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Abstract: A Network Coordinate (NC) system is an efficient mechanism to predict Internet distance with scalable
measurements. In this paper, we focus on the node churn problem – the continuous process of nodes arrival and
departure – in distributed applications. Studies on Vivaldi, a representative distributed NC system, show that
under node churn the prediction accuracy of the NC system will be seriously impaired. In this paper, we focus
on how to handle the impact of node churn in Vivaldi. Firstly, we propose a simple solution by directly
increasing the measurement frequency. Our experiments have demonstrated that this approach can reduce
the harm of node churn. However, it increases the communication overhead as the measurement frequency
grows. To avoid such expensive solution, we propose the design and implementation of Myth, a decentralised
and fast convergence NC system. It introduces the merit of Landmark-based NC system to shorten
convergence time in Vivaldi with slight extra overhead. Our experimental results show that Myth outperforms
Vivaldi a lot under node churn, without compromising the performance under stable environment. Moreover,
we have found that the use of Myth is a cost-effective way to achieve higher prediction accuracy; it will not
only improve the prediction accuracy but also save the communication overhead.
1 Introduction
A Network Coordinate (NC) system is a scalable mechanism
to predict the network latency between any two Internet
nodes without direct end-to-end measurements. Each node
is assigned a set of numbers called NCs to represent its
position in an Euclidean space, and the latency between
any two nodes can be calculated from their coordinates
with a distance function. The NC system can estimate the
Internet latency accurately as well as reduce the active
probing overhead significantly. Thus it is extremely useful
in large-scale distributed applications. To date, NCs have
demonstrated their merit in a wide variety of applications
ranging from overlay multicast [1], server selection [1],
distributed query optimisation [2], file-sharing via
BitTorrent [3], compact routing [4] and application layer
anycast [5].

Several approaches have been proposed in literature, whose
core algorithms can be categorised into two classes, namely
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landmark-based algorithm (LBA) and simulation-based
algorithm (SBA). In LBA systems [6–8], each node
measures its distances to a set of reference nodes called
landmarks, and its coordinates can be determined by
minimising the difference between the measured distances
and the calculated distances. LBA provides high accuracy
and stability. However, the dedicated landmark nodes are
under the heavy load of serving all the other nodes in the
system. In other words, LBA has bad scalability. As for
SBA systems, such as [9] and [10], pairwise distances are
mapped into a physical spring system, so that every node’s
coordinates can be determined by minimising the energy of
the whole simulated physical system. SBA systems
distribute the measurement and computation to all
participating nodes in order to lighten the load of any
individual node. Thus SBA guarantees better scalability
and has received more practical implementations.

However, distributed systems have to deal with churn-
change in the set of participating nodes due to joins,
IET Commun., 2009, Vol. 3, Iss. 10, pp. 1578–1586
doi: 10.1049/iet-com.2008.0671

2009 at 09:48 from IEEE Xplore.  Restrictions apply. 



IE
do

www.ietdl.org
graceful leaves and failures, as indicated in [11]. In Vivaldi, a
representative SBA system, each node starts from the same
initial position, updates its coordinates by referring to the
measured distance to one of its neighbours and that
neighbour’s current coordinates and converges to the ideal
position after many rounds of updates. Given the
distributed nature of Vivaldi, it will in general take tens of
seconds for a node to converge to its ideal position. During
this period of time, the algorithm is vulnerable to the
departure and arrival of its neighbours, because a
converging node may lose the good reference from a
departing converged neighbour, and may refer to some
newly joined nodes whose coordinates are still very
inaccurate. Thus, under node churn the prediction accuracy
of Vivaldi will be significantly impaired. Ledlie et al. [12]
confirms this by analysing the statistics obtained from
Azureus BitTorrent client running upon Vivaldi.

This paper focuses on handling the node churn problem of
Vivaldi, with the major contributions as follows:

First, we propose a simple and straightforward solution to
node churn. We demonstrate that simply increasing the
measurement frequency of Vivaldi can reduce the decrease
of prediction accuracy caused by node churn; however,
higher communication overhead is needed. Thus this
approach is not a cost-effective solution.

