
Update Management in Decentralized Social
Networks

Simon Forsyth, Khuzaima Daudjee
David R. Cheriton School of Computer Science

University of Waterloo

{swforsyt, kdaudjee}@uwaterloo.ca

Abstract—Decentralized social networks in the form of blogs
and wikis often replicate dynamic content through caching.
Maintaining replicated data in these systems is challenging due
to the high cost of update management. We propose a technique
that provides a structure to support efficient updates for cached
data, and we demonstrate the efficacy of our approach through
performance studies.

I. INTRODUCTION

Blogs and wikis are forms of decentralized social networks

that allow individuals to interact with each other through

dyanamic content that is made available on a large scale. For

example, Wikipedia allows users to change parts of articles

while blogs and news articles provide sources for people to

comment on. Effort has been expended to create unstructured

peer-to-peer (P2P) versions of web pages [1], content delivery

networks (CDN) [2], and social networks [3].

To reduce the cost of network accesses, content in these

systems is replicated through caching [4]. In many types

of decentralized online social networks that are unstructured

P2P networks, this cached data changes over time [5]. An

unstructured P2P system must therefore provide a mecha-

nism for replacing old content with new versions to avoid

stale data. Thus, update management is important in these

systems. Proposals exist to maintain data synchronously or

using quorums to limit the number of peers required [6] [7],

but in addition to other factors, such schemes must know

the number of replicas currently in the system, introducing

its own problems. Therefore, updates must be applied in a

lazy (asynchronous) manner to make cached data maintenance

feasible and effective [8]. However, lazy maintenance can

result in data that is updated at a slower rate, resulting in

declining freshness. This problem is mitigated in structured

systems as the number and location of cached copies is easily

determined. Ready access to knowledge about the state of

cached copies does not exist in an unstructured system, making

techniques that require knowledge of the number or location

of copies difficult, and therefore expensive, to obtain.

In this paper, we address the problem of maintaining cached

data in unstructured P2P systems with on-demand replication

that is often the hallmark of online social networks. Results of

queries are cached in the process of being returned to the peer

that issued the query. These cached replicas are maintained

lazily, allowing the system to scale with respect to the number

of peers, replicas and queries.

Specifically, in Section III-A, we address how updates can

be managed through path replication [9] to improve search

efficiency. Our proposal applies updates in the same order to

all replicas in the system to maintain cached data. We show

using both real and synthetic workloads traces (Section IV)

that our techniques are efficient and effective in maintaining

freshness for cached data.

II. SYSTEM MODEL

The system models a participatory CDN, in which the

providers and consumers of data cooperate to share the load.

This system provides up-to-date content to those who request

it. Therefore, updates must be supported and distributed ef-

ficiently. Efficient deletion is not required as cache turnover

will eventually force deleted items out of a cache. Deletion

of the original copies will eventually cause removal from all

caches without any special effort.

We assume each data item has one peer, identified as its

master peer, that controls all updates for that data. A peer in

the network may be the master for any number of data items.

We assume that providers are interested in maintaining their

data; consequently we assume that churn among master peers

will be minimal as they will choose not to leave to ensure their

data remain available. Conversely, peers which are not masters

may undergo greater churn, possibly behaving in a manner

similar to that observed in existing P2P networks, with most

peers remaining for very short periods of time [10]. Finally,

we assume peers do not exhibit malicious behaviour. They

may crash, but all messages sent are trustworthy.

The network modelled is an unstructured network, which

allows peers to join and leave with little coordination as

peers simply connect to those that are available rather than

having to find a unique location in the structure and then

assuming the responsibilities associated with that location. In

an unstructured network, data becomes harder to find and thus

maintain. The network topology is a regular random graph

constructed using the SwapLinks algorithm by Vishnumurthy

and Francis [11]. Our work makes no assumptions regarding

topology so our algorithms will work successfully on any

network topology.

