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Abstract—Network coordinates (NC) system is an efficient
mechanism for Internet distance prediction with limited mea-
surements. In this paper, we identify the intrinsical cause for
the inadequate accuracy of the simulation based NC algorithms.
We then propose Pharos, a fully decentralized and hierarchical
scheme, to remedy this problem. Pharos leverages multiple coor-
dinate sets at different distance scales, with the right scale being
chosen for prediction each time. We evaluate the performance
of Pharos system with the King data set and latency data from
PlanetLab, and compare it with the representative NC system,
Vivaldi. The experimental results show that Pharos outperforms
Vivaldi much without adding any significant overhead.

I. INTRODUCTION

Network coordinates (NC) system is an efficient mechanism
to predict latency between any two Internet nodes without
explicit measurement to them. In NC system, each node is
assigned a set of numbers called coordinates, and the network
distance (latency) between any two nodes can be calculated
from their coordinates with a distance function. Thus NC
system significantly reduces the active probing overhead and
particularly benefits large scale Internet applications, such as
peer-to-peer content distribution or file sharing, multi-user
gaming, and server selection.

Several approaches have been proposed in the literature,
and they can be categorized into two classes in designing a
NC system [3], namely landmark-based algorithm (referred as
LBA in this paper) and simulation-based algorithm (referred as
SBA). In LBA systems( [1], [4], [5]), each node measures its
distance to a set of reference nodes called landmarks, and then
its coordinates can be determined by minimizing the difference
between the actual distance (by measurement) and calculated
distance to these landmarks. As for SBA systems, such as
[2] and [13], they map nodes and pair-wise distance into a
physical system, so nodes’ coordinates can be determined by
minimizing the energy state of the whole simulated physical
system.

Recent studies have revealed that both LBA and SBA
systems are short of satisfactory in term of accuracy, which
is often measured by the relative error (RE) of prediction.
This relative error ratio is calculated pairwisely over the whole
nodes set across all distance range, while in [8] the authors
found out that in a LBA system, landmarks’ distribution could
greatly affect the prediction accuracy, and different landmark

sets should be chosen for different range of distance to improve
the overall accuracy.

However, in SBA, there’s no landmark in the system, the
impact of the range of distance for the prediction accuracy
remains unknown. Thus, in this paper, we want to answer the
following questions.

1) Does range of distance of different peers affect the
accuracy of prediction in SBA and how?

2) Without hierarchy of landmarks in LBA, how to design
a distributed and efficient architecture for peers in SBA to
remedy this problem?

The answer to the first question is positive and confirmed
with a series of experiments. We analyze the distribution of
the relative error of a representative SBA system, Vivaldi. In
contrast to the observation for the LBA systems [8], we find
out that the narrower range of distance does not lead to the
higher prediction accuracy in Vivaldi, but short links still suffer
from higher prediction error than long links.

As for the second problem, our main idea is to cluster the
peers into different groups with different range of distance,
and design one set of coordinates that is more accurate for
short distances, and another set of coordinates that is more
accurate for long distances. Then according to the range of
distance of interest, we can choose the right set of coordinates
to achieve higher prediction accuracy. Note that the number
of coordinates sets can be varied depending on the scale of
the range of distance. Based on this idea, we propose Pharos,
a decentralized and hierarchical network coordinate system,
and present its design and implementation We evaluate the
performance of Pharos system with different typical data sets.
Our experimental results demonstrate the improvement of the
prediction accuracy comparing to the original Vivaldi system.

The rest of this paper is organized as follows. First we
study the impact of range of distance and distribution on
prediction accuracy for a representative SBA system, Vivaldi
in Section II. Then in Section III. we present the design
and implementation of Pharos, followed by its performance
evaluation in Section IV. We review the related work in Section
V and conclude the whole paper with Section VI

II. IMPACT OF RANGE OF DISTANCE FOR VIVALDI

In our work, we focus on improvement of the accuracy of
Vivaldi [2], the representative of Simulation-based Algorithm.
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Vivaldi is the most widely used SBA system, thanks to its
clean and decentralized implementation. Before describing
the details, we first briefly introduce the basic procedure of
Vivaldi, and then we study the causes of the prediction error
of Vivaldi.

A. Vivaldi

Vivaldi characterizes the whole network as a spring system.
Let L;; be the actual distance (round-trip time) between nodes
i and node j in Vivaldi system, and x; be the coordinate
assigned to node i. The coordinates of node are the result
of minimizing the following error function which corresponds
to the lowest energy.
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where ||z; — ;|| is the distance between node i and node j in
the chosen coordinates space.