Second, we propose Myth, a fully decentralised NC
scheme, to solve this problem. Myth is fully compatible
with Vivaldi. In Myth, a scalable algorithm is designed to
intelligently choose the initial coordinates of nodes based
on the information of existing nodes. After the initial
coordinates are determined, basic Vivaldi algorithm is
utilised to achieve convergence and guarantee scalability. By
using the algorithm, the initial position of a Myth node is
close to its final ideal position; hence the convergence
duration is greatly shortened. Furthermore, because the
initial coordinates of a Myth node are more accurate than
the ones of a Vivaldi node, the impairment of referring to a
newly joined node as neighbour is reduced. The extra
overhead of using Myth is moderate. We evaluate the
performance of Myth by comparing it with the Vivaldi
system. The experimental results show that in node churn
scenario Myth outperforms Vivaldi under every metric we
collect. Moreover, we found that using Myth is a much
better way to achieve high prediction accuracy instead of
increasing each node’s measurement frequency of Vivaldi; it
can not only improve the prediction accuracy but also save
the communication overhead. We believe that Myth is a
step further towards a practical NC system in real Internet.

The rest of this paper is organised as follows. In Section 2,
we study the relationship between the measurement
frequency and the prediction accuracy of Vivaldi under
node churn. Then in Section 3, we present the design and
implementation of Myth, followed by its performance
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evaluation in Section 4. In Section 5, we summarise the
conclusions.

2 Impact of node churn for
Vivaldi
In this section, we first briefly introduce the definition of
NCs and the basic algorithm of Vivaldi. Then we study its
performance degradation under node churn.

2.1 Definition of NCs

Suppose we have N Internet nodes. Let S be the set of these
N nodes. Let L be the N � N distance matrix among the
nodes in S. Thus L(i, j) represents the measured round-trip
time (RTT) between node i and node j.

Basically, NC is an embedding of these N hosts into
m-dimensional Euclidean space Rm. We define xi as the
NC of node i, we have xi ¼ (ri

1, ri
2, . . . , ri

m).

We can use the xi and xj to estimate the RTT between
node i and node j. We use LE(i, j) to represent this
estimated RTT. The definition of LE(i, j) is as follows

LE(i, j) ¼k xi � xj k¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
1�k�m

(ri
k � r

j
k)

2

s
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To serve thousands of nodes effectively, an NC system should
be scalable. Each node only does restricted measurements to
calculate its NC. The existing systems [6, 7, 9, 10, 13] use
only O(N ) measurements. Thus the total measurement
overhead under NC is much lower than the O(N 2)
measurements required for a full mesh of N nodes.

The prediction accuracy of an NC scheme is often depicted
by the relative error (RE) of predicted distance over the real
latency measured on Internet. RE between node i and
node j is defined as [7, 8, 14–16]

RE ¼
jLE(i, j)� L(i, j)j

L(i, j)
(2)

Smaller RE indicates higher prediction accuracy. When
measured latency equals predicted latency, the RE value
will be zero.

2.2 Vivaldi algorithm

In our work, we focus on the improvement of the accuracy of
Vivaldi [9], which is called as the most widely used SBA
system in [17] because of its clean and decentralised
implementation. Vivaldi is studied in [18, 19] as the
representative NC algorithms, and it is deployed in many
well-known Internet systems, such as Bamboo DHT [20],
Stream-Based Overlay Network (SBON) [2] and Azureus
BitTorrent [3]. Before going into the details, we first
briefly introduce the basic procedure of Vivaldi.
1579
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Vivaldi characterises the whole network as a spring system.
Let L(i, j) be the actual distance (RTT) between node i and
node j in the system, and xi be the coordinates assigned to
node i. Ideally, the coordinates of all nodes are produced by
minimising the following error function which corresponds
to the overall energy. We refer to those coordinates as ideal
coordinates of all nodes.

E ¼
X

i

X
j

(L(i, j) � k xi � xj k )2 (3)

jjxi � xj jj is the distance between node i and node j
calculated based on coordinates.