Search and replication are related operations. The choice of

where an object is replicated affects the search efficiency and

some search strategies impose conditions on where caches are

located. For search and replication, the system uses multiple

2013 IEEE 33rd International Conference on Distributed Computing Systems Workshops

978-0-7695-5023-7/13 $25.00 © 2013 IEEE

DOI 10.1109/ICDCSW.2013.54

196

random walks and path replication respectively. In an unstruc-

tured system, these choices provide a low network overhead,

allowing scaling while still providing reasonably fast search

times [9].

Random walks provide a message efficient method to find

items. A random walk is performed by choosing a single

neighbouring peer at random to forward the query to and

repeating until the desired item is found or the search is

cancelled. Apart from the peer it just came from, a query

may be forwarded to any neighbour. Performing multiple

simultaneous random walks decreases the time required to find

existing data while maintaining a limit on overhead due to

network traffic.

We use checking to control the duration of random walks,

in which peers receiving a query send messages back to the

peer that initiated it. The originating peer may reply with

a continue or cancel message to control the duration of the

random walk. While this method adds additional traffic and

time to find a result, it also allows the other random walks to

terminate early once a result has been found. It also avoids

issues associated with selecting the correct value for the TTL

[9]. As an additional benefit, a user can cancel a search and

have its overhead quickly removed from the network.

When a query finds a result using a random walk, that query

was forwarded by one or more peers including the source of

the query. Using path replication, the result is forwarded back

through the chain of peers to the originating peer and each

peer in the chain caches the data before forwarding it. These

caches form a path on the network overlay graph.

In the next section, we describe our algorithms for update

management.

III. UPDATE MANAGEMENT

A. Cache Structure

Path replication (described in the previous section) does not

track updates, allowing stale copies to remain in the system.

To address this deficiency, the cached copies of data are

augmented with additional information about that data on a

local level. This information is exploited to push updates to

peers with cached copies without maintaining global system

state or using expensive alternatives such as flooding to send

updates.

1) Data Caching: A successful random walk provides two

pieces of information about the query: the data and the path

used to find that data. While path replication uses the path

to create replicas, it does not store any information about the

path. We propose replicating information about the path in

addition to the data satisfying the query. Each peer therefore

stores the data, a version number assigned by the master,

the estimated distance in hops to the master, the identity of

the peer from which it received the data (its parent) and the

identity of the peer to which it sent the data (its child). For

example, after the random walk in Figure 1a, three cached

copies and two parent/child links are created (Figure 1c). Peers

may have any number of children, limited only by the number

of neighbours. It is possible that more than one of the walks

��������	

��������

��	��������

�������

�������

�������������

������	
��������

���	
��	����

�������	������
���

������

��������

����	 ������!�����

�������
������	����
�������

���	
��	����

�������	������
���

���	
��	����

�������	������
���

Fig. 1. Random walks and path replication. (a) A random walk visits peers
until it finds a replica. (b) The peers replicate the data back along the path
followed by the random walk. (c) Peers also record the path. References to
parents are shown. There are also references from each parent to their children.

will succeed. In that case, path replication occurs along all

successful routes.

It is not safe to abort a random walk or replication initiated

by that walk until a result reaches the peer that originated

the query. Thus a peer may participate in more than one path

between the querying peer and the master peer as multiple

walks may succeed and start replication before the querying

peer receives a result. In such cases, both parents remember

the peer, but it remembers only the parent with the shortest

estimated distance to the master. To improve response time

for a query, cycles are eliminated. In the absence of cache

eviction, the edges connecting the parents to children form a

directed acyclic graph rooted at the master copy of an item.

2) Path Caching: While the data cache allows updates to

propagate by following child links as described in III-B, cache

eviction will cause breaks in the graph. However, the metadata

associated with each data item require less space to store than

all but the smallest data items. Since this means a peer may

store the metadata for many more data items than full replicas

in the same amount of space, the system additionally includes

a path cache containing only metadata. We refer to the cache

containing the data items as the data cache to differentiate the

caches. When data is purged from the data cache, the metadata

is copied to the path cache. This allows the graph structure to

be maintained for a greater period of time, allowing updates

to propagate.