In a decentralized Vivaldi version, each node maintains
coordinates x; and local error e;. All nodes adjust their
network coordinates and local errors through measuring their
latencies to some other nodes in the system. The pseudo
code for Vivaldi is shown as follows. ¢, and c. are tunable
parameters.

Algorithm 1 vivaldi(rtt, z;, e;)

Iw=ce;/(e;+ej)

2 es =||| x; —x; || —rtt | [rit

3 e =€ X Ce XWHe; X (1—ce xw)

4: d=c. X w

Sy =x; +0 X (rtt— ||z — xj ||) x u(z; —xj)

A sample weight is firstly computed based on the local and
remote error (line 1), and then the relative error is computed
(line 2). Next node i updates its local error (line 3). Finally
node i calculates and updates its coordinates (line 4 and line
5).

B. Impact of range of distance for Vivaldi

The prediction accuracy of a network coordinates scheme is
often denoted by the relative error (RE) of predicted distance
over the real latency measured on Internet. Relative Error (RE)
is defined as [1] [2]:

RE — | PredictionDist — MeasuredDist |
~ min(PredictionDist, MeasuredDist)

2

We use two different data sets from real Internet mea-
surement to study the prediction error of Vivaldi. The first
data set is the King data set from [2], which includes the
round-trip latencies among 1740 Internet naming servers. The
second data set, the PlanetLab data set, includes the round-
trip latencies among 226 hosts on the Planet-Lab. This data
set is downloaded from Network Coordinate Research Group
at Harvard [11].

Fig.1 depicts the link distance distribution for these two
data sets, we can see that the distance range of the PlanetLab
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data set is wider than that of the King data set. However,
in contrast to the observation for LBA systems where wider
range of distance always results in higher prediction error, in
our experimental result shown in Fig.2, we find the prediction
accuracy with Planetlab data set is higher than that with King
data set.

We then further study how distance affects the prediction
accuracy, Fig.3 depicts the distribution of the relative error
over the distance spectrum. We found that the relative error
varies from different ranges of distance. But, for both King
data set and PlanetLab data set, we can see short links suffer
from much higher relative error than long links, and we will
further evaluate this in Section IV.

III. SYSTEM DESIGN
A. Pharos Overview

In this section, we present a new approach, called Pharos,
which exploits different sets of coordinates for the same node.
Each node is assigned multiple coordinates, some of which
positions the node at global scale, while the others position the
node at a smaller distance scale. To make it simple, we use two
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set of coordinates in Pharos, while the number of sets can be
varied according to the scale of range of distance. All nodes
in Pharos form two levels of overlays, namely base overlay
for long link prediction, and local cluster overlay for short
link prediction. And there are two types of connections: base
overlay connections which are constructed randomly between
nodes in the Pharos overlay; and local cluster connections
which are constructed randomly between nodes in the same
overlay.

In Pharos, nodes must join both base overlay and local
cluster in order to have two coordinates in different prediction
scale. To join the base overlay, nodes can follow the procedure
presented in [2] and create k connections randomly to neigh-
bors in the base overlay. To form the local cluster, we use
the binning [12] method and choose some nodes to help node
clustering called anchors. Any stable nodes which are able to
response ICMP ping message can serve as anchor, such as the
existing Internet servers (web servers or DNS servers). Guided
by the anchors, nodes are grouped into different clusters as
follows. Firstly a new node measures its distance to all the
anchor nodes. After getting these distances, the new node can
find which anchor is nearest to it and join the cluster led
by the nearest anchor. Finally the joining procedure of the
corresponding cluster also follows [2] and the node will create
k connections randomly to neighbors in the same cluster as
well. Fig.4 shows the hierarchical structure of Pharos.

Vivaldi algorithm is applied in both base overlay and
local cluster. As a result, each Pharos node has two set of
coordinates. The coordinates calculated in the base overlay,
which we call it global NC, is used for the global scale, and
the coordinates calculated in the corresponding local cluster,
which we call it local NC, covers a smaller range of distance.

B. Workflow of Pharos

Algorithm 2 shows the procedure that a new node A joins
a Pharos overlay. Node A first contacts the Rendezvous Point
(RP) of the Pharos system like all other p2p schemes. After
obtaining a list of anchors from RP, Host A measures the

Anchor 1

Anchor 2

Local Cluster
Connection

Base Overlay
Connection

Anchor 3

Fig. 4. Pharos Overlay

distance to all the anchors and choose the nearest cluster to
join. Then node A joins both base NC overlay and local
NC cluster through gossip [14] protocol. After that node
A can participate in the NC calculating procedure in both
base overlay and local cluster, and update their coordinates
periodically.

