SoNet — Privacy and Replication in Federated Online Social Networks

Lorenz Schwittmann, Christopher Boelmann, Matthdus Wander, Torben Weis
University of Duisburg-Essen
Duisburg, Germany
wimi@vs.uni-due.de

Abstract—In this paper we propose a federated online
social network (OSN) which focuses on user privacy and data
availability. All user content is encrypted and decrypted on end-
user devices, hiding the content from the OSN providers. The
social graph is hidden from the OSN provider by employing a
novel aliasing approach and using secure algorithms for mutual
friendship establishment. Usernames are mapped to friend-
specific aliases, which reduces the amount of information a
provider can gather from analyzing these identifiers. Users
authenticate to each other without revealing their identities
to a potential attacker. The proposed system allows for user
interactions between independent OSN providers. To improve
data availability we use a replication scheme which does not
jeopardize the obfuscation of the social graph. Our approach
differs from existing works mainly by the social graph obfus-
cation in combination with replication.

I. INTRODUCTION

During the last years the number of users of Online Social
Networks (OSN) has sharply increased. These networks are
incompatible with each other: if a user wants to get in
contact with friends on different OSNs he has to register in
each network separately. This circumstance may be a more
important OSN selection criterion than e.g. the quality of
service, potentially impeding diversity and innovation. As a
consequence, this had lead to an accumulation of huge user
bases on a few OSN providers.

OSN providers collect large amounts of personal data
which they use for advertisement or other purposes. Altough
the terms of service (TOS) agreement between the user and
the OSN provider sets legal limitations for the usage of
personal data, the user has no means to check for compliance
with the TOS. From the user’s point of view, privacy needs
to be enforced by technical measures. With such technical
measures the OSN provider serves as online data storage
for encrypted private information but without access to the
private keys. Besides the actual OSN content like messages
or images we also consider the social graph as private
information. The social graph reveals with whom a user
interacts, possibly sharing economic or other interests.

In this paper we propose a federated OSN approach.
Users may become their own data storage provider or
choose a commercial one to rent storage capacity. This data
storage is used to share encrypted OSN content. Storage
servers exchange data via a network protocol, enabling user
interactions which span different OSN providers.

D< : 3

a.example.~” b.example’,
g
c.example d.efxample
|| 1
.= .0 =
foo@c.example baz@d.example

bar@c.example bar@b.example

Figure 1. An example of a federated OSN

Based on the experience of Diaspora, we consider server
availability as a key issue in federated OSNs: Bielenberg
et al. discovered that 50% of the Diaspora servers have more
than 50% downtime [1]. Although Diaspora is different by
design than our approach, it uses also a federated server in-
frastructure. We are therefore using data replication between
OSN providers to cope with server downtimes and to reduce
query delays.

If a privacy-aware OSN is to succeed, it has to provide
a similar level of comfort and usability as an existing
centralized one. Even if employing cryptographic mecha-
nisms on the end-user device, the system must be efficient
enough to run on mobile phones. For further reference,
our requirements are privacy (R1), availability (R2) and
efficiency (R3).

II. ARCHITECTURE

The basic architecture of our system consists of indepen-
dent servers which communicate with each other using a
federation protocol. Users choose one of these servers and
connect to this host exclusively. If two users are to exchange
a message, it has to pass one or two servers depending on
whether both users chose the same provider or not.

This approach is similar to existing federated services like
email or the Extensible Messaging and Presence Protocol
(XMPP). Users are identified likewise by a useridenti-
fier@serverdomain scheme. Figure 1 illustrates an example
of such a system.

All data objects exchanged between users are end-to-
end secured by cryptographic operations. Servers therefore
are not able to interpret them but merely forward them as
opaque binary blobs. Hence we separate the system into
two layers: a federation protocol used between servers to
exchange data and the actual OSN protocol used between
clients. Since clients do not connect to each other, the OSN
protocol is tunneled through the federation protocol. With
this separation in place, the storage could be used for other
collaborative applications in parallel with the OSN.