In addition, the path cache improves the performance of

random walks. When a random walk visits a peer with relevant

information in its path cache, the walk next visits the parent

197

peer stored in the cache instead of a random peer (as in the

last message in Figure 1a). Such hints help a walk reach

the relevant master but do not guarantee success since a

peer identified in the path cache may have removed the path

information from its cache, left the network, or crashed. In

such cases, the walk reverts to random selection to continue

the search.

B. Updates

As stated earlier, each data item is associated with a master

peer that manages updates for that item. It determines the order

of updates and records a strictly increasing version number on

successive updates. While other peers may initiate an update,

it is always applied at the master copy and the updated version

propagated to other peers.

New versions are pushed lazily along the edges of the

directed graph produced by following the child links in the

caches (the child graph). Peers that contain a copy of the data

in their data cache update their copy and forward the update

message to their children, while peers that have a copy in

the path cache forward but do not store the data item. As the

graph may contain more than one path to the same peer, peers

check the version of the update. If the version in the update

message is the same or older than the present version, the

update message is discarded. Therefore, these version numbers

ensure that all updates are applied in the same order as at the

master, ensuring a globally consistent order for updates. Since

it is possible that an update may be missed by a peer, each

update must contain a complete copy of the data to ensure that

any missed updates do not affect the final result.

The master acts as a source vertex for the complete child

graph associated with a data item. Therefore, unless the graph

has been cut due to a cache eviction from a non-sinkpeer or a

peer has failed, an update is guaranteed to reach every copy of

the item. Each peer contacts only the subset of its neighbours

known to have had a copy of the data previously. This ensures

that peers that have never been part of a search for a data item

will not be contacted for an update.

IV. PERFORMANCE EVALUATION

A. Experimental Setting

Experiments were performed on the PlanetSim simulator to

evaluate the capability of the algorithms. These experiments

used synthetic workloads and two trace-based workloads,

one from Wikipedia [12] and one from Metafilter [13]. The

synthetic workload modelled uniform and Zipfian distributions

of queries and explored the effect of changing parameters

such as the update frequency. The Wikipedia trace represents

a workload with a very large number of data items, while the

Metafilter trace describes a flash-crowd-like workload where

specific data items are popular at particular times.

1) Configuration: The following baseline is used for all

experiments. The network graph contains 10 000 peers, each

connected to 32 other peers. 20% of the peers are designated

as master peers and all data items are placed on them using

a uniform distribution. The data cache size is 25 items and

the path cache size is 125 items for all peers. While the cache

sizes are pessimistic, machines do not gain capacity as the

number of data items in the network grows, so any cache size

will eventually represent a very small proportion of the total

amount of data. We therefore choose a small cache size relative

to the number of data items to model the network when there

is a significant amount of data relative to the capacity of each

peer’s ability cache. In addition, our experiments demonstrate

that a small path cache has enough room to maintain path

information for the most frequently accessed data on every

peer.

To issue queries, a random peer in the network is designated

uniformly at random to issue a request for a data item

determined by the workload. The peer issues 16 random walks

(per the suggested range in [9]) and reports success when the

first of these walks returns with a result. No walk is terminated

until one returns a result; especially, no TTL value has been

set as a second cutoff method. While this is impractical in a

real system as overhead would gradually increase as searches

for non-existent items accumulate, it permits an examination

of the worst case behaviour of a search.

Updates are performed at the master copy of the data item.

The master pushes updated versions to children who identified

themselves through queries as described in the model.

2) Measurement: We measure the time to find a result using

the number of times a message is forwarded before reaching

its destination (hops). This is a scale invariant feature of the

network and so remains relevant regardless of the network.

The number of queries that have not completed is mon-

itored and measurement begins once the number stabilizes.

At this point the number of queries completed each cycle

approximately equals the number of queries issued each cycle.

In addition, both the data and path caches are full and are

distributed according to the query load.

The first random walk to return a result is used to measure

freshness, even if another random walk associated with the

search returned a more recent version.

All experiments were run five times and results averaged

over all runs. There was little variation in the results: the 95%

confidence interval for all freshness results is less than 0.2%.

