the 

effectiveness of LDHT. The advantage of LDHT over 

traditional DHT lies in its better performance in terms of end-

to-end latency like path length and RDP, without adding 

overlay hops. Meanwhile, LDHT is applicable for different 

kinds of basic DHT protocols and can work well on various 

topologies. 

As for future work, first, we would like to deploy a publicly 

accessible DHT service, like OpenDHT [11]. People can 

easily issue put and get operations to any DHT node without 

running a LDHT client in order to use the LDHT service. 

Second, we will consider the proximity among ASes to 

improve the performance of LDHT. We have already done 

some works in [12] and hope to use this kind of scheme to 

make LDHT stronger. 
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