
LDHT: Locality-aware Distributed Hash Tables
*

Weiyu Wu
#1
, Yang Chen

#
, Xinyi Zhang

*
, Xiaohui Shi

#
, Lin Cong

#
, Beixing Deng

#
, Xing Li

#

#Department of Electronic Engineering, Tsinghua University, China

*Department of Electrical Engineering, University of California, Los Angeles, USA
1
wuwy02@mails.tsinghua.edu.cn

*
 This work is supported by National Basic Research Program of China (No.2007CB310806) and National Science Foundation of

China (No.60473087).

Abstract – As the substrate of structured peer-to-peer systems,

Distributed Hash Table (DHT) plays a key role in P2P routing

infrastructures. Traditional DHT does not consider the location

of the nodes for the assignment of identifiers, which will result in

high end-to-end latency on DHT-based overlay networks. In this

paper, we propose a design of locality-aware DHT called LDHT,

which exploits network locality on DHT-based systems. Instead of

assigning uniform random node identifiers in traditional DHT,

nodes in LDHT are assigned locality-aware identifiers according

to their Autonomous System Numbers (ASNs). As a result, each

node will have more nearby neighbors than faraway neighbors in

the overlay. We evaluate the performance of LDHT on different

kinds of typical DHT protocols and on various topologies. The

results show that LDHT improves the traditional DHT protocols

a lot in terms of end-to-end latency, without introducing

additional overhead. It is indicated that LDHT is fit for different

kinds of DHT protocols and can work effectively on all structured

P2P systems including Chord, Symphony and Kademlia.

I. INTRODUCTION

Distributed Hash Table (DHT) is the substrate of structured

P2P systems. It supports the scalable storage and retrieval of

{key, value} pairs on the overlay network. DHT-based

systems are an important class of P2P routing infrastructures.

In DHT-based systems, nodes are assigned uniform random

identifiers from a large identifier space. Data object (or value)

is placed at the node with identifier corresponding to its

unique key, which is chosen from the same identifier space.

Lookup queries are forwarded across the overlay paths to

nodes in a progressive manner, with the identifiers closer to

the key in the identifier space.

DHT-based systems can guarantee that any data object can

be located in small O(logN) overlay hops on average, where N

is the number of nodes in the system. However, overlay hop

count is not enough to evaluate the performance of DHT-

based systems. Another efficient metric is the end-to-end

latency of the overlay path. Routing algorithms that ignore the

latency of individual hops will result in high-latency paths.

Without considering network locality in DHT, the

underlying network path between two nodes can be

significantly different from the path on the overlay network.

Therefore, the lookup latency in the overlay network could be

quite high and adversely affect the performance of the

applications running over the DHT.

In this paper, we propose a design of an ASN-based

locality-aware DHT called LDHT, which exploits network

locality in DHT-based systems. We assign the node identifiers

in a geographic layout manner to ensure nodes close in the

network topology to be close in the identifier space. We use a

node's ASN to generate the prefix of the identifier in order to

make nodes in a same AS have close identifiers. As a result,

nodes in LDHT-based systems will have more close neighbors

than faraway neighbors in the network topology. The end-to-

end latency for the query on the overlay network will thus be

reduced. We use three typical DHT-based systems, Chord [1],

Symphony [2] and Kademlia [3] as the basic DHT protocols to

evaluate our design. According to the simulation results on

different topologies, it is indicated that LDHT can improve the

performance of DHT-based systems on both path length and

Relative Delay Penalty (RDP) significantly, without adding

overlay hops.

The rest of this paper is organized as follows. First we

review related work in Section II. Then we present the design

of LDHT in detail in Section III and evaluate its performance

in Section IV. We conclude the whole paper in Section V.

II. RELATED WORK

Three basic approaches have been suggested for exploiting

network locality into typical DHT protocols [4].

A. Proximity Routing

 Proximity routing is the approach that the routing choice is

based not only on which neighboring node makes the “most”

progress towards the key, but also on which neighboring node

is “closest” in the sense of latency. At each hop, a nearby node

is chosen among the ones in the routing table. This approach

strikes a balance between making progress towards the

destination in the identifier space and choosing the closest

routing table entry according to the network locality.

Proximity routing has been used in a version of Chord [1].