B. Workloads

1) Synthetic: The number of data items is 10 000. Data

items for queries follow two distributions: a Zipf distribution

with an exponent equal to 1 and a uniform (normal) distri-

bution. Within the Zipf distribution, the most popular item

represents about one percent of the total number of queries.

For brevity, we refer to the frequency of data access according

to each distribution as popularity. Data to be updated is chosen

uniformly at random.

Queries are issued at a rate of 100 queries per cycle (1% of

the total number of peers per cycle) while updates are applied

at a ratio equal to 20% of the number of queries issued. For

many applications, such a ratio is pessimistic, as far more

people consume updates than produce them. It is therefore

198

likely that most real scenarios will, like those from our traces,

exhibit better results.

2) Wikipedia: The first source of real data for traces is

Wikipedia. Traces from Wikipedia access logs between 18 Sep

2007 20:10:48 GMT and 21 Sep 2007 13:11:44 GMT were

used as a source for the workload [12]. From the raw logs we

extracted all reads and updates to English articles. Searches,

special pages that are not part of the content, and images were

discarded. Because the update rate is low (about 1 update per

1000 requests), the workload was modified to increase the

effective update rate without biasing the data by collecting

updates from a greater period of time and compressing them so

they they remain identically distributed but issued at a higher

rate. The reads were issued at a constant rate of 100 per time

step, while the mean number of updates is 5.5 updates per

time step. The number of articles (data items) referenced by

the million reads in the trace is 409 744. The most popular item

in the trace represents 0.2% of the total number of queries. The

trace was run with data cache sizes of 1000 items to match

the proportion in the synthetic workload.

3) Metafilter: We also ran experiments based on a workload

trace from Metafilter [13]. Metafilter is a community blog,

where any user may add a story with links and the other users

discuss it. The available data spans the entire history of the site

so we used data for 2012. User comments represent updates

to the data, but a trace of the reads was not available.

Based on the read queries for cached data in CoralCache

for Slashdot, a similar site [14], a similar flash crowd with

a quick onset and a trail of requests after was modelled. To

achieve this model, a time step in the simulator represents

one second. The clock was started at the time of the first

update in 2012, and updates were applied at the time they

occurred. As the updates already model a flash crowd and

provide a reason for a user to make another request, a random

number of reads were issued after each update. The number

of reads was normally distributed with a mean of 75 and a

standard deviation of 25. These reads were applied using a

Poisson distribution for the intervals. As a result, the number

of reads per item is proportional to the number of updates,

with a normal distribution and distributed in time in the same

form as the updates.

C. Results

1) Query Response Time: The median number of hops to

find the first replica is 87 using a uniform distribution and 5

using a Zipf distribution for the popularity of the data items.

This shows that caching is more effective when some data

items are more popular than others. When the experiments

were run without caching, there were far more incomplete

than complete queries as the system ran out of memory due

to excess incomplete searches.

D. Freshness

Both the Zipf distribution and the uniform distribution of

data access frequency return similar results for freshness at

a 20% update ratio. Under the Zipf distribution, 85.5% of

��

���

���

���

���

���

	��

��

���

���

����

������
������� �����������

Fig. 2. Number of queries returning fresh data

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000

F
ra

ct
io

n
 o

f
Q

u
er

ie
s

R
et

u
rn

in
g
 F

re
sh

 R
es

u
lt

s

Data Access Frequency Rank (log scale)

Fig. 3. Fraction of fresh results at 20% updates (Zipf)

queries returned fresh results while the uniform distribution

returned fresh data for 88.3% of queries (Figure 2). Because

a uniform distribution is less realistic and because it matches

the behaviour of the least popular data in the Zipf distribution,

we do not discuss it further. Fresh data is returned more often

as the update ratio decreases, with 97.7% of queries returning

fresh data at a 5% update ratio for the Zipf distribution. Query

results that are more than one version older than the current

fresh version are rare; 97.8% of the results are no more than

one version older than a fresh copy.

Figure 3 shows the fraction of fresh results as a function

of the data items ranked by access frequency. We use a

logarithmic scale on the horizontal axis, causing results to

be plotted according to the frequency at which they occur.

