
Access Control in Social Enterprise Applications:

An Empirical Evaluation

Rafae Bhatti 1, Camille Gaspard 2, Cristina Nita-Rotaru 3

1PwC
2Cisco Systems

3Purdue University

Abstract—The social enterprise is reported as one of the
biggest IT trends, and is only increasing in popularity. Many
enterprises are adopting social media communication channels
such as Yammer, Chatter, and Jive for collaboration amongst
employees. One key concern however is the lack of user-level
access control mechanisms in these applications. In particular,
introducing social media applications in government, healthcare
and financial sectors requires strict controls on which employees
can access or share what kinds of company data based on various
federal and state regulations. The existing vendor solutions do
not provide fine-grained access control policies to support these
requirements, and the impact of adding such policies to these
applications have not been explored yet.

In this work we provide an empirical evaluation of embedding
fine-grained access control policies in Group Communication Sys-
tems (GCS) which serve as a mechanism for message exchange in
social media applications. Our evaluation is based on a proposed
framework for Role-Based Access Control for GCS in wide area
networks (WAN) scenarios where the access control policies are
specified and enforced using the X-RBAC policy framework.
The main focus of this work is to evaluate the performance
of our proposed framework and demonstrate that adding the
access control mechanisms to an existing GCS incurs minimal
overhead, looking especially at the challenges in WAN scenarios
that are relevant to message exchange between geographically
distributed employees in the enterprise. We show that with the
use of caching, the proposed framework adds minimal overhead
in WAN environments, while still providing the advantages of
having such a framework built in the GCS’s interface to enable
access control for the social enterprise.

I. INTRODUCTION

The social enterprise is reported as one of the biggest

IT trends, and is only increasing in popularity [1]. Many

enterprises are adopting social media communication channels

such as Yammer, Chatter, and Jive for collaboration amongst

employees. One key concern however is the lack of user-level

access control mechanisms in these applications. In particular,

introducing social media applications in government, health-

care and financial sectors requires strict controls on which

employees can access or share what kinds of company data

based on various federal and state regulations ([2], [3], [4]).

An example of such application for a healthcare enterprise

dealing with sensitive personal data is Doximity [5], which

connects physicians for exchanging healthcare information.

Access control plays an important role in this setting since

physicians in Doximity can create a private profile to share

only with the colleagues whom they have confirmed, and

also elect to do secure or insecure group messaging among

confirmed participants. Any inadvertent release of this data

to unintended recipients will result in a significant privacy

breach, and hence access controls must be in place to ensure

that messages are always sent securely by authorized users.

Similar trends are observed in the financial sector, where the

growth of social media applications is slow due to the strict

laws around data sharing between employees. For example,

employees in a central branch of a financial institution for

a region may communicate and share deal data across indi-

vidual branches in that region, but employees in individual

branches may not have mutual access to each other’s data.

In government sector too, there are strict requirements on

the information flows that are permitted between employees

at certain levels. Social media applications designed for the

enterprise must meet these requirements in order to become

widely adopted.

Yet, the existing vendor solutions do not provide fine-

grained access control policies to support these requirements,

and neither has the impact of adding such policies to these

applications been explored yet. Social media applications are

dynamic and distributed by their nature, and major challenges

for introducing them in an enterprise are reconciling flexibility

with scalability, and enforcing access control while supporting

process failures and network partitions. With these considera-

tions in mind, in this work we provide an empirical evaluation

of embedding fine-grained access control policies in Group

Communication Systems (GCS) which serve as a mechanism

for message exchange in social media applications.

Our evaluation is based on a proposed framework for

Role-Based Access Control [6], where the access control

policies are specified and enforced using the X-RBAC policy

framework [7] in the Spread[8] group communication system.

The main focus of this work is to evaluate the performance

of our proposed framework and make sure that adding the

access control mechanisms to an existing group communica-

tion system incurs minimal overhead, looking especially at

the challenges in WAN scenarios that are relevant to message

exchange between geographically distributed employees in the

enterprise. We aim at showing in this work that with the use

of caching, the proposed framework adds minimal overhead

in WAN environments, while still providing the advantages of

having such a framework built in the GCS’s interface to enable

access control in the social enterprise.