In practical decentralised Vivaldi system, node i maintains
its current coordinates xi and local error ei, and updates them
for many rounds to get closer to the ideal coordinates. In each
round, node i adjusts them through measuring the latency to
one of the other nodes in the system. The pseudo-code of
Vivaldi is shown as follows, where ce and cc are tunable
parameters. In this pseudo-code, node i updates its
coordinates xi by probing node j. rtt means the latency
between node i and node j. For each node i, the initial
value of ei is set to 1.

Algorithm 1 Vivaldi (rtt, xj, ej)

1: w ¼ ei=(ei þ ej)

2: es ¼ jkxi � xjk � rttj=rtt

3: ei ¼ es � ce � wþ ei � (1� ce � w)

4: d ¼ cc � w

5: xi ¼ xi þ d� (rtt�k xi � xj k )� u(xi � xj)

A sample weight is firstly computed based on the local and
remote error (line 1), and then the RE is computed (line 2).
Next node i updates its local error (line 3). Finally node i
calculates and updates its coordinates (line 4 and line 5).

In Vivaldi, all nodes have the same initial coordinates. To
bootstrap the algorithm Vivaldi defines u(0) as a unit-length
vector in a randomly chosen direction. When two nodes
occupy the same location, there will be a spring pushing
them away from each other in an arbitrary direction.

2.3 Evaluation of vivaldi under node
churn

In most NC applications, especially peer-to-peer content
distribution or file sharing, all nodes may join or leave the
system at any time. This inherent dynamics and distributed
nature make the deployment of NC even more challenging.

Dabek et al. [9] only studied Vivaldi under stable
environment where all nodes will not leave the system after
80
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they join. However, this is not always the case in practice.
Ledlie et al. [12] shows that the client lifetime in file sharing
using Azureus (running upon Vivaldi) follows a long-tailed
distribution typical in peer-to-peer (P2P) systems. In their
study, 78% of the nodes stay in the system for less than 60 min.

We evaluate Vivaldi in two scenarios and compare the
prediction accuracies.

Stable scenario: All nodes join the system at the beginning and
stay throughout the whole experiment.

Churn scenario: We use the synthetic traces used in [11] to
generate the node churn. As defined in [20], a node’s
session time is the elapsed time between its joining the
network and subsequently leaving it. As in [11], we use
session times with PDF f (x) ¼ aba= (xþ b)aþ1 with
exponent a ¼ 1.5 and b fixed so that the distribution has
the mean of 30 min unless otherwise stated. This is a
standard Pareto distribution, shifted b units (without the
shift, a node would be guaranteed to be up for at least b
minutes). Pareto distribution can describe the long-tailed
characteristic of nodes’ staying time, which is used for
simulating the node staying time in both [11] and [21].
Between each session we use exponentially distributed
downtimes with the mean of 2 min [11].

There are some implementations of Vivaldi protocol, such
as [12, 20]. In our simulation we choose the protocol used in
[20] because it is part of the Bamboo DHT, which is a
mature, robust and open source DHT that has run on
PlanetLab 24/7 for more than 3 years. Bamboo DHT
serves as the infrastructure of the OpenDHT [22].

In the Vivaldi of Bamboo, the default way of collecting
latency samples to update the local node’s NC is to pick a
random node in the overlay network by the fixed Update
Interval. These sample nodes are uniformly chosen. Once
one node is found, the local node then pings this random
chosen node and retrieves its NC (together with the value
of local error). The NC of the local node is updated and
the above procedure is repeated every t seconds. We define
the above procedure which is repeated every t seconds on
each node as one probe. In other words, one probe includes
the following three steps: (a) Generate one GUID (Global
Unique Identifier) randomly then query the DHT for it.
The DHT will return the node which is responsible of this
GUID. This node will be the randomly chosen neighbour.
(b) Measure the distance from itself to this randomly
chosen neighbour. Also, get the current NC (together with
the value of local error) of this randomly chosen neighbour.
(c) Update the own NC with the distance and NC
obtained in the last step.

