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Abstract—Measuring accurate graph snapshots of peer-to-peer
(P2P) overlay networks is essential to understand these systems.
Furthermore, the captured graph snapshots can be used, among
other important purposes, as traces for simulation studies, to
validate existing simulation models, to design and implement
targeted attacks, or to detect anomalies.

Motivated by the importance of the purposes above as well as
the popularity of several Kademlia-like networks, we present a
new crawler aiming to capture snapshots of the connectivity graph
of the entire KAD network. The crawler’s design is generic and
adaptable for Kademlia-like and other structured P2P networks.
The results show that the crawler is fast and captures high
accurate graph snapshots. Furthermore, its design enables it to
outperform prior KAD crawlers significantly in terms of the
time and the number of crawling messages that are required to
download nodes’ routing tables.

The crawls that we conducted at different times between April
2012 and February 2013 show that KAD is still widely-used in
terms of total observed users. However, when compared to the
results of prior studies, we report a significant drop in the number
of its simultaneous online users.

Index Terms—Measurement, Crawler, KAD, Connectivity
Graph.

I. INTRODUCTION

The characterization of global connectivity properties of

large-scale distributed systems is very important to under-

stand their operation and to improve their design. This can

be achieved by capturing accurate graph snapshots of these

systems.

In addition to making accurate statements about these

systems, the captured graph snapshots can be employed for

several important purposes. For instance, (i) to build new

realistic network simulation models, or to validate and upgrade

existing ones, (ii) as traces for simulation-based studies, and

(iii) to investigate potential improvements on the protocol

designs. In addition, the analysis of real graph snapshots

shows, among other information, graph-theoretic properties of

the nodes, e.g., high centrality. These information can be used,

for instance, to perform targeted eclipse attacks that are more

effective than previously implemented ones (e.g., [1] [2]), or

alternatively to identify anomalies (e.g., occurring attacks).

Due to the significance of the purposes above, as well as

the high popularity of several peer-to-peer (P2P) systems that

implement Kademlia [3] as an overlay network, we present a

new crawler to capture graph snapshots of KAD. The crawler

is also adaptable to measure other rapidly growing Kademlia-

like networks, such as the overlays used in BitTorrent clients

like Vuze, uTorrent, and BitComet, and other structured P2P

networks.

Our crawler’s goal is to capture graph snapshots of the entire

KAD network. This task consists of two interleaving func-

tions: (i) discovering all the contactable nodes of the network,

and (ii) downloading their whole routing tables. In order to

obtain representative snapshots, they should be captured: (i)

instantly and (ii) completely, i.e. include all graph vertices

(nodes) and edges (connections between nodes) [4]. However,

when it comes to the reality, it is impossible to satisfy these

conditions. Instead, we define two more realistic requirements

for our crawler: (i) it should minimize the measurement time,

and (ii) it should maximize the completeness of snapshots.

We used our crawler to perform hundreds of partial crawls

and dozens of full crawls on KAD, at different times between

April 2012 and February 2013. The results of these crawls

show that the crawler is fast and is able to capture graph

snapshots that are accurate enough to be employed for the

purposes that we listed above. We attribute these results to the

following design and implementation features:

1) The crawling approach takes advantage of the design of

KAD much better than prior crawlers.

2) The measurement task is distributed over several crawl-

ing hosts.

3) The crawling algorithm continuously measures loss of

crawling messages, and adapts crawling rates accord-

ingly.

Our results show that KAD is still used by several millions

of users. However, when compared to prior results, e.g., [5] [6]

[7], we report a significant change in KAD’s usage patterns,

represented by a high drop in the number of its simultaneous

online users.

The remainder of the paper is structured as follows. Sec. II

discusses the related work. Sec. III presents relevant back-

ground of KAD. Sec. IV describes the crawling methodology

and architecture. Sec. V describes our dataset, our crawler’s

reported speed and completeness of captured snapshots, as

well as the current status of KAD. Sec. VI concludes the paper

and states our ongoing and future work.





The flooding protection policy: KAD recently introduced

a threshold on the number of KAD REQs that can be legally

received from another node within a specific period of time. In

particular, a node is allowed to send another node only a single

KAD REQ within a period of six seconds. Otherwise, more

frequent requests are considered malicious and are dropped.

Furthermore, repeated misbehaviour is treated by banning the

requesting node completely.