The remainder of the paper is organized as follows. We first

2013 IEEE 33rd International Conference on Distributed Computing Systems Workshops

978-0-7695-5023-7/13 $25.00 © 2013 IEEE

DOI 10.1109/ICDCSW.2013.4

167

describe Spread[8], the group communication system we use

in this work, and then describe X-RBAC, the access control

policy framework. We then describe the integration of X-

RBAC with Spread to evaluate the impact of adding access

control policies. We then provide the details of the access

control evaluation, and finally conclude the paper and provide

some directions for future work.

II. SPREAD: A GROUP COMMUNICATION SYSTEM

Spread [8] is a group communication system for wide-

and local-area networks. It provides reliability and message

ordering (FIFO, causal, agreed/total ordering) as well as a

membership service. Spread consists of a server and a library

linked with the application. The process and server mem-

berships correspond to the model of light-weight and heavy-

weight groups. This approach amortizes the cost of expensive

distributed protocols, since these protocols are executed only

by a relatively small number of servers, as opposed to (a

much larger number of) all clients. Spread operates in a many-

to-many communication paradigm, where each member of

the group can be both a sender and a receiver. Although

designed to support small- to medium-size groups, Spread

can accommodate a large number of different collaboration

sessions, each spanning the Internet. Spread scales well with

the number of groups used by the application without imposing

any overhead on net- work routers. The Spread toolkit is

publicly available and is being used by several organizations

for both research and practical projects. The toolkit supports

cross-platform applications and has been ported to several

Unix platforms as well as Windows and Java environments.

III. XRBAC: AN RBAC POLICY FRAMEWORK

To implement our RBAC GCS proposal [6] and integrate

access control in Spread, we use an XML-based RBAC

policy specification language, X-RBAC, outlined in [7] that

incorporates the salient features of the RBAC model [9]. The

specification language for X-RBAC aims at modeling the

basic RBAC elements (users, roles, permissions) and their

associated set-relations, namely user-to-role and permission-

to-role assignments. 1 The following are the core components

of the policy language.

Credentials: The user, role, and permission credentials in

X-RBAC comprises of attributes which are relevant for role

assignment. An example of user and role credential is included

in an XML User Sheet (XUS) and an XML Role Sheet (XRS)

in Table I. An example of permission credential is included in

an XML Permission Sheet (XPS) in Table II.

Assignment Rules: An integral component of RBAC po-

lices in X-RBAC is the specification of rules for user-to-role

and permission-to-role assignments. The assignment policies

are specified in an XML User to Role Assignment Sheet

(XURAS) and XML Permission to Role Assignment Sheet

(XPRAS), and an instance of each is illustrated in Table II.

1X-RBAC and its extended versions also support advanced features such as
integrity and contextual constraints, which we will not review for the purposes
of this work.

An assignment rule consists of an assignment constraint,

which comprises of multiple assignment conditions. Each

assignment condition contains a set of logical expressions to

encode rules on a given credential type, and may be combined

using Boolean connectives AND (all rules must be true), OR

(at least one rule must be true), and NOT (no rule must

be true). An assignment condition is satisfied if all of its

included rules encoded using logical expressions are satisfied

according to the respective mode. Role assignment occurs as

a consequence of an assignment constraint being satisfied.

IV. INTEGRATION

In this section, we describe how the access control policy

framework provided by X-RBAC is integrated within Spread.

There is no default Access Control Monitor (ACM) in

Spread that can enforce anything except an ALLOW ALL

policy that permits all requests by users to join/leave group

and send/receive messages. Spread, however, is designed with

a pluggable mechanism with the capability to integrate specific

security services [10]. The integration of an RBAC policy in

Spread required for us to plug X-RBAC as an ACM for all

access requests received by the system. It also required for us

to provide a mechanism to associate the access control policy

with a specific operation (such as join, leave, send, receive).