There are two kinds of Vivaldi implementations. This kind
of Vivaldi implementation is called full Vivaldi embedding
[23, 24], – all other nodes can be used as the referenced
node for every node. The other kind of implementation is
IET Commun., 2009, Vol. 3, Iss. 10, pp. 1578–1586
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that each node maintains a fixed neighbour set and updates
its own NC by probing nodes only from this neighbour set.
The design of this kind of implementation of Vivaldi has
not considered the node churn. For example, the following
two questions have not been answered in [9]. (a) Once one
of a node’s neighbours is down, how can it detect this?
(b) How soon can it get a new neighbour to take the place
of the left one? Because of these uncertain features of the
implementation using a fixed neighbour set, instead, full
Vivaldi embedding is used in our simulation.

We use two different data sets from real Internet
measurement to study the prediction accuracy of Vivaldi.
The first data set is the King data set from [9], which
includes the round-trip latencies among 1740 Internet
naming servers. The second data set is the PlanetLab data
set, available at [25], which includes the round-trip
latencies among 226 hosts of the PlanetLab. Both of these
two data sets are used frequently in NCs simulation. We
evaluate Vivaldi in both stable and churn scenarios. The
parameters of the simulation are defined in Table 1. To
implement Vivaldi, m is set as 5 [20], cc and ce in Vivaldi
are set to 0.25 as an empirical value in [9]. Specially, in
churn scenario, we set t as both 10 and 20 to see the effect
of the different update intervals.

Fig. 1 and Table 2 show the comparison of the REs of
Vivaldi between two different scenarios. According to

Table 1 Parameters of vivaldi simulation

Parameter Definition

m dimension of the Euclidean space

cc tunable parameter in Vivaldi

ce tunable parameter in Vivaldi

t NC update interval of a Vivaldi host
T Commun., 2009, Vol. 3, Iss. 10, pp. 1578–1586
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Fig. 1, we can find that the performance of Vivaldi
degrades in node churn scenario. In churn scenario, when
t equals 10, average RE is increased by 126.32% in
PlanetLab data set and by 66.67% in King data set, when
t equals 20, average RE is increased by 231.58% in
PlanetLab data set and by 108.33% in King data set.
Vivaldi’s performance degradation in node churn scenario
will seriously limit its application, which confirms the
conclusion in [12]. Furthermore, we can also find that
smaller t can lead to better accuracy under node churn.
Thus increasing the measurement frequency is a simple and
straightforward way to improve the performance of Vivaldi
under node churn. Obviously, this approach will definitely
cause increased communication overhead because smaller t
will lead to more probe.

In the next section, we propose a more effective solution to
node churn called Myth. In contrast to the above simple and
straightforward solution, Myth can not only improve the
prediction accuracy but also save the communication
overhead.

3 Myth system design
3.1 Basic idea of myth

In Vivaldi, the coordinates of all the nodes start at the same
initial position. These nodes update their coordinates for
many rounds and their coordinates finally converge to their
ideal positions. Fig. 2a shows the first three rounds of the

Table 2 Average RE Vivaldi

Data set Scenario

Stable Churn
(t ¼ 10)

Churn
(t ¼ 20)

PlanetLab 0.19 0.43 0.63

King 0.24 0.40 0.50
Figure 1 Distribution of RE

a Planet Lab
b King
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Figure 2 Illustrations of coordinates update in Vivaldi and Myth

a Vivaldi
b Myth
NC update of two nodes after their joining to the system.
The two stars with different colours show the ideal
positions of both nodes, respectively.

Here we argue that using the same initial coordinates for
all nodes is not a good heuristic under node churn, even
though nodes will be spread in the following update. First,
extra rounds are needed to spread out the nodes from their
initial coordinates, and hence the convergence time is
increased. Furthermore, since a newly joined node may
serve as the reference for its neighbours, its irrelevant and
inaccurate initial coordinates will affect the prediction of its
neighbours. Thus under high node churn rate, a large
portion of the nodes are in the state of disturbance with
inaccurate NCs.

