
SAS: Semantics Aware Search in P2P Networks
D M Rasanjalee Himali

Department of Computer Science
Georgia State University
Atlanta, Georgia USA

dmrhimali@student.gsu.edu

Shamkant B. Navathe
College of Computing

Georgia Institute of Technology
Atlanta, Georgia USA
sham@cc.gatech.edu

Sushil K Prasad
Department of Computer Science

Georgia State University
Atlanta, Georgia USA

sprasad@gsu.edu

Abstract—Resource management is very important yet chal-
lenging in large scale distributed systems like P2P networks. With
more and more users incorporating semantic meta-data with
their resources, the resource discovery mechanism should not
only be able to scale well with the large number of information
resources but also be capable of retrieving semantically relevant
resources distributed in the P2P network with high accuracy and
efficiency. In this paper we address these problems by proposing
an ontology-based fully-decentralized peer clustering scheme
where the network topology is optimized to perform efficient
semantic query routing. The proposed semantic clustering scheme
utilizes the structural relationships in ontology to organize peers
into clusters based on the semantics of the resources they
share. Performance evaluation demonstrates that our proposed
approach can dramatically improve the search efficiency of
unstructured P2P systems while keeping the communication cost
at a comparable level compared with state-of-art unstructured
P2P systems.

Index Terms—
Peer-to-peer search, semantic P2P networks, semantic clustering

I. INTRODUCTION

P2P systems have become a popular means of sharing
large amounts of data among users over recent years. They
are considered an attractive solution of applications requiring
high scalability, robustness and autonomy. Efficient resource
discovery in basic unstructured P2P systems, however, suffers
from high costs mainly due to lack of global knowledge. To
make matters worse, with the advent of semantic web, more
and more users associate their shared resources with semantic
meta-information. This mandates that the P2P networks pro-
vide methods that allow a user not only to describe resources
from a semantic viewpoint but also allow users to run more
complex queries addressing several semantic properties or
relationships among semantic entities and resources.

In this paper we propose a semantic clustering and routing
scheme which aims to improve the quality and efficiency of
search in P2P systems. The basis for semantic clusters are
concepts of an already agreed-upon shared semantic ontology.
We use this semantic ontology with the view of improving
information searching and facilitating interoperability. We pro-
pose a novel dynamic cluster construction technique where
peers discover semantic neighbors by taking into account the
structural relationships of concepts in the ontology. We also
propose a novel query routing mechanism that exploits the
concept hierarchy to quickly route a query to the target cluster.

Both search traffic and gossiping are employed by peers to
acquire global information regarding peer interests.

The rest of the paper is organized as follows: In Section
II we discuss the related research in the area of P2P search.
Section III presents the models and definitions. In Section IV
we present our P2P system clustering architecture. Section
V presents the cluster construction and maintenance and in
section VI presents set of algorithms for ontology based search
in unstructured P2P networks. In Section VII, we evaluate
the proposed algorithms via simulation. Finally, Section VIII
discuss the limitations and future roadmap of our work and
concludes the paper.

II. RELATED WORK

To improve the efficiency and quality of search, many
semantic search systems have been proposed [3], [6], [10].
Semantic Overlay Networks (SON) [3] propose a peer clus-
tering approach based on semantic content a peer shares.
However, peer joining as well as query routing requires
flooding. Interest based shortcut [11] model takes a similar
approach where peers with similar interests create shortcuts
with one another with the aim of efficient content location.
However, these interest based shortcuts are built on top of
Gnutella overlay imposing the burden of maintaining virtual
links on top of the original network overlay. SETS [2] is a
Vector Space Model (VSM) based approach for clustering.
SETS however, relies on a single dedicated peer to cluster
peers according to topic segments. GES [12] yet is a VSM
based clustering approach which is a fully distributed cluster
management mechanism. However, the node vector represen-
tation of GES may be inaccurate in presence of documents
falling under multiple semantic categories, and the choice of
long range links is inefficient. BF-SKIP [10],another VSM
based clustering approach, employs s a combination of biased
walk and flooding for topology adaptation. These VSM based
approaches however, generally lack the capability to provide
high quality semantics representation of nodes or documents.
Ontsum [6] assumes heterogeneous ontologies between peers
and requires computationally expensive ontology generation
and mapping and allow only RDQL based queries.