IV. DEVELOPING A CRAWLER FOR KAD

This section introduces our crawling methodology in

Sec. IV-A, the crawler’s architecture in Sec. IV-B, and two

generic techniques to reduce the loss of crawling messages in

Sec. IV-C.

A. Crawling Methodology

We define the KAD graph as a directed graph G = (V,E)
where V is the set of vertices, i.e. online KAD nodes, and E

is the set of edges between vertices. For example, the directed

edge ei,j refers to a routing entry, i.e. a known contact, in

node i’s routing table towards node j.

In compliance with the definition above, our crawling al-

gorithm works as follows. Each time the crawler bootstraps,

it contacts an initial list of previously discovered nodes and

downloads their routing tables. Simultaneously, it extracts new

contacts from downloaded routing tables, and adds them to

the list. This procedure iterates over the list till discovering

all contactable nodes and downloading their whole routing

tables2.

Our crawling methodology takes advantage of the design of

KAD to improve its performance and to reduce its crawling

costs, better than prior KAD crawlers that we are aware of.

In particular, the crawler applies the following two novel

techniques.

Dividing the routing table tree into sub-trees: We divide

the routing tree into 256 non-overlapping sub-trees: 129 two-

bucket sub-trees and 127 three-bucket sub-trees. In Fig. 1, the

sub-trees A and B are examples of two-bucket and three-

bucket sub-trees, respectively. The sub-trees are indexed 0-255,

starting from the tree’s top-left part towards bottom-right.

To download the routing table of a destination node D,

the crawler sends only a single KAD REQ per sub-tree. This

message is sufficient to download the contacts that are stored

in the sub-tree’s buckets. Given that each bucket can store up

to ten contacts (Sec. III), the crawler sets the values of the

fields of KAD REQ as follows. It sets β to 30 if the message

is correlated with a three-bucket sub-tree, or 20 otherwise. The

value of the target-ID field is computed as: D’s KID ⊕ sub-

tree root’s ID, where the sub-tree root’s ID is a 128-bit value

representing the sub-tree root’s position in the main tree.

Avoiding querying empty buckets: In order to avoid

sending KAD REQs that correlate to sub-trees whose buckets

are empty or do not exist in a destination node D’s routing

table, the crawler first sends five KAD REQs, using β = 1,

2We do not list the crawling algorithms here due to space restrictions.

to discover one contact in each of D’s five lowest (closest)

sub-trees (see Fig. 1). Next, the crawler shifts to the top of

the tree, and starts downloading sub-trees’ buckets from top-

left towards bottom-right, in order. This step continues till the

crawler encounters the previously learned five closest contacts

again. At this point, the crawler stops sending KAD REQs to

D because this implies that there are no additional contacts,

deeper in D’s routing tree, to discover.

B. The Crawling Architecture

Broadly speaking, crawlers can be designed with different

levels of distribution: centralized (using a single crawling host)

like Blizzard [5], shared-memory distributed like Cruiser [4],

or equally distributed like [6].

Our measurement task involves sending (and receiving)

massive amounts of data traffic, as well as performing high

amounts of on-the-fly data processing, within a very short

period of time3. Since we do not have a single machine that

can handle all these requirements in a reliable way, in addition

to the high effect of KAD’s flooding protection policy on the

crawling speed in case of using a single crawling host, we

exclude the centralized approach from our design options.

The other two approaches distribute the crawling task and

its costs on a number of distributed crawling hosts, which

facilitates higher request rates and implies less overhead per

machine.

In the shared-memory approach, the crawling hosts work on

a single list storing information of all discovered nodes. This

design boosts the degree of crawling parallelism (and thus, its

speed) to its highest level, and makes this approach the least-

affected by the flooding protection policy. Nevertheless, this

expected high crawling rate is very likely to cause high traffic

congestion, and thus a high loss in crawling messages, as we

discuss in Sec. IV-C. Furthermore, this approach consumes

high CPU time and network bandwidth for the synchronization

among the crawling hosts.

Differently, the equally distributed approach partitions

KAD’s ID-space into equal non-overlapping sections and dis-

tributes these sections evenly on the available (equal) crawling

hosts. Each crawling host works independently and exclusively

on its own assigned ID section. This way, crawling hosts

require no synchronization among each other. We tested this

approach during our full crawls and it achieved very high per-

formance, as we describe in Sec. V-B. Although it is slightly

slower than the shared-memory approach, it achieves much

higher degree of data completeness. Due to these reasons, we

chose the equally distributed approach as an architecture for

our crawler.