A set of alternate nodes are maintained for each finger table

entry rather than one, and then queries are routed by selecting

the closest node among the alternate nodes according to some

network proximity metric.

B. Proximity Neighbor Selection

This is a variant of the above idea, but the proximity

criterion is applied when choosing neighbors, not just when

choosing the next hop. Routing table entries are chosen to

refer to nodes nearby in the network topology, among all live

nodes with appropriate identifiers.

Proximity neighbor selection has been used in the routing

table construction of Tapestry [5] and Pastry [6]. They choose

the closest node in the network topology according to some

network proximity metric among the nodes whose identifiers

have the appropriate prefix.

C. Geographic Layout

Geographic layout is the way exploiting network locality

into node identifiers. In this approach, nodes’ identifiers are

assigned in a manner which ensures nodes close to each other

in the network topology are also close in the identifier space.

In [7], the authors propose a hierarchical location-based

node ID assignment to encode physical topology. A location-

based node ID is a concatenation of a hierarchical prefix

assigned to a node’s region and a suffix of randomly generated

bits. The scheme is based on geography, that is, different

prefixes are assigned to different geographical regions.

Chord6 [8] is an IPv6-based modified version of Chord

with the approach of geographic layout. It exploits the

hierarchical feature of IPv6 address. In Chord6, a node’s

identifier contains two parts: the higher bits are obtained by

hashing the node’s IPv6 address prefix of specific length,

while the remaining lower bits are the hash of the rest of that

IPv6 address.

III. DESIGN OF LOCALITY-AWARE DHT

A. Basic Idea

The basic idea of LDHT is to exploit network locality on

DHT-based systems in a geographic layout manner. Different

DHT-based systems have different routing strategies and

neighbor selection schemes, but they could have the same way

of node identifier assignment. Once the routing strategy and

neighbor selection scheme is determined, nodes choose

neighbors only according to the identifiers of each other. Our

purpose is to make LDHT compatible for all DHT-based

systems, no matter what routing strategies and neighbor

selection schemes they use. While proximity routing and

proximity neighbor selection are approaches altered for

different DHTs. So we choose the approach of geographic

layout to exploit network locality.

In traditional DHT, no information about a node’s network

location or its proximity to other nodes can be deduced

through its random identifier. Randomness in node identifiers

will probably lead to high end-to-end routing latency. In

LDHT, we construct a structured identifier space. Each node is

assigned a locality-aware identifier, thus its network topology

information can be embedded into its identifier.

When nodes are choosing neighbors in DHT-based systems,

they will choose more nodes with identifiers close to

themselves. So if we assign close identifiers to nodes close to

each other in the network topology, they will have more close

neighbors than faraway neighbors in the network topology. In

LDHT, neighborhood relations of regions along the identifier

ring reflect their proximity relations in the network topology.

When DHT routing makes progress in the identifier space,

similar progress is made in the network topology and thus

overlay path costs are bounded.

B. Identifier Assignment

We use a node’s ASN to represent its network locality for

the reasons below. First, a node’s ASN can be easily obtained

by itself using WHOIS, which is a TCP-based query/response

protocol widely used for querying a database in order to

determine the owner of a domain name, an IP address, or an

ASN in Internet. With abundant WHOIS databases available

in Internet, this approach will not result in a single point of

failure problem. In the worst case, if a node can not access any

WHOIS database, it can generate a random number as its ASN,

which will not effect the normal operation of the whole system.

While if using the geographical information like the scheme in

[7], we will need to either deploy and maintain a dedicated

centralized database to partition the regions and assign

prefixes, or have each end host maintain this kind of up-to-

date database by itself. A centralized database will lead to

single point of failure, and, maintaining the database by each

end host is too costly. Second, when using ASNs, LDHT can

work on both IPv4 and IPv6 networks. While depending on

the hierarchical feature of IPv6 address, Chord6 [8] can only

work on IPv6 networks.

We divide each node’s identifier into two parts, Global

Part and Local Part. Assuming that the length of the identifier

is n bits, Global Part covers the highest m bits of the identifier,

and Local Part covers the remaining n-m bits. Local Part is

the prefix of the hash of the node’s IP address, which is the

same as most traditional DHTs. Global Part is generated

according to the node’s ASN. We assign a same Global Part

to nodes in a same AS, in order to make them close to each

other in the identifier space.