A. Storage Servers

Servers offer clients methods for storing and retrieving
data objects. HTTPS is used to provide authenticity, privacy
and integrity between client and server.

The interface provides access to a rudimentary filesystem
in which data objects are stored as files in directories. Each
data object is accessible using a unique path. Such a path
always starts with a full user identifier and a local path.

The user identifier contains the server’s address an object
will be stored on. Clients can access data objects by querying
their server. If the host part of the user identifier is not the
same as the provider’s address, the server will fetch the data
object from a remote host and forward it to the client.

From a server’s point of view, data objects consist of
metadata (author, path, groups) and the actual data payload.

Clients can establish a permanent connection and sub-
scribe for updates on a given path. After this, the server
will push notifications about any changes in this path.

By default, only the user himself (in this context also
called owner) may write to his storage. He can grant
access to other clients by adding their user identifier and
a symmetric secret to a list on his server. After this, the
owner can define a set of writable paths for groups of
friends. It is also possible to allow write-access to a certain
path for all users. The server will enforce this policy by
checking author/location combinations of incoming data
objects.

The servers of different providers use a federation pro-
tocol. Like the client protocol it uses HTTPS. In contrast
to client-server communication, the requesting host uses an
X.509 server certificate to authenticate in TLS. Thereby
authenticity between servers is ensured.

Servers exchange data objects written by their users.
Servers are authoritative for objects whose path starts with
one of their user identifier. If a user writes an object on a
server it is not authoritative for, the server will push that
object to its destination server.

If a server is authoritative for a user-written object, it
pushes a notification about this new object to all servers
hosting a user in the author’s friend list. These remote
servers decide whether they will pull that object or wait
until one of its client actually requests it. If one of its clients

has subscribed for the object’s path, it will always pull the
object. Otherwise heuristics are used and only small files
below a certain threshold are pulled immediately. That way
servers act as caches for objects of their user’s friends.

B. OSN Features

Based on this federated architecture we have developed a
distributed OSN. In the following section, we will list some
of its features and how they are mapped to the underlying
federation system. Other features which are mappable in a
likewise manner have been omitted due to space constraints.

1) Circles: We have adopted the idea of circles from
Google Plus. Each circle is a group of friends which has
access to different objects of the storage. If a data object
is encrypted, a member of a circle can only decrypt it if
that circle is mentioned in the object’s groups attribute. This
allows fine-grained access control.

2) Posts: Users can create posts to be shared in spec-
ified circles. Posts by a@X are data objects stored in
la@X/ _s/posts/ using a generated post-id. Posts can be
commented by other users. Given a post-id p, the comments
are stored in /a@X/_s/posts/p/comments/.

3) Chat: Besides sharing content in circles, there is also
the possibility to exchange messages with only one friend.
This is implemented in chats. Each chat message m is associ-
ated with a friend b@Y and stored in /a@X/_s/chats/b@Y/m.

C. OSN Security

We use a hybrid cryptosystem to enforce confidentiality.
All content produced by users (posts, chats etc.) is client-
to-client encrypted. For each entry, a random entry key is
generated to encrypt it.

There is a circle key for each circle. This key is known to
the circle’s members and can be used to share content with
them. For this purpose, the entry key is encrypted using the
circle key and stored in the header of that entry. If content is
shared in several circles, the entry key is encrypted once for
each circle keys. There is a key identifier for each encrypted
circle key to tell them apart.

Given such an identifier I, client a@X can retrieve
a circle key of author b@Y by fetching it from
/b@Y/_s/keys/circle_I. In this container, the circle key is
encrypted for each of b@Y’s friends in that circle using
their public key. These identifiers are consecutive integers
starting from O and collide therefore for different users.

The expensive asymmetric decryption of circle keys can
be relativized by caching decrypted circle keys. This is
possible, because they change seldom. The circles whose
keys have been used to encrypt this entry are stored in the
data object’s groups attribute. This allows clients to query
only for data objects which they can decrypt.