To solve this problem, in Myth we manage to bootstrap
each node with the initial coordinates close to its ideal
coordinates. Fig. 2b shows the case. Myth is fully
compatible with Vivaldi. In Myth, an lightweight initial
coordinates (IC) prediction scheme is added before the
periodical Vivaldi-like adjustment. This scheme utilises the
coordinates of nodes which are already in the system. After
doing this, each node needs fewer rounds to reach its ideal
position. Moreover, the prediction error caused by referring
to a newly joined node is reduced, which improves the
stability of the system. In the following we present the
scheme in details.

3.2 Initial coordinates calculation

One sparking point of Myth is to calculate the IC of each node,
respectively, in a scalable fashion. When a new node A joins the
overlay system, it firstly chooses L nodes (L . m, where m is the
dimension of the space) randomly in the overlay. This random
selection process can simply be done by using the DHT query
since our Vivaldi implementation is built on Bamboo DHT.
We can generate L random GUIDs and then query the
DHT for them. The DHT will return L nodes which are,
respectively, responsible of these GUIDs. After that node A
measures its RTTs to these L nodes as well as retrieves the
NCs of these L nodes. Using the distances and NCs
collected, node A can calculate its own initial coordinates ICA

which minimise the overall error between the measured and
82
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the calculated distances from A to these L nodes. As in [6],
we use Simplex Downhill Algorithm to minimise the
following objective function fobj(A).

fobj(A) ¼
X

Ni[N1...NL

(1�min(1, eNi
)) � j(A, Ni) (4)

where j(�) is an error measurement function defined as follows.

j(N1, N2) ¼
L(N1, N2)� LE(N1, N2)

L(N1, N2)

� �2

(5)

The idea of our IC prediction algorithm is similar to the NC
calculation of the ordinary global network positioning (GNP)
nodes in [6]. However, there is a significant difference
between Myth and GNP or other LBAs: Myth does not
require the deployment of dedicated landmark nodes. Our
trick is to make use of the existing Myth nodes, which are
already in the system, as landmark nodes. This solution is
scalable since there are no fixed dedicated landmarks.

3.3 Myth implementation

Algorithm 2 Myth algorithm

Join_Myth_Overlay()

[rtt(�), x(�), e(�))] ¼ Sample Neighbours(L)

xA ¼ Initial Coordinates Prediction(rtt(�), x(�), e(�))

Wait(Update_Interval)

while forever do

[rtt, x, e] ¼ Sample Neighbours(1)

xA ¼ Vivaldi(rtt, x, e)

Wait(Update_Interval);

end while
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Algorithm 2 shows the procedure that a new node A joins a
Myth overlay and starts its NC calculation. Node A joins Myth
overlay using the procedure proposed in [20, 26]. After joining
the Myth overlay A probes L nodes in its neighbour set as well
as retrieves the NCs of these L nodes. These L nodes are
randomly chosen by the procedure proposed in Section 3.2.
Then A employs IC prediction algorithm to calculate its
initial coordinates. After that node A can start the
coordinates adjusting procedure and update its coordinates
periodically using basic Vivaldi algorithm.

3.4 Overhead analysis

By adding the IC prediction scheme, Myth introduces extra
communicational and computational overhead when a new
node joins. The computational overhead is negligible
because the time needed to compute an IC is far shorter
than the time interval between update rounds, which is
generally on the order of seconds. In this section we
present a simple analysis of the communicational overhead
imposed by Myth.

Suppose there are M nodes (M . L) in the swarm, and
each node probes one of the other nodes updates its NC
once per unit time. Thus for each node the
communicational load (number of messages per update
interval) of Vivaldi is 1. We do not take into account the
sizes of messages because almost the same format of
messages is used for all communications. During IC
prediction, each node will contact extra L� 1 neighbours
(L , M) to compute its IC (one neighbour information is

Table 3 The increase of total number of probes

Update_Interval (s) Average stay duration

20, min 30, min 60, min

10 5.83% 3.89% 1.94%

20 11.67% 7.78% 3.89%
T Commun., 2009, Vol. 3, Iss. 10, pp. 1578–1586
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shared with the first round of Vivaldi update). If one node’s
average staying duration is k seconds, the upper bound of
the extra communicational load introduced by IC
prediction is (L� 1)=(k=t)� 100%, where the IC
prediction happens for each node once per k=t update
intervals. In practical settings, L is 8 in our experiment,
and we vary the value of k to show different overheads
under different node churn situations. The update interval
is set to 10 and 20 s. Table 3 shows the results.