This means that we used the RBAC policy specified in Section

III to instantiate the ACM, and modify the relevant operations

in Spread to request access decisions from X-RBAC policy

engine in order to enforce the policy.

A. Spread Operations

The following group operations are currently supported by

Spread to which we applied access control:

• join group

• leave group

• send

The Spread distribution comes with a simple client, named

spuser, which allows a user to request one of the above

operations. We extended this client to allow us to measure

the time for these operations in order to compare the impact

of adding access control.

B. X-RBAC APIs

The X-RBAC framework has been implemented as a set of

Java and C APIs. For this work, we use the C APIs to integrate

it within Spread system. The following are the key APIs used:

• IsUserInRole(Policy P, User x, Role y): For Policy P,

returns True if user x is assigned to role y, else returns

False

• IsPermInRole(Policy P, Permission p, Role y): For

Policy P, returns True if permission x is assigned to role

y, else returns False

The above mentioned APIs were invoked when the relevant

operation is requested by a client application (for evaluation

purposes we used the spuser client provided with the Spread

toolkit), and a decision is returned by the policy engine. If the

request is allowed by the policy, it is sent to the Spread server,

otherwise it is aborted.

168

<XUS>

<user user_id="john">

<cred_type type_name=NetworkUser>

<cred_expr>

<domnain>engineering</domain>

<level>secret</level>

</cred_expr>

</cred_type>

</user>

</XUS>

(a)

<XRS>

<roles>

<role role_id="NetworkRole">

<senior>AdminRole</senior>

<cardinality>20</cardinality>

</role>

</roles>

</XRS>

(b)

TABLE I
XML INSTANCES OF (A) XUS (B) XRS

<XURAS>

<ura ura_id="Network">

<role_id>NetworkRole</role_id>

<users>

<user user_id="john">

<cred_conditions>

<cred_condition>

<type>NetworkUser</type>

<logical_expr>

<predicate>

<operator>eq</operator>

<name>domain</name>

<value>engineering</value>

</predicate>

</logical_expr>

</cred_condition>

</cred_conditions>

</user>

</users>

</ura>

</XURAS>

(a)

<XPS>

<permission perm_id="send">

<object_type>message</object_type>

<operation>send</operation>

</permission>

</XPS>

(b)

<XPRAS>

<pra pra_id="SendMsg">

<role_name>NetworkRole</role_name>

<permissions>

<perm_id>send</perm_id>

</permissions>

</pra>

</XPRAS>

(c)

TABLE II
XML INSTANCES OF (A) XURAS (B) XPS (C)XPRAS

V. EVALUATION

This section aims at evaluation of Role-Based Access Con-

trol for GCS [6] using Spread [8] as the GCS integrated

with the X-RBAC [7] policy framework. More specifically,

we are interested in measuring the performance of the system

after adding the role-based access control mechanism. This

is to demonstrate, through a prototype implementation, the

effectiveness of using the RBAC framework in Wide Area

Network (WAN) scenarios. This evaluation allows us to assess

the impact of embedding access control in the applications for

the social enterprise that are built using this mechanism.

We aim at evaluating the integrated framework by measur-

ing the performance of two classes of operations: join/leave

(latency) and send/receive (throughput) operations. These two

classes of operations represent the main functionalities pro-

vided by the GCS, and it follows naturally that their perfor-

mance has a direct effect on the performance of applications

built on top of GCSs. This is why it is very important to

evaluate them in different realistic scenarios in WAN setup to

make sure that by making the access control mechanism an

integrated part of the GCS, the performance of such systems

does not degrade in a way that affects the application.

We use the following metrics when evaluating our proposed

framework:

• Latency is the time between when a client performs a

join/leave, till the time when all nodes (including the

client performing the action) in the group perceives this

action.

• Throughput is the rate of bytes per second that can be

sent in the system in a certain scenario without getting a

send error.