In our study, we used the German-lab (G-Lab) testbed [18]

as a basis for our measurements. G-Lab provides us with a set

of equal Linux boxes. In particular, we used 64 machines as

crawling hosts, one machine as a monitor, and ten machines as

backup crawling hosts (to take place of crawling hosts in case

3Some statistics about the network size and crawling messages are discussed
in Sec. V-A.



of failures). Implementing the fully distributed architecture,

we partitioned the KAD ID-space evenly into 64 sections, and

assigned each crawling host a unique section. The monitoring

machine has a passive role and it is not involved in the

crawling task. It only monitors the operation of the main

crawling hosts, and in case some of them crash or malfunction,

the monitor automatically replaces them by a similar number

of backup machines.

C. Reducing Loss of Crawling Messages

Loss of crawling messages is a general problem that

crawlers are likely to encounter during their operation, due to

the following reasons. First, crawlers usually send and receive

massive amounts of messages within a short period of time.

Second, in the case of KAD crawlers, the crawling algorithms

are based on the original messages of KAD, which rely on the

unreliable UDP transport protocol. Loss of crawling messages,

in turn, lead to decrease the completeness of captured graph

snapshots.

In order to mitigate the effects of the problem above, we

implemented the following two techniques in our crawler:

Adaptive crawling rates and delays: This technique adapts

packet-sending rates (and delays) to the measured loss of

crawling messages. In practice, the crawler continuously mea-

sure loss of messages by parsing a number of system files that

report traffic-related values4, and adapts the packet-sending

rate accordingly. During our experiments, this technique de-

creased the loss of crawling messages significantly. However,

this improvement came at the cost of increasing the total

crawling time, as we discuss in Sec. V-B.

Multiple crawling: This technique assigns each crawling

host the responsibility of crawling r ID-space sections (r ≥
2). Consequently, each ID-space section is crawled r times.

This technique is beneficial because packets are lost during

measurements at random. That is, losing a certain packet p in

r parallel crawls is very unlikely. As a result, the fraction of

lost packets decreases exponentially to the number of crawling

host duplications (r).

Loss of crawling messages can be further reduced by

decreasing the sizes of ID-space sections that are assigned

to each crawling host. However, all these solutions increase

the measurement costs linearly.

V. DATASET AND RESULTS

This section discusses our dataset in Sec. V-A, our crawler’s

reported crawling time and completeness of the captured graph

snapshots in Sec. V-B, and the current status of KAD in

Sec. V-C.

A. Dataset

Our measurements were conducted at different times be-

tween April 2012 and February 2013. In particular, we per-

formed hundreds of partial tests, and 60 refined crawls over

the entire KAD network, i.e. full crawls.

4The files are: /proc/net/dev and /proc/net/udp.

Table I gives an overview of the 60 full crawls. It included

the maximum, minmum, median, and mean values of: the

number of unique online KAD nodes5, the number of all

discovered KAD nodes (both online and offline contacts),

and KAD REQs that are used to download a whole routing

table. Please note that we count online nodes by their unique

UDP socket identities; i.e. (IP address, UDP Port) pairs.

Observed unique IP addresses were slightly less than unique

UDP sockets, because of possible mapping from a single IP

address to multiple unique UDP ports. The identity replication

problem was discussed intensively in prior work, e.g., [5] [15],

and it is out of the scope of this paper.

This paper focuses on the crawler’s design and performance.

The analysis and results of connectivity graph properties are

out of the scope of this paper.

TABLE I: Overview of 60 Full Crawls

Online Discovered All Discovered Sent KAD REQs

Nodes Nodes (Per Routing Table)

Maximum 508,059 5,705,002 74

Minimum 352,390 3,614,411 23

Median 469,966 3,941,264 33.5

Mean 452,736 3,812,027 31.8

B. Performance of the Crawler

In this section, we discuss our crawler’s reported crawling

time and completeness of captured snapshots.

Crawling time: The total time that is required to perform

a crawl is composed of two interleaving time components: (i)

the nodes’ discovery time, and (ii) the time that is required

to download their routing tables. The value of the second

component depends on two factors: (i) the maximum number

of KAD REQs that are required to download the routing

tables of discovered nodes, and (ii) the six-second restriction

of KAD’s flooding protection policy.