Even when the average node stay duration is as short as
20 min and the update interval is 20 s, the overhead of
Myth is only increased by 11.67% of Vivaldi. If the average
node stay duration reaches 60 min and the update interval
is 10 s, Myth will add merely 1.94% communicational
overhead to Vivaldi. Thus the extra overhead is acceptable.

4 Performance evaluation
4.1 Experiment setup

In our experiments, we use two data sets, the King and
PlanetLab, to compare Myth and Vivaldi. Same as the
parameters used in the Vivaldi simulation in Section 2.3,
both systems employ five-dimension coordinates [20].
cc and ce in Vivaldi and Myth are set to 0.25 as an empirical
value in [9]. Our experiment is performed both in stable

Table 4 Average RE

Data set Scenario

Stable Churn
(t ¼ 10)

Churn
(t ¼ 20)

PlanetLab Vivaldi 0.19 0.43 0.63

Myth 0.19 0.27 0.33

King Vivaldi 0.24 0.40 0.50

Myth 0.23 0.29 0.32
Figure 3 Distribution of RE

a Planet Lab
b King
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scenario and churn scenario. Ten runs are performed on each
data set and the average results are reported.

4.2 Evaluation results of myth

RE: Fig. 3 shows the comparison of RE between Myth and
Vivaldi. Table 4 shows the comparison of the average RE
between them.

In stable scenario, the performance of Myth is almost
equivalent to that of Vivaldi. Hardly any difference can be
found between the two curves. In churn scenario, Myth
outperforms Vivaldi a lot in both of the data sets. When
t equals 10, Myth can reduce the average RE from Vivaldi
by 37.21% in PlanetLab data set and by 27.50% in King
data set. When t equals 20, Myth can reduce the average RE
from Vivaldi by 47.62% in PlanetLab data set and by
36.00% in King data set.

4.3 Other metrics

Besides RE described in Section 2, we also evaluate the
performance of Myth with the following two metrics.

Closest neighbour absolute error (CNAE): Lua et al. [14] proposed
closest neighbour loss (CNL), which indicates the probability to
correctly select the closest neighbour to a given node, and is
defined by the fraction of nodes where an incorrect node is

Table 5 Average CNAE

Data set Scenario

Stable Churn
(t ¼ 10)

Churn
(t ¼ 20)

PlanetLab Vivaldi 4.83 19.37 30.34

Myth 4.17 13.65 17.41

King Vivaldi 26.02 39.10 44.72

Myth 24.84 33.08 36.47
84
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chosen as the closest neighbour using predicted distances. In
addition to the CNL, we measure the magnitude of the error
when the wrong node is selected. More precisely, we use
CNAE [27], which is defined as the gap between the distance
to the incorrectly selected neighbour and the distance to the
actual closest neighbour. Pietzuch et al. [17] uses nearest
neighbour loss (NNL) to capture the application-observed
latency penalty for using a node that is not the true nearest
neighbour. Both of CNAE and NNL have the same
definition but under different names. In this paper, we use
CNAE for consistency.

Relative rank loss (RRL): Lua et al. [14] measures the probability
to correctly select the closer node from an arbitrary node pair. It
is defined as the percentage of incorrectly ordered node pairs (as
perceived at a given node) based on the prediction. The value of
RRL is between 0 (for no loss of relative order) and 1 (for a
complete reversal of order).

Among these metrics, RE is the basic metric which is
evaluated by all NC designers. RRL and CNAE focus
more on application perspective where nodes only need to
know the relative distances of other nodes.