III. PRELIMINARIES

A. System Model
We make the following assumptions about our proposed

search model:
1) Network Topology: We consider an unstructured P2P

network with a set of peers {P1, P2, ..., PP }with average
degree γ. Each peer in the network is able to communicate
with its direct neighbors (i.e. one hop neighborhood) only.

2) Global Semantic Ontology: A globally known refer-
ence ontology is agreed upon by all peers in the network.
This ontology O consists of a set of semantic concepts
C = {c1, c2, ..., cm} with total m concepts and relationships
among them. For simplicity, we assume a semantic hierarchy
where the relationships among concepts are only IS-A(i.e.
hypernym/hyponym) relations.

3) Data Distribution: Representing knowledge using a
reference ontology can be applied to any type of resource
(e.g. text, video etc.) which is properly annotated. In this
work we assume shared resources are text documents. There
can exist multiple copies of the same documents distributed
among peers. For each document a peer has in its local
storage, it constructs a concept weight vector that depicts
the semantic weight of each ontology concept present in that
document. A weight wi,j of concept ci in document dj in
peer P is calculated as follows: First, the concept frequencies
of all concepts for each document in P ’s local storage are
calculated by a process of text mining followed by word sense
disambiguation. The concept frequencies of each document
are added bottom up the semantic hierarchy to account for
the contribution from each concept to its ancestor concepts
in the hierarchy due to IS-A relationships they share. Then
the concept frequencies of each concept are normalized to a
[0-1] range by applying maximum frequency normalization
by dividing them by the maximum concept frequency for that
concept known so far by the peer.

4) Semantic Query: A query consists of the conjunction
of one to n concepts in the ontology. The document locating
problem therefore is to find as many documents in the P2P
network that satisfy the query and that exceed a pre-specified
relevance threshold.

5) Semantic Similarity Calculation: We used the following
well-known similarity measure Sim to calculate the similarity
between two concepts c1 and c2 in the hierarchy [7]:

Sim(c1, c2) =

{
eαl. e

βh−e−βh
eβh+e−βh

ifc1 6= c2
1 otherwise

Where l is the shortest path distance between c1 and c2 in
taxonomy and h is the depth of the least common subsumer
of c1 and c2, α and β are parameters scaling the contribution
of shortest path length l and depth h, respectively where the
optimal values were defined as 0.2 and 0.6, respectively [7].

IV. SYSTEM ARCHITECTURE

Here we describe in detail our design of SAS that utilizes
the synergy between ontologies and P2P systems to provide
high quality search performance.

E
 J

F


G


D

C


B


H


same cluster

 link


family cluster

link (child


link)


random cluster

links


I


A


family cluster

 link


family cluster link

(parent link)


C1


C2
 C3


C4
 C5
 C6


C7
 C8

C9


C10
 C11


family tree (F)


C1


C2
 C3


C4
 C5
 C6


C7
 C8
 C9


C10
 C11


Concept
 Link

C7
 C,D,E

C10
 G,H

C4
 B

C11
 I


same cluster

family tree (child )

family tree (parent)

family tree


Semantic Cache(F)


Concept
 Link

C3
 A

C9
 J


random cluster

random cluster


Random Cache (F)


Link Type:


Reference Ontology


Fig. 1. SAS overlay

A. System Overview

Peers in a distributed network are rich in variety of semantic
interests that are based on their sharable local document
collections. Our clustering policy is based on the intuition
that given a global ontology that describes the semantics of
those shared documents, each peer’s expertise can be described
by a set of concepts in that ontology. This allows one to
model different semantic relationships between peers using
ontological relationships that exist between concepts in the
ontology thereby physically organizing peers according to
semantic clusters. More specifically, peers specializing in the
same concept are physically grouped together as a cluster.
A peer can specialize in zero or more concepts based on
its shared document collection, thus resulting in the peer
participating in zero or more concept clusters.