Comments are handled differently: If Alice comments a
post by Bob it is undesirable for a friend of Bob who is
not a friend of Alice to be able to read it since depending

on the context it might reveal information about Alice.
Only those who are both a friend of Alice and were able
to read the post in the first place should be able to read
that comment. Therefore comments are encrypted using a
hashed concatenation of both entry key and one of Alice’s
circle keys.

As soon as a friend is removed from a circle it is crucial
to prevent him from reading any further content shared in
this circle. Since he already possesses the associated circle
key, we have to generate a new one with a new key identifier
and distribute it by writing a new encrypted circle key for
each remaining friend in that circle.

Besides circle-shared entries there is also content which is
shared with a single friend. Chat is an example for such an
access model. In that case, the entry is not encrypted using
the circle key but a friend-specific symmetric key. This key
can be accessed by the recipient of the message b@Y at
la@X/_s/keys/b@Y/f2f. As circle keys, this friend-to-friend
key is encrypted with b@Y’s public key.

So far key distribution has been discussed for reading
clients. However, users are accustomed to using different
devices for their OSN activities. To participate in this OSN,
a client has to be in the possession of all keys required for
writing as well. Therefore clients store a copy of each key on
the server. This copy is encrypted using a symmetrical user
defined password. From a user’s perspective, the application
asks for this password at login as it is known from existing
OSNs.

III. SociAL GRAPH OBFUSCATION

To hide all information that might hurt the user’s privacy
or unveil social interactions from other people we describe
in this section how social graph obfuscation is achieved in
our OSN architecture.

To obfuscate relationships and interactions between users
within the OSN we hide bidirectional links by using single
direction aliases (SDA) that are unique for each direction of
user-to-user relationships instead of user identifiers. Aliases
are random strings of sufficient length that are generated by
servers to hide user identities from other servers and other
users within the OSN and must be unique within a server.

The server stores a set of aliases for each user a@X.
This set contains for each friend an entry with the
alias a@X is known by and the server of the friend
{(alias@own_server, server_of friend),...}. This way an au-
thoritative server can resolve an incoming object addressed
to an alias to the real username.

It is important to note that the alias sets do not contain any
information about aliases of friends. The aliases of friends
are only known by their own servers and by their friends.

Figure 2 shows an example of the local knowledge of
two users a@X and b@Y and their respective servers X
and Y. The example shows that only the two users know

Local Knowledge of a@X:
b@Y knows me as 1234QX;

b@Y'is abcd@Y

@ User a@X

< 2 { Message } ®

Local Knowledge of b@Y:
a@X knows me as abcd@Y;
a@Xis 1234aX

A 4

Server ! Server
X TLS Y

Local Knowledge of X:
Aliases: {1234@X = a@X, Y}
Communication: abcd@Y = 7@Y

Local Knowledge of ¥:
Aliases: {abcd@Y = b@Y, X}
Communication: /234@X = 7@}

> ahas a friend on Y’ > b has a friend on X'

Figure 2. Disclosed information during communication

who the real usernames behind both aliases are. Even during
communication between a@X and @Y, the servers X and
Y are not able to determine any additional information about
their users’ friends, except that a user is communicating with
someone at another server (noted as ?@server).

Since the aliases are unique for every friend, friends
are unable to see which friends a friend has and if there
are common friends, unless this information is intentionally
disclosed by a user to his friends.

A. Assigning Aliases and Becoming Friends

The main problem when creating new friendships between
users is to not disclose personal information during the
procedure of becoming friends until both users have proved
their identities. Thus to provide security and authenticity,
a handshake has to take place which involves exchanging
each other’s public key. It is essential that no man-in-the-
middle attack can be performed, e.g. if a@X wants to
establish friendship with b@Y, both server X and server Y
could intercept messages and provide forged public keys to
both clients. This problem of initial key exchange is well
known and several solutions have been proposed (e.g. Diffie-
Hellman key exchange).

To achieve authenticity and security between two users
trying to establish a new friendship we propose two friend-
ship establishment procedures. First, an out of band authenti-
cation using already established trusted connections between
users (e.g. email, Skype, ...) and second, a modified version
of the socialist millionaires’ protocol [2].