The length of the Global Part m is a tradeoff between end-

to-end performance and load balancing of nodes, which can be

adjusted according to the scale of the application system. In

our simulation described in Section IV, we construct the node

identifier with m=7. An ASN is an integer between 0 and

65536. We use a node’s ASN modulo 2
m
, which is converted

to binary code, as its Global Part.

We concatenate Global Part and Local Part together, and

form the whole locality-aware identifier.

C. Workflow of LDHT

Fig. 1 shows the workflow of LDHT. When a node joins

LDHT, it first obtains its ASN and generates Global Part by

the ASN in the length of m bits. Then, it will generate its

Local Part, which is the prefix of the hash of its IP address in

the length of n-m bits. Then, the node joins the two parts

together to form a whole identifier. With this locality-aware

identifier, it joins the DHT-based system and works the same

way as in the original DHT protocol, such as neighbor

selecting, message routing, etc.

With the API interfaces provided by our locality-aware

DHT, distributed structured P2P applications will have better

end-to-end performance. We will evaluate the performance of

LDHT in next section.

Fig. 1 Workflow of LDHT

IV. PERFORMANCE EVALUATION

We use Chord, Symphony and Kademlia as the basic DHT

protocols, and add our approach on them to form LDHT-based

systems. Performance of LDHT is evaluated and compared

with that of the three original DHT protocols on two

representative network topologies, one of which is generated

by GT-ITM [9] and the other is collected from real-world

Internet.

A. Simulation Setup

We use our own simulator to construct Chord, Symphony

and Kademlia, and add our LDHT design to them respectively.

To accurately prove the effectiveness of our scheme, we

implement two network topologies for the performance

evaluation, Topology1 and Topology2.

Topology1 is generated by GT-ITM [9] with the scale of

4000 nodes. It’s a two-level hierarchical topology. The top

level of Topology1 consists of 200 ASes in 150 by 150 grids.

The bottom level consists of a random number of nodes in the

range of [13, 26] within each AS in 10 by 10 grids.

We use a real-world Internet distance dataset of 226

PlanetLab [10] nodes to construct Topology2 with the scale of

4520 nodes. The dataset contains latencies between nodes in

PlanetLab with ping method in real Internet. These 226

PlanetLab nodes are distributed dispersedly in 80 different

ASes. We use the location of the 226 PlanetLab nodes to

generate a larger scale topology, which can still reflect the

nodes’ distribution of the real Internet. The 226 PlanetLab

nodes serve as transit nodes, and 20 stub nodes are assigned to

each transit node. We assign different distances to the edges in

Topology2: the distance of intra-stub edges is 1; the distance

of the edges between a transit node and a stub node is a

random integer within [5, 15]; and the distance between transit

nodes is from the distance dataset. Topology2 consists of all

the stub nodes.

We use SHA-1 as the hash algorithm to generate the hash of

IP address, with the length of 160 bits. For each system, we

perform random queries for 4*10
4
 times to get the statistical

and average simulation results. (In other words, we insert

4*10
4
 random keys into the overlay network.)

In the evaluation, we consider the following metrics:

• Path length: the latency in an end-to-end overlay path of

each query. It is an efficient yet accurate metric to

measure network structure and data delivery

performance in different overlays.

• Relative Delay Penalty (RDP): the ratio of end-to-end

routing delay between a pair of nodes over that of a

direct IP path per query. RDP represents the relative

cost of routing on the overlay. The smaller it is, the

better the path on the overlay network fits the path on

the IP network.

• Hop count: the number of overlay hops in an end-to-end

path of each query.

B. Simulation Results

We complete our simulations on Topology1 and Topology2

described in Section IV-A.