Algorithm 2 Pharos
Connect_to_Rendezvous_Point(rp)
Get_Anchors_List(rp)
Nearest_Anchor_Distance = co
for i in Anchors do

d(i) = Measure Distance to i
if Nearest_Anchor_Distance > d(i) then
Nearest_Anchor_Distance = d(i)
Nearest_Anchor = i
end if
end for
Join_Cluster(Nearest_Anchor)
while forever do
j = random(local neighbors of i)
Li.local = ’UiU(lldi(Ttt, Lj.locals ej.local)
j = random(global neighbors of i)
Li.global = vivaldi(rtt, Lj.global s ej.global)
Wait(Update_Interval);
end while

C. Hierarchical Distance Prediction

After getting the global NC and local NC, we can predict the
distance between any two nodes. Distance prediction proceeds
in a bottom-up fashion. If two nodes belong to the same
cluster, this implies they are relatively close to each other, the
distance between them is predicted by local NC. Otherwise, if
these two nodes belong to two different clusters, the distance
between them is predicted by global NC. This hierarchical
approach would help to improve the accuracy of the distance
prediction. The distance of node A and node B is defined as

1930-529X/07/$25.00 © 2007 IEEE

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE GLOBECOM 2007 proceedings.



0.9t . ]

Ol
o
©
T
N
N
L

0.7f 4 ]

06 -

lative Distribution Function

o
w
T
.

— Vivaldi
- - - Pharos
0.2 0.4 0.6 0.8 1
Relative Error

Cumu
o
N

!

©
=

o

o

(a) PlanetLab

Fig. 5.

— Vivaldi
- -- Pharos

Relative Error
3

107 1 1

2 3

10' 10
Link Distance (ms)

(a) PlanetLab

0.9

Ol

o

[o)
T

\
y
L

Cumulative Distribution Function

— Vivaldi
- - - Pharos
0 . .

0 0.2 0.4 0.6 0.8 1
Relative Error

(b) King

Distribution of Relative Error

— Vivaldi ||
- =- Pharos

Relative Error

10'
Link Distance (ms)

(b) King

Fig. 6. Relationship between Range of Distance and Relative Error

follows.

| ZA.10cal — ZB.10cal |l cluster 4 = clusterp

3)

|| TA.globai — TB.globar || clustera # clusters

IV. PERFORMANCE EVALUATION
A. Experiment Setup

In our experiments, we compare Pharos to Vivaldi with both
the King and PlanetLab data sets. Both Pharos and Vivaldi
use 7-dimension coordinates. In Vivaldi, each node has 16
neighbors; Likewise, in Pharos, each node has 8 neighbors
in base overlay and 8 neighbors in local cluster. Therefore,
Vivaldi and Pharos have the same communication overhead.
¢, and ¢, in Vivaldi (also in each Vivaldi cluster in Pharos) is
set to 0.25 as an empirical value in [2].

In our simulation, the nodes organize themselves into 16
proximity-based clusters. We use the k-median method [6]
for node clustering and randomly choose one node from each

cluster as the anchor. Ten runs are performed on each data set
and the average results are reported.

B. Evaluation results of Pharos

Relative Error: Fig.5 shows the comparison of relative error
between Pharos and Vivaldi. In both PlanetLab data set and
King data set, Pharos outperforms Vivaldi. We pay more
attention to the ninety-percentile relative error(NPRE) which
would be helpful to NC-aware applications. On PlanetLab data
set, the NPRE of Pharos is 0.3 while Vivaldi’s is 0.52. On King
data set, NPRE of Vivaldi is 0.58 and the 90 percentile relative
error of Pharos is 0.69.

To study the impact of the distance on prediction error, Fig.6
shows the comparison of the average relative prediction error
for links of various distances between Pharos and Vivaldi.
Pharos improves the prediction accuracy mainly for short links
while achieving almost the same prediction accuracy with
Vivaldi for medium and long links.
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C. Other Metrics

TABLE 1
CLOSEST NEIGHBOR LOSS

Data set Vivaldi Pharos
PlanetLab 77.42% 30.43%
King 98.63% 95.28%

Besides relative error described in Section II, we also
evaluate the performance of Pharos with the following three
metrics.

Relative Rank Loss (RRL) [7] measures the probability to
correctly select the closer node from an arbitrary node pair. It
is defined as the percentage of incorrectly ordered node pairs
(as perceived at a given node) based on the prediction.

Closest Neighbor Loss (CNL) [7] indicates the probability
to correctly select the closest neighbor to a given node, and
is defined by the fraction of nodes where an incorrect node is
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chosen as the closed neighbor using predicted distances.