Out of band: As shown in figure 3, before creating
aliases the users a@X and b@Y have to exchange their user-
names and public keys, using a third party communication
channel (e.g. email). Afterwards the user a@X initializes the
alias creation leading to a@X knowing an alias to contact
b@Y and vice versa. Using these aliases a@X puts a friend-
request object containing its signed real username and a se-

a@X X Y ba@y

external exchange of

a@x X Y ba@ay

CreateAlias() for a 7@y

< P

username & public keys

'Lf[

Create Alias Mappings

put Enc_b(Sig_afa@X), secret_b@Y) into
put Enc_a(Sig_b(b@Y), secret_a@X) into /_|f/friendRequests/

f/friendRequests, o

> Create Alias in a’s
Mappings:
Alias created: ../234@X* {1234@X, Y}

Get server certificate of ¥ Get server certificate of ¥y |

Server certificate of ¥ Server certificate of ¥

X forwards message to V: Enc| Y (7234@X requests alias

<
Set Access Control for h@Y,
(secret_ b@Y)

UI verification of Friendship
Set Access Control for a@X
(secret_a@X)

Figure 3. Out of band friendship creation

a@Xx X Y b@y

Create Alias Mappings

put StartQuestion for SMP N
into /_f/friendRequests/

Socialist Millionaires* Protocol

li[

¢ cxchange of public keys and ecrets (secret_a@JX, secret |b@Y) within secure session |
Set Access Control for b@Y
(secret_ b@Y)

UI verification of Friendship
Set Access Control for a@X
(secret _a@X)

Figure 4. Modified Socialist Millionaires’ Protocol friendship creation

cret for calculating the message authentication code (MAC)
encrypted into a specific directory /b@Y/_{f/friendRequests/
of user b@Y. The user b@Y creates and stores the friend-
request object the other way around. Now both users can
verify the identity of the incoming friend-request and grant
their new friend permission to write data objects.

Modified Socialist Millionaires’ Protocol: For our sec-
ond friendship establishment procedure we chose the social-
ist millionaires’ protocol (SMP) for mutual authentication
as shown in [2]. SMP is a zero knowledge protocol which
allows two parties to compare a secret without revealing
anything about that secret except whether their secrets are
identical. We propose to use the SMP in such a way that the
user a@X who sends a friendship request to another user
b@Y only has to enter a question and a matching answer
which is only known to him and his friend (see Fig. 4). If the
protocol succeeds, both users end up with the correct public
key of another. Using this authenticated public key a@X and
b@Y can check the identity of each other and exchange the
secrets for writing access verification.

Assigning aliases: When creating single direction aliases
a user’s identity needs only to be known to his own server
and to his friends after the friendship was established. The
identity or personal information do not need to be disclosed
to other authorities, in particular not to the friends’ servers.
Figure 5 shows the alias creation in detail for a user a@X
requesting an alias for addressing a user b@Y. The client
of a@X requests a new unused alias from its own server X.
Within this request a@X states that this alias is determined
for someone at server Y (?@Y) and thus server X does not
know who will use this alias to contact a@X. However,
server X does know that a@X can be contacted under
the specific alias from someone at server Y. First a@X

for b@Y[, N) g Create Alias in b's
Mappings:

le— X forwards message to a |Sig Y (.abcd@Y*. N) {abcd@y, X} for 1234@X)|

Figure 5. Creation of aliases

requests the server certificate of server Y to encrypt the
communication between a@X and Y. By relying on X.509
a@X ensures that the certificate is valid and has not been
tampered with. a@X requests a new alias for user b@Y on
server Y. To hide its identity from server Y, a@X uses its
own alias as sender that is intended for communication with
b@Y. Furthermore, it contains a cryptographic nonce N to
detect replay attacks. Server Y now creates the alias for b@Y
and notes that the alias is used by ?@X. Then server Y
stores the requesting alias of a@X to notify »@Y how the
user may contact a@X, even though neither the server Y nor
b@Y know which user is related to this alias. However, b@Y
will learn who the real user behind the alias is during the
friendship creation before accepting the friendship request.
In the end, server Y signs the created alias for b@Y and N
and sends them back to server X. After a@X has validated
the signature and checked N he knows an alias to contact
b@Y, as well as the alias that »@Y will use to contact him.
The user b@Y knows how to contact a@X and which alias
a@X will use to contact him (after finishing one of the
friendship creation protocols mentioned earlier). The server
X only knows that a@X can be contacted using a specific
alias by ?@Y who uses another specific alias (and vice versa
for server Y). Thus, the friendship relation between the real
users cannot be recreated by one server alone.

B. Replication and Anonymous Retrieval

To increase availability of data objects we use caching
on non-authoritative servers. This means that there can be
several copies of a data object in the federation as a whole,
since servers cache requested data objects that may be
reused. If a user a@X wants to read the object /b@Y/_s/filel
and server Y is currently unreachable, server X first checks
if it has a cached version. In this case the object will
be retrievable without noticing the downtime of server Y.
If this is not the case, b@Y’s friends could still have a
cached version. However we do not want do disclose any
information about friendship relationships and thus cannot
directly tell a@X which friends of b@Y may have cached
versions of the requested object.

A key feature of our obfuscated OSN is, that replicated or
cached user-data at friend-servers can be retrieved without
disclosing any friend-relationships, even to friends. Our

approach is a primary copy replication scheme realized as
follows: Clients must be able to determine 1) on which
servers they can access replicated data and 2) under which
alias. Thus every user stores his alias set (that is main-
tained by its server) encrypted in his storage under the
path /_s/aliasset. This file has to be updated by the client
periodically. Every friend fetches this set and thus gets the
information of aliases for b@Y at other servers without
knowing which friends of b@Y these aliases represent.

Whenever the server Y of a friend b@Y is not responding
a user a@X can contact a server listed in the alias-set and
request cached objects for a specific alias. The server holding
the replicated data neither knows which user is requesting
the objects, nor whose replicates are requested. The request
itself does not have to be restricted since only friends of the
author will be able to decrypt the data.

C. Implications for Access Control

Hiding the identity of users from other servers has impli-
cations for access control. Servers can’t use the public keys
of remote users to verify data objects. Instead a symmetric
key is used to generate a MAC. Servers have a list which
maps aliases to such a key. Incoming objects can be verified
by servers without requiring knowledge about their authors’
usernames.

However the server is not able to verify that within the
encrypted content the valid real username is provided. This
can only be checked by the client by decrypting the content
and checking if it is signed correctly. If posts happen to be
spam or contain an invalid signature the storage’s owner is
able to see the alias that has abused its writing permissions
and revoke the permissions for this user.

D. Implications for Encryption

If an owner decrypts a comment posted at his storage,
he will know the username belonging to the author’s alias.
Given this username and group information, he can choose
the correct key.

If a client reads a comment on a remote storage, it has
only the alias from the storage’s owner point of view. It
therefore cannot choose the correct key because the related
mapping is not known to him. However, the group and
author’s host name can be used to reduce the set of possible
authors. From this reduced set, tentative decryption is per-
formed with each key. Once a correct key has been found,
clients can store the deduced alias to username mapping
to speed up future decryption. We chose this method of
decryption to protect obfuscation. If key identifiers were
unique, an attacker would be able to crawl hosts for en-
crypted circle keys. Once a key with an identifier / has been
found in a@X’s storage, an attacker could deduce that all
posts encrypted with I have been written by a@X. This is
prevented by choosing colliding key identifiers.

IV. SECURITY ASSESSMENT

In this section we will discuss the provided security of
our approach. We considered active and passive attackers
in different scenarios and evaluated both obfuscation and
confidentiality.

A. Local Area Network

In this scenario an attacker Mallory resides in the same
local area network (LAN) as a@X. Using eavesdropping
Mallory cannot break confidentiality since a@X establishes
an encrypted connection to her server. Even if Mallory mod-
ifies, forges or drops packets confidentiality still holds due to
the integrity provided by TLS. An attack during connection
establishment will also fail due to server authentication.