• Overhead is the extra amount of processing and memory

caused by the proposed framework over a standard imple-

mentation of the studied group communication system.

169

 0

 200

 400

 600

 800

 1000

 1200

 0 100 200 300 400 500 600 700 800 900 1000

Jo
in

/L
ea

ve
 ti

m
e(

m
s)

Group Size

Join/Leave - Spread
Join/Leave - RBAC-Cache-Spread

(a) Join/leave time

 0

 500

 1000

 1500

 2000

 0 2 4 6 8 10 12 14 16 18 20

T
hr

ou
gh

pu
t (

K
bp

s)

Message Size (KB)

Spread - 5 senders
Cache-RBAC-Spread - 5 senders

(b) Throughput as function of message size
with a fixed group size of 20

 0

 100

 200

 300

 400

 500

 10 20 30 40 50 60 70 80 90 100

T
hr

ou
gh

pu
t (

K
bp

s)

Group Size

Spread
Cache-RBAC Spread

(c) Throughput as function of group size
with a fixed message size of 5,000 bytes

and one sender

TABLE III
WAN JOIN/LEAVE AND THROUGHPUT RESULTS

A. Wide Area Network Setup

Testbed and Experiment Setup: For WAN scenarios, we

conducted our experiments on the PlanetLab [11] Internet

testbed. We selected 20 nodes that are geographically sep-

arated and have a low clock drift since our experiment is

sensitive to such drifts. We did try to compensate for clock

drifts by estimating the drift between the clocks while running

our WAN experiments. Each of these nodes would run a

Spread server and one or more clients. On each client, we

used an RBAC policy similar to the one in Tables I and II.

The permission to send a message was granted to a role, and

all authorized users were granted this role. We deliberately

kept the assignment policy simple to focus on the performance

evaluation. All our results are averaged over 5 runs.

Join/Leave: The join/leave time is defined by the time taken

since a peer initiates a join, till all peers in the group (including

the peer itself) receive a membership message confirming the

agreed new view of the group. To measure the join/leave

latency, we record these times perceived by all alive peers

and average them to get a data point representing the current

group size. We used the Network Time Protocol ntp [12] to

synchronize the clocks.

The results of the join/leave experiment for the wide area

network scenario are presented in Figure (a) in Table III. We

conducted the join/leave experiment in two configurations:

standard group communication system (or original Spread),

and RBAC with caching. The results show that adding RBAC

does not incur any noticeable overhead on the join/leave

performance perceived by all members of a group in WAN

scenarios.

Note that in our WAN setup we do not see a linear

relationship between the number of clients and the latency.

The latency of join/leave in WAN starts from a high value

and maintains that high value for an increasing number of

clients reaching a 1000. This can be understood by the fact that

usually in a such WAN scenarios (while having nodes spread

all around the world) at least one of these nodes would have

a slow response confirming receiving the leave/join event to

other nodes and thus the latency would be capped by at least

one slow responding machine. This can be a result of the

machine being overloaded, the network segment being fully

used, or both. In either case the response coming back from

that machine will be extremely slower than the others.

Throughput: As in the case of join/leave, we aim here at

measuring the throughput of the system with, and without, the

access control framework. The throughput is defined here by

how many bytes can be sent per second in the system without

getting sending errors. The throughput has major importance in

specially bandwidth-demanding applications. In order to give

a realistic estimate, we need to evaluate the throughput of the

system under different scenarios. More precisely we need to

vary: number of users in the group; number of simultaneously

sending peers; and size of messages. By varying these three

factors we create different scenarios and get an understanding

of the performance of the system in most realistic scenarios.

For each scenario, a certain number of simultaneous senders

send messages of a specific size (1400 and 14,000 bytes for

message sizes are used) to the group. We log the time t0 when

the senders start sending data, and the time t1i when member

170

i got all data sent. We divide the number of bytes sent in the

system by the time difference t1i - t0, we then average over

i members to get the throughput of the whole system.