CNAE: Table 5 and Fig. 4 show the comparison of CNAE
between Myth and Vivaldi. In stable scenario, the CNAEs of

Table 6 Average RRL

Data set Scenario

Stable Churn
(t ¼ 10)

Churn
(t ¼ 20)

PlanetLab Vivaldi 0.05 0.09 0.13

Myth 0.05 0.06 0.07

King Vivaldi 0.11 0.16 0.19

Myth 0.11 0.13 0.14
Figure 4 Distribution of CNAE

a Planet Lab
b King
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Figure 5 Distribution of RRL

a Planet Lab
b King
Myth and Vivaldi are also almost equivalent to each other. In
churn scenario, in both PlanetLab data set and King data set,
Myth improves the quality of the closest neighbour selection a
lot comparing to Vivaldi. When t equals 10, Myth can reduce
the average CNAE from Vivaldi by 29.53% in PlanetLab
data set and by 15.40% in King data set. When t equals 20,
Myth can reduce the average CNAE from Vivaldi by 42.62%
in PlanetLab data set and by 18.45% in King data set.

RRL: Table 6 and Fig. 5 show the comparison of RRL between
Myth and Vivaldi. Just as the results in RE and CNAE metrics,
the RRL of Myth and Vivaldi in stable scenario are almost
equivalent both PlanetLab data set and King data set. Myth
outperforms Vivaldi with both PlanetLab data set and King
data set in churn scenario. When t equals 10, Myth can
reduce the average RRL from Vivaldi by 33.33% in
PlanetLab data set and by 18.75% in King data set. When t
equals 20, Myth can reduce the average RRL from Vivaldi by
46.15% in PlanetLab data set and by 26.31% in King data set.

4.4 Evaluation of measurement overhead

In this section, we study the measurement overhead of Vivaldi
and Myth under node churn. Our simulation study the total
number of messages used during 10 000 s. Let us consider
the results of PlanetLab data set first, from Table 7, the total
number of probes of Myth when t equals 20 is 43.01%
smaller than the total number of probes of Vivaldi when
t equals 10. At the same time, as demonstrated in Tables 4–
6, Myth when t equals 20 performs better than Vivaldi when
t equals 10 in all the metrics we used (RE, RRL, CNAE).

Table 7 Total number of probes in 10,000 s

Data set Churn (t ¼ 10) Churn (t ¼ 20)

PlanetLab Vivaldi 1.86 � 105 0.93 � 105

Myth 1.98 � 105 1.06 � 105

King Vivaldi 1.43 � 106 0.72 � 106

Myth 1.52 � 106 0.81 � 106
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In other words, to improve the performance of Vivaldi under
node churn, using Myth is a cost-effective way instead of
simply reducing the t. It can not only improve the prediction
accuracy but also save the measurement overhead. The same
conclusion can be found using the results of King data set.

5 Conclusion
In this paper we study the node churn problem in a
representative distributed NC system, Vivaldi. An accurate
and decentralised NC system called Myth is proposed to
improve the prediction accuracy under node churn.

The major contribution of this paper is twofold. (a) By
evaluating the performance of Vivaldi under node churn, we
find out that increasing the probe frequency of Vivaldi is a
direct solution to reduce the effect of the node churn but the
communication overhead is enlarged. As a simple approach,
it is not a cost-effective solution to node churn. (b) We
propose Myth, a fully decentralised NC scheme, to improve
the accuracy of Internet distance prediction under node
churn. Myth is both accurate and scalable under high node
churn rate, combining merits of LBA and SBA together
with moderate extra overhead. We evaluate the performance
of Myth and compare it with the Vivaldi system with real
Internet measurement traces. The experimental results show
that Myth can remedy the node churn problem of Vivaldi.
In our experiment, the performance of Myth exceeds that of
Vivaldi a lot in churn scenario, and is almost equivalent to
the performance of Vivaldi in the scenario where all nodes
stay stable. In other words, Myth is robust to node churn.
We have also demonstrated that using Myth is a more
efficient way to improve the prediction accuracy under node
churn instead of increasing each node’s measurement
frequency of Vivaldi; it can not only improve the prediction
accuracy but also save the communication overhead.

To further evaluate the practicality of Myth, we currently
focus on the deployment of Myth on Internet and develop
some real applications based on this NC system. Also, we
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will involve Embeddable Overlay Networks (EON) [24] in
our future research on NC to create a high quality NC system.
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