In addition to the CNL, we also measure the magnitude
of the error when the wrong node is selected. More precisely,
we define Closest Neighbor Absolute Error (CNAE) as the gap
between the distance to the incorrectly selected neighbor and
the distance to the actual closest neighbor.

Among these metrics, relative error (RE) is the basic metric
which is evaluated by all NC designers. RRL, CNL and CNAE
focus more on application perspective where nodes need only
to know the relative distance of other nodes.

Closest Neighbor Loss and Closest Neighbor Absolute
Error: Applications will benefit from the higher prediction
quality on various aspects. For example, lower CNL and
CNAE, applications having higher probability to find the
nearest neighbor. As illustrated in Table.I and Fig.7, in both
PlanetLab data set and King data set, Pharos improves the
quality of the closest neighbor selection a lot comparing to
Vivaldi.
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Relative Rank Loss: Fig.8 shows the comparison of relative
rank loss between Pharos and Vivaldi. Similar to relative error
and closest neighbor loss metrics, Pharos outperforms Vivaldi
with both PlanetLab data set and King data set.

V. RELATED WORKS

Several algorithms for calculating network coordinates have
been proposed. There are two classes of algorithms: landmark-
based and simulation-based algorithms.

In Landmark-base algorithms (LBAs), such as GNP [1],
Lighthouse [4], IDES [5], a number of nodes called landmarks
are introduced to serve as reference points for other nodes
to calculate their coordinates. In GNP, nodes’ coordinates are
computed using the Simplex Downhill method. Lighthouse de-
rives node coordinates by solving systems of linear equations.
IDES exploits matrix factorization to compute an incoming
and an outgoing coordinate for each node. LBA provides
high accuracy and stability, but it needs to deploy dedicated
landmark nodes whose load is rather heavy to serve all the
nodes in the system. This would result in single point of failure
of the systems.

Simulation-based algorithms (SBAs), such as Vivaldi [2]
and Big Bang Simulation [13], determine coordinates us-
ing spring-relaxation and force-field simulation, respectively.
In both systems, nodes self-organize into overlay network,
attract and repel each other according to network distance
measurements. The low-energy state of the physical system
corresponds to the coordinates with minor error. SBA systems
distribute the computation and measurement to all participating
nodes, so the load of each node is rather light. But joining or
leaving of each node will affect the whole system, so if nodes
have high churn rate, the accuracy of NC will decrease.

In [8], the authors studied the range of distance problem
for landmark and explored constructing a landmark hierarchy
that is shared by all nodes to improve the prediction accuracy.
Specifically, a number of landmark nodes form a hierarchy
through recursive clustering. Each cluster consists of landmark
nodes that are close to each other.

An important difference between anchors in Pharos and
landmarks in [8] is whether they are passive or active. In
other words, landmarks in [8] should actively participate in the
system, which means they must run NC client on landmarks
for NC calculation. In contrast, the only requirement for
anchors in Pharos is to reply ICMP PING request. Thus we
can choose existing Internet servers such as big web servers
or DNS servers as anchors in Pharos. These servers are much
more stable and powerful than ordinary nodes which can
improve the robustness in return. Because they only need to
reply the PING query passively, we do not need to deploy
Pharos client on these anchors. This makes Pharos much more
practical.

Moreover, the hierarchical landmark approach in [8] needs a
large number of landmark for effectively improving prediction
accuracy. The number of landmarks is exponential to the
number of hierarchy level. Even for a 2-level hierarchy, 256
landmark nodes are needed. As we know landmark is a critical

issue in LBA systems, the deployment of large number of
landmarks would become a heavy burden for the NC system
designers to maintain the reliability and load balance of so
many nodes in the world.

VI. CONCLUSION

In this paper we study the causes of the prediction error for a
representative simulation based network coordination system,
Vivaldi and find out that the range of distance of peers has non-
trivial impact on the performance of the system. We propose
a multi-set coordinates scheme called Pharos to address this
issue. Our contribution is twofold. (1) We analyze the dis-
tribution of the relative error of a representative SBA system,
Vivaldi and find out the relationship between range of distance
of peers and the prediction error. (2) We proposes Pharos, a
fully decentralized and hierarchical network coordinate system
to improve the accuracy of Internet distance prediction. We
evaluate Pharos system with real Internet measurement traces.
The results show that Pharos achieves higher performance
than Vivaldi, a representative distributed NC system. With real
trace from PlanetLab network, we decrease the relative error
at ninety percentile level from 0.52 (Vivaldi) to 0.3 (Pharos).

To further evaluate the practicality of Pharos, we currently
focus on deploying Pharos on Internet and developing some
real applications based on this NC system, such as peer-to-peer
streaming and application level multicast.
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