Thus, the fraction of total queries for a particular data access

frequency rank is equivalent to the horizontal space occupied.

Freshness depends on the data item access frequency, with

three bands of effectiveness. The first band, which consists

of roughly the 10 most popular data items and one quarter

the total number of queries, has excellent results with 92.7%

of queries returning fresh data. The second band consists the

next 90 most popular items and one quarter the total number

of queries with 82.8% of these queries returning fresh data.

The third band, containing all remaining items and one half the

total queries, represents the least popular data items and shows

much variation in the results for individual items. Overall, a

very high proportion (89.9%) of queries in this band returned

fresh data.

199

For Wikipedia, the number of fresh results returned is very

high, matching the 5% update scenario with 97.8% of requests

returning fresh data. The low popularity of even popular items

had a significant effect on the time to find results. The median

number of hops was 242.

For Metafilter, 91.7% of the queries returned fresh results.

As the Metafilter trace simulates a flash crowd, caching was

very effective, with the median number of hops equal to zero,

indicating that over 50% of queries are satisfied by a locally

cached copy. This shows that the caches adapt quickly to

changes in the popularity of data. As nearly all items become

the most popular item for a short period of time, we do not

include a graph showing results by popularity.

E. Cache Eviction

To ensure that updated versions are successfully propagated

to all copies in the data cache, the child graph must remain

connected. To this end, we explore several eviction policies

for the caches. These are random, first-in-first-out (FIFO),

least-frequently-used (LFU), least-recently-used (LRU), sink-
first, and root-first. Note that the LFU, LRU and sink-first

policies break the square root replication requirement but they

are included to test the possibility that despite the increase in

search overhead they may allow more searches to return fresh

results.

The sink-first policy is motivated by the idea that copies

at the end of a path are potentially the least valuable. Update

messages reach them last, and there are the greatest number of

hops between them and the master, increasing the chance for

the path to become disconnected. Moreover, sinks represent

peers that can be removed without disconnecting the graph,

suggesting that removing them should help keep the graph

connected. For this policy, the number of child peers associated

with a data item are considered when choosing an item to

remove. If there are no children associated with the data item

at a peer, then removing the path information associated with

that data item cannot break any paths to a copy in a data

cache and therefore one of these items is removed at random.

It is possible that there are no sinks in the path cache. In this

case, we revert to the least-frequently-used policy to select

an item to evict on the grounds that it is more important

to maintain connections and ensure freshness for frequently

accessed and/or updated data.

The root-first policy takes a different approach to the

problem of disconnected graphs. Instead of trying to keep

the graph from disconnecting, it instead tries to destroy the

disconnected subgraph more quickly when a disconnection

occurs. That is, when a peer discovers that it represents the

root for a subgraph and is not the master, it assumes that it

is disconnected and therefore should remove itself as it will

become stale. This assumption is not always correct since

children can become parents if they discover that updates are

coming from an alternate route but it is always true if the

subgraph is not connected.

Experiments with different cache eviction policies were

performed with larger caches. The data cache was set to 50

TABLE I
FRESHNESS FOR CACHE EVICTION ALGORITHMS

Data Cache Policy
Random Root First FIFO

Path Cache Policy

LFU 82.54% 90.00% 90.06%
Random 76.07% 82.12% 84.63%
Leaf First 70.45% 78.27% 82.69%
FIFO 80.58% 87.24% 88.88%
LRU 80.33% 87.52% 89.43%

items and the path cache was enlarged to 250 to magnify the

differences between cache algorithms.

The sink-first policy, which preferentially removes sinks from

the graph in the path cache is clearly sub-optimal. It performs

more poorly than any other method, even though its fallback

algorithm, LFU, had the best performance for the same cache.

The scheme successfully kept graphs locally connected, how-

ever, when a break did occur, due to churn or a lack of sinks

in a particular peer’s cache, the newly disconnected graph

remained disconnected, creating islands of stale data.