The results of the two throughput experiments for the wide

area network scenario are presented in Figure (b) and (c) in

Table III. In the first experiment (b) we fixed the number of

nodes in the system to 20 and we measured the throughput as

function of message size. In the second case (c) we wanted

to measure the effect of increase in clients in a group to the

throughput perceived by each client. In order to do so, we fixed

the size of the message sent to 5000 bytes. We have picked

this size for the message because it is the value that plateaued

the throughput in Figure (b). We conducted each experiment in

two configurations: standard group communication system (or

original Spread), and RBAC with caching. The results show

that adding RBAC does not incur any noticeable overhead

on the join/leave performance perceived by all members of a

group in WAN scenarios.

B. Overhead

The overhead added is due to CPU time and memory.

The major overhead is the memory space needed to cache

the policy (O(n) where n is the number of policy entries.)

Luckily, each policy entry is represented in a sequence of zeros

and ones, representing the role-based access control matrix

of actions and subjects. Actions can be: join, send, receive,

etc.. Thus, if we have a policy of 100,000 entries, we will

need roughly 100 KB - 200 KB to represent this policy in

memory; we maintain the policy in memory in the form of

a hash table. The other major overhead that is caused by

adding RBAC is parsing the policy (written in XML format.)

This can take a considerable time when adding a fresh new

policy to the system. Fortunately, this is not usually the case

in real life scenarios, when usually few updates on a policy

are done at a time. This will make the process of updating the

cache in memory an easier task. With the careful design of a

caching mechanism for our RBAC framework, the overhead

of updating the cache as a result of changes in the policy can

be kept to a minimal level. In addition, since a hash table

lookup is made for every request in the system, it is important

for the lookup procedure not to impose much latency on the

system. In a previous study we conducted, a hash table of size

of 100,000 entries, showed only a less than 30 micro seconds

lookup time.

VI. CONCLUSION

Based on our observation, adding RBAC functionality to a

group communication system did not affect the performance

of applications in a WAN scenario. This was proven by

showing that the performance of the main functionalities of a

GCS was not noticeably affected by the added access control

mechanisms. In conclusion, we have shown that with the use

of caching, the proposed RBAC framework adds minimal

overhead to a GCS, while still providing the advantages of

having such a framework to enable access control in social

networking applications.

ACKNOWLEDGEMENTS

We would like to thank David W. Bettis for the implemen-

tation of the C library of X-RBAC that was used in this work.

REFERENCES

[1] “Social 2013: The Enterprise Strikes Back,” http://goo.gl/WBULv.
[2] “Financial Industry Gets New Guidance on the Use of Social Media,”

http://goo.gl/vbTYn.
[3] “Social Media in Healthcare: Privacy and Security Considerations,”

http://www.himss.org/content/files/SocialMediaWSHIMA042012LG.pdf.
[4] “Social Media Brings New Challenges to Government Security Admin-

istrators,” http://soa.sys-con.com/node/2308264.
[5] “Doximity,” http://www.doximity.com.
[6] C. Nita-Rotaru and N. Li, “A framework for role-based access control in

group communication systems,” in ISCA PDCS, D. A. Bader and A. A.
Khokhar, Eds. ISCA, 2004, pp. 522–529.

[7] R. Bhatti, J. Joshi, E. Bertino, and A. Ghafoor, “Xml-based specification
for web services document security,” in IEEE Computer, Vol 37, Issue

4, 2004.
[8] “The Spread Toolkit,” http://www.spread.org.
[9] D. Ferraiolo, R. Sandhu, S. Gavrila, R. Kuhn, and R. Chandramouli,

“Proposed nist standard for role-based access control,” in ACM TISSEC,

Vol 4, Issue 3, 2001.
[10] Y. Amir, C. Nita-Rotaru, and J. Stanton, “Framework for authentication

and access control of client-server group communication systems,” in
Proceedings of the Third International Workshop on Networked Group

Communication, London, UK, 2001.
[11] “PlanetLab,” http://www.planet-lab.org.
[12] “Network Time Protocol,” http://www.ntp.org.

171