Fig. 2, Fig. 3 and Fig. 4 show the CDF of the path length of

both original and LDHT-based Chord, Symphony and

Kademlia. We also calculate the average path length of each

protocol and topology and show the results in Table I. We use

some short names due to the limited space. “TP1” and “TP2”

means Topology1 and Topology2. “Orig” means original

protocol and “LDHT” means LDHT-based protocol.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Path length per query (ms)

C
D
F

Chord, Topology1

LDHT-based Chord, Topology1

Chord, Topology2

LDHT-based Chord, Topology2

Fig. 2 Path length per query of Chord and LDHT-based Chord

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Path length per query (ms)

C
D
F

Symphony, Topology1

LDHT-based Symphony, Topology1

Symphony, Topology2

LDHT-based Symphony, Topology2

Fig. 3 Path length per query of Symphony and LDHT-based Symphony

0 200 400 600 800 1000 1200 1400 1600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Path length per query (ms)

C
D
F

Kademlia, Topology1

LDHT-based Kademlia, Topology1

Kademlia, Topology2

LDHT-based Kademlia, Topology2

Fig. 4 Path length per query of Kademlia and LDHT-based Kademlia

TABLE I AVERAGE PATH LENGTH (MS)

Chord Symphony Kademlia

Orig LDHT Orig LDHT Orig LDHT

TP1 525 407 595 443 449 383

TP2 1024 869 1083 897 884 853

From the figures and the table, we can see that the LDHT-

based systems have smaller path length than the original ones

for all of the three DHT protocols on both topologies. It

indicates that LDHT is much more efficient in terms of end-to-

end latency. In fact, the query path on the LDHT overlay

network has many intra-domain connections between

neighbors, which are much shorter in terms of latency than

inter-domain connections. As the original DHT overlay

network doesn’t take network locality into account, many

neighbor connections are high-latency inter-domain links

instead.

Fig. 5, Fig. 6 and Fig. 7 show the CDF of the Relative

Delay Penalty (RDP) of both original and LDHT-based Chord,

Symphony and Kademlia. Table II shows the average RDP of

each protocol and topology. The meanings of the short names

are the same as Table I.

We can see that on both topologies, RDP of the three

LDHT-based systems are smaller than the three original ones.

It indicates that the end-to-end path between two nodes on the

LDHT overlay network is closer than that on the original DHT

to the underlying IP network path. The relative routing cost of

LDHT overlay network is smaller than the original overlay

network.

Fig. 8, Fig. 9 and Fig. 10 show the comparison of hop count

per query of both original and LDHT-based Chord, Symphony

and Kadmlia on the two topologies. We present the results of

the 10th, 50th and 90th percentiles of nodes. The results

indicate that the hop count’s distribution of our LDHT-based

system is the same as the original DHT. The reason is that our

design only changes the manner in which the identifiers are

assigned, but doesn’t change the original DHT’s routing

strategy and neighbor selection scheme at all.

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

RDP per query

C
D
F

Chord, Topology1

LDHT-based Chord, Topology1

Chord, Topology2

LDHT-based Chord, Topology2

Fig. 5 RDP per query of Chord and LDHT-based Chord

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

RDP per query
C
D
F

Symphony, Topology1

LDHT-based Symphony, Topology1

Symphony, Topology2

LDHT-based Symphony, Topology2

Fig. 6 RDP per query of Symphony and LDHT-based Symphony

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

RDP per query

C
D
F

Kademlia, Topology1

LDHT-based Kademlia, Topology1

Kademlia, Topology2

LDHT-based Kademlia, Topology2

Fig. 7 RDP per query of Kademlia and LDHT-based Kademlia

TABLE II AVERAGE RDP

Chord Symphony Kademlia

Orig LDHT Orig LDHT Orig LDHT

TP1 10.71 8.22 12.19 8.64 9.11 7.50

TP2 14.24 13.16 15.48 12.80 13.54 10.82

10 50 90
0

1

2

3

4

5

6

7

8

Pencentiles of nodes (%)

H
o
p
 c
o
u
n
t
p
e
r
q
u
e
ry

LDHT-based Chord, Topology2

Chord, Topology2

LDHT-based Chord, Topology1

Chord, Topology1

Fig. 8 Hop count per query of Chord and LDHT-based Chord

10 50 90
0

1

2

3

4

5

6

7

8

Pencentiles of nodes (%)

H
o
p
 c
o
u
n
t
p
e
r
q
u
e
ry

LDHT-based Symphony, Topology2

Symphony, Topology2

LDHT-based Symphony, Topology1

Symphony, Topology1

Fig. 9 Hop count per query of Symphony and LDHT-based Symphony

10 50 90
0

1

2

3

4

5

6

7

8

Pencentiles of nodes (%)

H
o
p
 c
o
u
n
t
p
e
r
q
u
e
ry

LDHT-based Kademlia, Topology2

Kademlia, Topology2

LDHT-based Kademlia, Topology1

Kademlia, Topology1

Fig. 10 Hop count per query of Kademlia and LDHT-based Kademlia

C. Simulation Conclusion

Results above clearly show that, LDHT is applicable for

different DHT protocols and topologies. In comparison with

original DHT, LDHT has better performance on end-to-end

latency, without adding overlay hops.