During our full crawls, the mean value of the first time

component was 189.1 seconds, and the mean value of the

maximum number of required KAD REQs was 74. The worst

case scenario is when the node that requires the maximum

number of KAD REQs is the one that is discovered last. In

this case:

xxCrawl time = 189.1 + (74 x 6) = 633.1 seconds.

However, due to the effect of the adaptive crawling rates

and delays (Sec. IV-C), the reported mean value of crawling

time increased to about 900 seconds.

To evaluate the impact of the reported crawling time on

the accuracy of captured graph snapshots, we measure two

relevant values: (i) the stability of discovered online nodes, and

(ii) the stability of downloaded routing tables, with reference

to the reported crawling time.

We cannot rely on previously reported results of user

sessions and churn in KAD (e.g, [19] [5]) because of the

5These values count only nodes that are stable from the start till the end
of the crawl.
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Fig. 2: Measured dynamics of routing table entries and nodes. The x-axis represents the

crawl index from 1 to 10, and the y-axis represents the percentage of stable nodes and

routing table entries (contacts) in crawls 1 to 10 with reference to crawl 1.

recent dramatic changes in the usage patterns of KAD, as

we report in Sec. V-C. Instead, we conducted a small-scale

measurement study using a modified version of our crawler.

The modified crawler measures the stability of nodes as well

as the stability of routing tables, over different time durations.

In practice, the crawler discovers n random online nodes, and

then it downloads their routing tables for t subsequent times,

once every s seconds. We experimented with different values

of n, t, and s. We do not show all the results due to space

restrictions. Fig. 2 shows the results of an experiment applying

n = 1,000, t = 10, and s = 900 (similar to the mean value of

crawling time) The results show the percentage of stable nodes

and stable routing table entries between the first crawl and each

of the following t−1 crawls. In this example, the mean values

of identical nodes and routing table entries between crawl 1

and crawl 2 are 96.3% and 92.1%, respectively. These results

consider only the nodes (subset of n) that stay online along

all the t crawls.

Completeness of captured graph snapshots: Theoreti-

cally, completeness of the captured snapshots is measured with

reference to a ground truth (in this case, the real KAD graph).

However, such ground truth is impossible to achieve. Instead,

we measure the completeness of the captured snapshots as

the ratio of received KAD RESs to the sent KAD REQs,

considering only stable, responding nodes. We argue that

this completeness measure is sufficiently accurate due to the

following reasons. First, every KAD node is very likely to be

discovered many times; i.e. to be extracted from KAD RESs

received from many different nodes. Second, although NATed

nodes can make use of the KAD overlay, they do not partici-

pate in the overlay itself [19]; i.e. they do not affect the mea-

sured completeness. Third, every discovered node, on average,

receives 74 KAD REQs from our crawler (see Table I), and it

is very unlikely that all these messages (or their corresponding

KAD RESs) will be lost. In summary, while it is possible

to lose some information about connections between nodes

(which still can be detected by our completeness measure), it

is very unlikely to entirely miss online nodes.

Our completeness measure reported 98% and 84% as mean

values of data completeness during the partial tests and full

crawls, respectively. As mentioned earlier, we attribute ob-

served loss of crawling messages, i.e. incompleteness, to two

main factors: (i) the massive amount of traffic (congestion)

that our crawler generates, and (ii) the unreliable nature of the

UDP-based messages of KAD. While we cannot change the

type of KAD messages, we dealt with the massive amounts

of crawling traffic. We could improve the completeness and

achieve the reported completeness values, through the dis-

tributed crawling architecture as well as the applied crawling

techniques of adaptive crawling rates and delays, querying

sub-trees of buckets, and avoiding querying empty buckets.

Discussion: We summarize our crawler results during the

full crawls as follows. We reported about 900 seconds as a

mean value of crawling time. During this period of time, about

96.3% of the discovered online nodes stayed stable, and about

92.1% of those nodes’ routing tables entries were also stable.

We also reported 84% as a mean value of the completeness

of captured graph snapshots.

Certainly, the graph snapshots that our crawler captures are

not exact snapshots of the real KAD network. However, based

on the results above, we argue that our graph snapshots sta-

tistically are very close to the real snapshots: the macroscopic

properties of the network (e.g., network size, highly-connected

nodes, degree distribution, clustering, and resilience in the face

of breakdowns) are maintained. Consequently, we argue that

the captured snapshots are representative enough to be used

for the purposes (studies) that we listed in Sec. I. The reported

results can be improved further by migrating our crawler to a

larger-scale (more capable) measurement environment.