Since Mallory cannot break confidentiality, breaking ob-
fuscation using transmitted payload data is not possible.
However, Mallory can observe communication patterns,
which might reveal parts of the social graph. Considering
only sender and receiver on a network layer level, there is no
information leak since a@X communicates with her server
exclusively. Her server might forward data to her friends but
since the attack takes place in the LAN Mallory also cannot
observe how data from a@X is forwarded by her server.

If a@X and b@Y, one of her friends, are in the same
LAN, Mallory could deduce that they are friends. Although
both only exchange encrypted messages with their servers,
the timing can be considered. If a@X sends a chat message
to b@Y, X will forward this data object to Y and Y will push
it to b@Y. Although Mallory cannot get hold of the content,
correlation between these roughly equally sized messages
allows Mallory to assume a friendship relation between
a@X and b@Y with a certain probability. Repetition of such
patterns, e.g. in a chat session, can increase that probability.
In this attack, Mallory can only observe network addresses
of a@X or b@X. She still does not know neither any alias
of them nor their usernames.

Such attacks can be circumvented by sending bogus
traffic and delaying message forwarding. However, such
solutions decrease the efficiency. Especially with a mobile
device, sending bogus traffic can require too much resources.
Therefore, balancing the probability of such an attack with
the costs of its mitigation, we accept this as a possible
weakness.

B. Server

We will now assume that the attacker is a malicious server.
As before, confidentiality remains unbroken. Only clients are
in possession of the required keys. Social graph obfuscation
can be reversed in a limited amount. Since servers have to
keep a mapping of aliases to usernames, the malicious server
can reconstruct all local friendship relations. However, this
attack is limited to local friends only. Servers could also
cooperate to break obfuscation between them. As before
in the local case, this does not affect obfuscation of users

on other servers, even if they are friends with a user on a
malicious server.

Like Mallory in the previous scenario, servers can perform
correlation attacks. If a@X and b@X are users of a malicious
server, X could determine if they have a common friend
c@Y. Although the alias for c@Y is different for both
a@X and b@X, X can observe that a@X and b@X request
identical objects from ?@Y.

Besides passive attacks, the server could also perform data
manipulations. Modifying existing data objects will cause
clients to notice this since data objects are stored in signed
containers. The keys for these containers are only known
to clients and therefore servers cannot forge signatures. The
same is true for creating new containers.

The only possible data manipulation attack which is not
detectable by clients are data object deletes. Those could
be mitigated by clients generating cryptographic proofs of
nonexistence as in [3]. However, this puts additional load
on clients (every data object creation/deletion has to update
these proofs) and only provides little benefit: Deletions could
only be detected by clients but not prevented.

Clients store their keys in an encrypted container on
servers. A server could perform a brute-force or dictionary
attack on this to acquire all keys. This is mitigated by clients
requiring users to choose strong passwords.

C. Fake Profile

A common problem in social networks are fake profiles,
i.e. impersonation attacks. To be a threat to both confidential-
ity or obfuscation, the user had to be added as a friend in the
first place. In this process, the user’s identity will be verified
(see section III-A). For a faked profile, this verification will
fail and therefore render impersonation attacks futile.

D. Malicious Friend

If a user a@X has a malicious friend m@X because a
former accepted friend becomes evil, there are other attacks
to consider.

Since a@X never publishes her friend list to anybody even
her friends cannot remove obfuscation using it. However,
if a@X, b@Y and m@X are friends to each other, there
is a high probability that messages are exchanged. If b@Y
comments one of a@X’s posts using a circle m@X is part
of, m@X will know that they are friends. This could be
mitigated by either making comments only visible for the
original author of a post or by making posts anonymous.
We believe however that this would decrease the benefits of
an OSN since its functions would reduce to some kind of
private messaging. Furthermore, this attack only succeeds if
m@X is a friend of b@Y. Otherwise m@X would not be
able to decrypt b@Y’s comment to a@X’s post.