While the random policy allows for square root replication,

it appears to be an inferior policy for maintaining freshness of

that same data. FIFO offers the same quality of replication as

a random policy while greatly increasing freshness. While an

LFU policy offers further increase, its benefits appear modest

and are offset by an increase in read costs for less popular

data. The difference in freshness between the LRU and FIFO

policies is insignificant, though this may be an indication that

the cache sizes remain too small to make a distinction between

the policies even after the increase in size for this experiment

and so not indicate that they are equivalent in performance.

Preferentially removing the root when it has no connection

slightly decreases freshness when applied to the data cache

over plain FIFO. This means that removing data that was

added earlier is more valuable than removing data that cannot

be updated. It seems likely that such a policy may perform

better for data that is very frequently updated, especially if

other data in the system is updated less frequently.

V. RELATED WORK

Lv et al. demonstrate the case for using path replication in

unstructured networks [9]. It does not address updates.

CoralCDN is a P2P decentralized CDN intended to help

websites deal with flash crowds that has been available since

2004 [2]. It uses expiry-based pulls to discover updated data.

Freenet uses path replication along paths that are chosen

based on a greedy search within a key space [1]. The original

version of Freenet made no allowance for updates. Later

versions of Freenet along with other approaches place updated

data without removing or updating stale copies [15] [16] [17].

In the case of Freenet, the version is part of the document

name, increasing the difficulty of finding the document by that

name. It also does not guarantee that the most recent version

is found.

Datta et al. use a probabilistic flooding algorithm to send

update messages to neighbours that contain replicas [18].

200

Instead of relying on randomness to limit message passing, we

take advantage of the path information provided by the replica

placement policy to achieve the same results deterministically.

Other push-pull algorithms for updates have been labelled as

gossip or epidemic protocols in other work [19]. Generally,

gossip protocols are concerned with completeness of updates,

not freshness.

Another method for applying updates relies on quorums [6]

[7]. This allows for eager replication and perfect consistency

while reducing the overhead for applying updates. While

quorums are easy to track in a structured P2P network where

data items may be identified by keys, they are much more

difficult in an unstructured network — Henry et al. require

that the entire network be contacted to generate an initial list

of peers that could participate and Vecchio and Son provide

no algorithm to find the set of interested peers.

Data may also be assigned expiry times (time-to-live) after

which a replica is considered invalid [20] [21]. This approach

creates a pull-based system in which replicas keep track of the

origin. Typically, the replicas are arranged into a hierarchy to

avoid bottlenecks at the master.

VI. CONCLUSION

In this paper, we addressed the problem of managing up-

dates in decentralized online social networks. Our techniques

for caching and exploiting path information effectively control

update propagation to provide fresh data to most queries.

This contribution opens up a spectrum of design choices that

can support data freshness versus performance trade-offs in

decentralized social networks.

ACKNOWLEDGMENT

Funding for this project was provided by the Natural Sci-

ences and Engineering Research Council of Canada.

REFERENCES

[1] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong, “Freenet: a distributed
anonymous information storage and retrieval system,” in International
workshop on Designing privacy enhancing technologies: design issues in
anonymity and unobservability. New York, NY, USA: Springer-Verlag
New York, Inc., 2001, pp. 46–66.

[2] M. J. Freedman, E. Freudenthal, and D. Mazières, “Democratizing
content publication with coral,” in Proceedings of the 1st conference on
Symposium on Networked Systems Design and Implementation - Volume
1. Berkeley, CA, USA: USENIX Association, 2004, pp. 18–18.

[3] S. Buchegger and A. Datta, “A case for P2P infrastructure for social
networks - opportunities and challenges,” in Proceedings of WONS 2009,
The Sixth International Conference on Wireless On-demand Network
Systems and Services, Snowbird, Utah, USA, February 2-4, 2009.

[4] Oversi, “Overcache p2p caching and delivery platform,” 2010.
[5] R. Narendula, T. Papaioannou, and K. Aberer, “Towards the realization

of decentralized online social networks: An empirical study,” in ICDCS
Workshops, 2012, pp. 155–162.