It is also worth to mention that the crawling speed of our

crawler is not directly comparable with the speeds of prior

crawlers, mainly due to the differences in the amounts of

information that each crawler aims to collect. Furthermore,

unlike our crawler, the crawling rates of prior crawlers were

not restricted by the recently introduced flooding protection

policy of KAD.

However, we compare our crawler with prior KAD crawlers

in terms of the time and the number of crawling messages

that are required to download the routing tables, as follows.

Our crawler’s technique of querying sub-trees enables it to

download 2.5 buckets on average (25 contacts) per query

(KAD REQ), while all prior crawlers that we are aware of

(except Rememj [14]) download only a single bucket (ten

contacts) per query.6 As for Rememj, it uses bootstrap requests

instead of KAD REQs, which enables it to download up to

20 random contacts per request.7 However, we argue that

our crawling methodology outperforms Remej’s, due to the

following reasons. First, bootstrap responses used by Rememj

return random contacts, which does not assure the coverage of

the whole routing table (as our methodology does). Second,

bootstrap responses are likely to produce more duplicates than

6Our results become much better than other crawlers if they do not avoid
querying empty buckets (which is not clearly stated in their descriptions).

7Some prior studies (Sec. II) and [20] assume that β (number of returned
contacts) can be set only to 2, 4, or 11. However, β in reality can take any
value between 0-31.
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Fig. 3: The geographical distribution of KAD nodes (top 10 countries) seen on

13.07.2012: (a) shows the geographical distribution of online (responding) nodes, and

(b) shows the geographical distribution of all contacts discovered in the routing tables.

targeted KAD RESs. Third, the contacts returned by a single

bootstrap response are fewer than the contacts that can be

returned by a single KAD REQ.

C. The Measurement Results of KAD

Network popularity: As can be seen in Table I, the val-

ues of discovered KAD nodes indicate that KAD is still a

widely-used network, both in terms of the number of unique

discovered nodes as well as the number of simultaneous online

nodes. These results were almost similar in the 60 full crawls.

However, the reported results of simultaneous online nodes

per crawl (second column) are significantly fewer than previ-

ously published results. For instance, Rememj [7] reported 1.2

- 1.8 million nodes in 2009, and Blizzard [5] reported 1.5 - 2

million nodes in 2007.8

Geographical distribution of users: Fig. 3 shows the distri-

bution of nodes seen on 13.07.2012. The results seen in other

crawls were similar. The main observation in these results is

the existence of a high disparity between the geographical dis-

tribution of responding nodes (Fig. 3 (a)) and the geographical

distribution of all nodes discovered in routing tables (Fig. 3

(b)). An extreme difference between the two distributions is

obvious in the case of nodes from China: they represent 68%

of all unique contacts, and only 29.8% of responding nodes. A

similar observation was reported previously in [15]. However,

the disparity values that we report in Fig. 3 are larger than the

values reported in [15]. We plan to investigate the causes of

this phenomenon in our future work.

VI. CONCLUSION AND OUTLOOK

In this paper, we introduced a new KAD crawler as a

solution for capturing representative snapshots of the entire

KAD graph. The crawler incorporated a set of design details

and techniques that are adaptable for other P2P crawlers.

8In cooperation with Moritz Steiner, the developer of Blizzard [5], we
validated our measured KAD population results via recent crawling tests using
Blizzard. In particular, Blizzard discovered about 500,000 simultaneous online
KAD nodes per crawl in August 2012.

The evaluation shows that our crawler is able to capture

highly representative graph snapshots, and to download routing

tables faster and using fewer messages than prior crawlers.

The results of KAD, that we collected at different periods

during the last ten months, exposed a dramatic drop in the

number of simultaneous online users, when compared to the

observations of previous studies.

Currently, we are working on adapting our crawler for other

Kademlia-style networks. As future work, we plan to perform

an extensive analysis study on the collected graph snapshots,

and to use the captured graph snapshots in several directions.

For instance, to compare the properties of measured graphs

with graphs of well-know simulators, to investigate possible

improvements on the current protocol design, and to devise

novel attacks to detect vulnerabilities of the measured systems.
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