Confidentiality, in its meaning of preventing unauthorized
entities from acquiring secrets, is still given. This is because
both a@X and b@Y gave m@X permission to access their

data and therefore m@X is no longer an unauthorized entity.
Other users of the OSN do not suffer from consequences of
a@X’s and b@Y’s decision to become friends with m@X.

If m@X and b@Y are not friends, m@X will not be able
to deobfuscate b@Y’s identity, even if b@Y comments on
a@X’s posts. Since key identifiers collide for different users,
m@X cannot correlate these with users.

V. CRYPTOGRAPHIC PERFORMANCE

To verify the feasibility on mobile devices, we measured
the performance of cryptographic operations on an average
consumer mobile phone (HTC Desire S, Android 4.1.2)
We chose RSA-2048, SHA-1 and RC4 as cryptographic
primitives. We assumed an average user having 3 circles and
100 friends and calculated the mean value out of 100 test
runs.

Before a user can participate in the OSN, he has to
generate an asymmetric key pair. This one-time step required
3155.19ms (+2088 ms). Creating a posts consists of 3 key
encryptions, encrypting the post, generating an RSA signa-
ture and calculating a MAC. This took 28.47 ms (41 ms) for
a post of 150 bytes length.

Reading a post consists of choosing the correct key, RC4
decryption and RSA signature verification. In worst case, all
100 friends are in the same circle on the same host and the
client has no known alias-to-user mappings. In this case, 100
keys have to be tested for decryption which took 10.44 ms
(£0ms) in total.

If a user is removed from a circle, we have to generate a
new circle key for all remaining users in this circle. Again we
consider the worst case with 99 RSA encryption operations
and generation of one RSA signature. This finished after
56.12ms (£1 ms).

VI. RELATED WORK

There have been several approaches to address the prob-
lem of privacy in OSN. Some approaches are peer-to-peer
based, for example Safebook [4], LifeSocial [5], PeerSoN
[6], porkut [7], Cachet [8] and My3 [9]. However, peer-to-
peer solutions have some disadvantages. Nodes have a high
fluctuation which can lead to data becoming unavailable or
even lost. To prevent this, there is in most cases a DHT
that assigns responsibility to another node once a node
leaves the network. Therefore, if data is to be retrieved
by a client, it has to find the node currently responsible
for it. Depending on the actual overlay this can cost some
time. Considering our requirements, those solutions may
have efficiency issues (R3) since in a peer-to-peer network
one has to keep connections to several other peers to speed
up data lookups and maintain the network in general. This
can require too much resources for mobile devices — in
particular bandwidth and battery. You could create a bridge
that provides a simple interface for mobile devices and

maintains a connection to the peer-to-peer network, but this
would introduce another point of failure.

Besides peer-to-peer networks, there have also been fed-
erated approaches before like OneSocialWeb [10] and Dias-
pora [11]. Both do not use end-to-end security and thus fail
to comply with our privacy requirement R1; providers are
able to read their users’ data.

Other federated systems like [12] and [13] disclose the
social graph of the user. While some users may find this
acceptable, it provides a different level of privacy guarantee
than our obfuscation method.

Another approach is the Vegas [14] which is also a
federated system with end-to-end secure data. Vegas hides
the social graph but contrary to our approach interaction
between participants is limited to one-to-one chat messages.
Status updates, a feature present in all major OSNs, could
be implemented by broadcasting messages to all friends.
However, a message requires two asymmetric cryptographic
operations for each recipient, i.e. 2n operations for a mes-
sage addressed to n users. As asymmetric cryptography is
particularly expensive, in our system 1 asymmetric crypto-
graphic operation is used for a message with any number of
recipients. The correlation attacks discussed in Section IV
applies to Vegas as well. An eavesdropper in a LAN can
deduce whether two users in this LAN are friends to each
other.

Vegas and also other systems like [13] do not use replica-
tion. If the storage of a user is offline, her profile information
will be inaccessible by her friends. As explained in the
introduction, we consider replication or caching to be crucial
for a decentralized OSN to achieve a decent availability
(R2).