[6] D. Del Vecchio and S. Son, “Flexible update management in peer-
to-peer database systems,” in Database Engineering and Application
Symposium, 2005. IDEAS 2005. 9th International, july 2005, pp. 435 –
444.

[7] K. Henry, C. Swanson, Q. Xie, and K. Daudjee, “Efficient hierarchical
quorums in unstructured peer-to-peer networks,” in OTM Conferences
(1), 2009, pp. 183–200.

[8] Y. Breitbart, R. Komondoor, R. Rastogi, S. Seshadri, and A. Silberschatz,
“Update propagation protocols for replicated databases,” in SIGMOD
Conference, 1999, pp. 97–108.

[9] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker, “Search and replication
in unstructured peer-to-peer networks,” in Proceedings of the 16th
international conference on Supercomputing, ser. ICS ’02. New York,
NY, USA: ACM, 2002, pp. 84–95.

[10] D. Stutzbach and R. Rejaie, “Understanding churn in peer-to-peer
networks,” in Proceedings of the 6th ACM SIGCOMM conference on
Internet measurement, ser. IMC ’06. New York, NY, USA: ACM,
2006, pp. 189–202.

[11] V. Vishnumurthy and P. Francis, “On heterogeneous overlay construction
and random node selection in unstructured p2p networks,” in INFOCOM
2006. 25th IEEE International Conference on Computer Communica-
tions. Proceedings, april 2006, pp. 1 –12.

[12] G. Urdaneta, G. Pierre, and M. van Steen, “Wikipedia workload analysis
for decentralized hosting,” Elsevier Computer Networks, vol. 53, no. 11,
pp. 1830–1845, July 2009.

[13] Metafilter, “Metafilter infodump,” 2012, stuff.metafilter.com/infodump/.
[14] M. J. Freedman, “Experiences with coralcdn: a five-year operational

view,” in Proceedings of the 7th USENIX conference on Networked
systems design and implementation, ser. NSDI’10. Berkeley, CA, USA:
USENIX Association, 2010, pp. 7–7.

[15] I. Clarke, O. Sandberg, M. Toseland, and V. Verendel, “Private commu-
nication through a network of trusted connections: The dark freenet,”
Network, 2010.

[16] W. W. Terpstra, J. Kangasharju, C. Leng, and A. P. Buchmann, “Bub-
blestorm: resilient, probabilistic, and exhaustive peer-to-peer search,” in
Proceedings of the 2007 conference on Applications, technologies, archi-
tectures, and protocols for computer communications, ser. SIGCOMM
’07. New York, NY, USA: ACM, 2007, pp. 49–60.

[17] C. Leng, W. W. Terpstra, B. Kemme, W. Stannat, and A. P. Buchmann,
“Maintaining replicas in unstructured p2p systems,” in Proceedings of
the 2008 ACM CoNEXT Conference, ser. CoNEXT ’08. New York,
NY, USA: ACM, 2008, pp. 19:1–19:12.

[18] A. Datta, M. Hauswirth, and K. Aberer, “Updates in highly unreliable,
replicated peer-to-peer systems,” in Proceedings of the 23rd Interna-
tional Conference on Distributed Computing Systems, ser. ICDCS ’03.
Washington, DC, USA: IEEE Computer Society, 2003, pp. 76–.

[19] M. K. Mujtaba, “Push-pull gossiping for information sharing in peer-to-
peer communities,” in In Proc. International Conference on Parallel and
Distributed Processing Techniques and Applications (PDPTA), pages
1393 1399, Las Vegas. CSREA Press, 2003, pp. 1393–1399.

[20] X. Tang, J. Xu, and W.-C. Lee, “Analysis of ttl-based consistency in
unstructured peer-to-peer networks,” Parallel and Distributed Systems,
IEEE Transactions on, vol. 19, no. 12, pp. 1683 –1694, dec. 2008.

[21] X. Tang, H. Chi, and S. Chanson, “Optimal replica placement under ttl-
based consistency,” Parallel and Distributed Systems, IEEE Transactions
on, vol. 18, no. 3, pp. 351 –363, march 2007.

201