V. CONCLUSION AND FUTURE WORK

In this paper, we propose a design of an ASN-based

locality-aware DHT called LDHT, which exploits network

locality on DHT-based systems. We assign a node’s identifier

in a geographic layout manner that nodes with close identifiers

in the identifier space are close in the network topology, so

that they will have more close neighbors than faraway

neighbors, and the end-to-end latency in a query can thus be

reduced. We use a node’s ASN to generate Global Part of the

identifier that makes the nodes in a same AS have a same

identifier prefix. As a result, there are more intra-domain

neighbor connections in the path on LDHT-based overlay

network.

We develop LDHT-based Chord, Symphony and Kademlia

to evaluate the performance of our design in three metrics. Our

simulations are done on both topologies generated by GT-ITM

and real-world Internet. The simulation results prove the

effectiveness of LDHT. The advantage of LDHT over

traditional DHT lies in its better performance in terms of end-

to-end latency like path length and RDP, without adding

overlay hops. Meanwhile, LDHT is applicable for different

kinds of basic DHT protocols and can work well on various

topologies.

As for future work, first, we would like to deploy a publicly

accessible DHT service, like OpenDHT [11]. People can

easily issue put and get operations to any DHT node without

running a LDHT client in order to use the LDHT service.

Second, we will consider the proximity among ASes to

improve the performance of LDHT. We have already done

some works in [12] and hope to use this kind of scheme to

make LDHT stronger.

REFERENCES

[1] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan,

“Chord: A scalable peer-to-peer lookup protocol for internet

applications,” IEEE/ACM Transactions on Networking, vol. 11, pp.

17–32, 2003.

[2] Gurmeet Singh Manku, Mayank Bawa and Prabhakar Raghavan,

“Symphony: Distributed hashing in a small world,” in Proc. UCITS’03,

2003.

[3] P. Maymounkov and D. Mazi`eres, “Kademlia: A peer-to-peer

information system based on the xor metric,” in Proc. IPTPS’02, 2002.

[4] Miguel Castro, Peter Druschel and Y. Charlie Hu, “Exploiting network

proximity in Distributed Hash Tables,” in Proc. IPTPS’02, 2002.

[5] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, and J. D.

Kubiatowicz, “Tapestry: A resilient global-scale overlay for service

deployment,” IEEE Journal on Selected Areas in Communications, vol.

22, pp. 41–53, January 2004.

[6] Antony Rowstron and Peter Druschel, “Pastry: Scalable, decentralized

object location and routing for large-scale peer-to-peer systems,” in

Proc. IFIP/ACM International Conference on Distributed Systems

Platforms (Middleware’01), 2001.

[7] Shuheng Zhou, Gregory R. Ganger and Peter Steenkiste, “Location-

based node IDs: enabling explicit locality in DHTs,” Carnegie Mellon

University, Tech. Rep. CMU-CS-03-171, 2003.

[8] Jiping Xiong, Youwei Zhang, Peilin Hong and Jinsheng Li, “Chord6:

IPv6 based topology-aware Chord,” in Proc. ICNS’05, 2005.

[9] (2007) The GT-ITM homepage. [Online]. Available:

http://www.cc.gatech.edu/projects/gtitm/.

[10] (2007) The PlanetLab homepage. [Online]. Available:

http://www.planet-lab.org.

[11] Sean Rhea, Brighten Godfrey, Brad Karp, John Kubiatowicz, Sylvia

Ratnasamy, Scott Shenker, Ion Stoica, and Harlan Yu, “OpenDHT: A

public DHT service and its uses,” in Proc. ACM SIGCOMM’05,

August 2005.

[12] Lin CONG, Bo YANG, Yang CHEN, Guohan LU, Beixing DENG,

Xing LI, Ye WANG, “NTS6: IPv6 based network topology service

system of CERNET2,” in Proc. MUE’07, Apr 2007.