VII. CONCLUSION

We proposed a federated OSN in which all content is end-
to-end secure between user devices. Servers act as storages
for encrypted data objects without having access to the keys.
User-generated content can not be read or forged by the
server providers at all, meeting our privacy requirement R1.
To hide the social graph from the servers we use an obfusca-
tion technique which maps a username to a different alias for
each directed edge in the graph. This way server providers
can only identify friend relationships on their own servers, or
need to collude to disclose the social graph beyond server
boundaries. The obfuscation approach is compatible with
replication, improving the availability of data (R2) in case of
temporary server downtimes. The application client always
communicates directly with its own storage server, saving
the overhead of many short-lived connections to third-
parties. Despite using cryptograhic operations extensively,
performance measurements suggest that the application runs
efficiently on mobile devices, complying with our efficiency
requirement R3.

REFERENCES

[1] A. Bielenberg, L. Helm, A. Gentilucci, D. Stefanescu, and
H. Zhang, “The growth of diaspora - a decentralized online
social network in the wild,” in Computer Communications
Workshops, 2012 IEEE Conference on.

[2] C. Alexander and I. Goldberg, “Improved user authentication
in off-the-record messaging,” in Proceedings of the 2007 ACM
workshop on Privacy in electronic society.

[3] B. Laurie, G. Sisson, R. Arends, and D. Blacka, “DNS Secu-
rity (DNSSEC) Hashed Authenticated Denial of Existence,”
RFC 5155 (Proposed Standard), IETF.

[4] L. Cutillo, R. Molva, and M. Onen, “Safebook: A dis-
tributed privacy preserving online social network,” in World
of Wireless, Mobile and Multimedia Networks, 2011 IEEE
International Symposium on a.

[5] K. Graffi, C. Gross, D. Stingl, D. Hartung, A. Kovacevic,
and R. Steinmetz, “Lifesocial.kom: A secure and p2p-based
solution for online social networks,” in Consumer Communi-
cations and Networking Conference, 2011 IEEE.

[6] S. Buchegger, D. Schioberg, L. H. Vu, and A. Datta, ‘“Peer-
SoN: P2P social networking - early experiences and insights,”
in Proceedings of the Second ACM Workshop on Social
Network Systems Social Network Systems 2009, co-located
with Eurosys 2009.

[7] R. Narendula, T. Papaioannou, and K. Aberer, “Privacy-aware
and highly-available osn profiles,” in Enabling Technologies:
Infrastructures for Collaborative Enterprises, 2010 19th IEEE
International Workshop on.

[8] S. Nilizadeh, S. Jahid, P. Mittal, N. Borisov, and A. Kapadia,
“Cachet: a decentralized architecture for privacy preserving
social networking with caching,” in CoNEXT, 2012.

[9] R. Narendula, T. Papaioannou, and K. Aberer, “My3: A
highly-available p2p-based online social network,” in Peer-
to-Peer Computing, 2011 IEEE International Conference on.

[10] Vodafone Group. (2011) Onesocialweb - creating a free,
open, and decentralized social networking platform. [Online].
Available: http://onesocialweb.org/

[11] Diaspora Inc. (2012) https://joindiaspora.com/. [Online].
Available: http://onesocialweb.org/

[12] F. Raji, A. Miri, M. Jazi, and B. Malek, “Online social
network with flexible and dynamic privacy policies,” in Com-
puter Science and Software Engineering, 2011 CSI Interna-
tional Symposium on.

[13] R. Baden, A. Bender, N. Spring, B. Bhattacharjee, and
D. Starin, “Persona: an online social network with user-
defined privacy,” in Proceedings of the ACM SIGCOMM 2009
conference on Data communication.

[14] M. Diirr, M. Maier, and F. Dorfmeister, “Vegas - a secure and
privacy-preserving peer-to-peer online social network,” in So-
cial Computing, 2012 IEEE Fourth International Conference
on.