In our SAS framework, we designed different types of
semantic relationships to model the semantic relationships
between peers. A peer P can maintain a same cluster link
to another peer for common concept they both specialize
in. Similarly, P can maintain a family tree link to another
peer that specializes in a concept that falls under the family
tree of P . The family tree of a peer is the minimal sub-tree
in the shared ontology semantic tree that subsumes all the
concepts the peer is rich in. Any concept falling inside its
family tree is considered a semantically close concept to its
semantic expertise by a given peer. P can also maintain few
random cluster links with some selected peers in the network.
These would be peers for whom the concepts they specialize
in fall out of the family tree of P and thus are considered
semantically distant neighbors. We propose a scheme where
these different types of relationships are effectively exploited
to route queries to peers specializing in requested semantics,
thus enabling efficient query routing.

Fig.1 shows a high level view of the network topology. The
dotted circles and lines show the concept clusters and their IS-
A relationships in the ontology respectively. While many links
are maintained between peers, the different cluster connections
of only peer F are shown for clarity assuming a simplified
scenario where F belongs only to concept cluster C7.



B. Clustering Policy

Physically grouping peers to create peer clusters based on
their semantic richness mandates a good clustering policy. In
our work, we use ontology concepts as the basis for peer
clustering. Since peers interests can be represented by its
local data, the ontology metadata is used to extract semantics
of shared documents and thus the conceptual interests of
the peer. Peers rich in certain concepts in terms of both
information content and the number of relevant documents for
those concepts, categorize themselves as belonging to those
concept clusters.

Each document in SAS is represented as a concept vector.
These concept vectors contain log weighted concept frequen-
cies 1+log(concept frequency). Compared to traditional tf-
idf measure, log frequency weighting produces higher quality
clusters [9] and does not require global information for com-
putation. For a document to be considered relevant for a given
concept ci, the concept frequency of ci in document should
exceed a certain threshold. This threshold concept frequency
for concept ci at peer P is calculated as follows:

CFThredhi,P = RelThresh×MaxCFi(P )where ciεC(P )

Where RelThresh is the system specified relevance threshold
for a document which is a value in [0-1] range. MaxCFi(P ),
the maximum concept frequency known by P for concept
ci, is initially computed from P ’s local document collection
and later on is kept updated by any new higher ci values
discovered from other documents in the network through
message exchanges ensuring that eventually reaches its glob-
ally equivalent value with time. The calculation ensures P
is represented by only those documents having large enough
semantic weights for the given concept. This mechanism
improves the precision of search over time by allowing a query
to identify only those documents that are actually semantically
rich and thus relevant for a queried concept. This precision
improvement mechanism is briefly described in section V-B
and more details can be found in our previous paper [4].

C. Types of Semantic Links

Peers maintain three types of semantic links with its neigh-
bors. To illustrate these links consider Fig.1. The figure shows
the shared ontology containing concepts C1 to C11. Let us
assume a peer P is rich in concepts C7 and C11.

1) Same Cluster links: These links are established between
peers who belong to the same concept cluster. For example,
according to Fig.1, peer P can establish same cluster links
with other peers in clusters C7 and C11.

2) Family Tree links: To achieve high semantic reachability,
each peer maintains a relatively few number of links called
family tree links which are selected among the member
concepts in the family tree of the peer. A family tree of a peer
P , familyTree(P ), is the sub-tree of the ontology rooted at
the least common concept that subsumes semantic cluster con-
cepts a peer P belongs to. This least common ancestor (lca)
concept of familyTree(P ) is called the lca(P ). To ensure
hierarchical connectivity of concept clusters based on semantic

taxonomical relationships, a peer always maintains family tree
links for its parent concept cluster and child concept clusters
called parent links and child links respectively. These parent
and child links essentially allow the network topology to be
organized to mimic the global semantic hierarchy. Looking
at the example given in Fig.1, lca(P ) is C4 as this is the
least common ancestor that subsumes both C7 and C11.
The familyTree(P ) is the sub-tree rooted under C4 and
is marked in the figure. Any concept in familyTree(P )
excluding C7 and C11 are candidates for establishing family
tree links.

3) Random Cluster Links: Establishing parent and child
cluster links by each peer satisfies the minimum requirement
of being able to navigate a query from any concept cluster to
another by following semantic hierarchical structure. For faster
access to semantically distant clusters, peers can also maintain
a few random cluster links in its random neighbor cache to
their semantically distant clusters. According to Fig.1, all the
concepts in ontology outside family tree of P such as C5,
C6, and C6 are perfect candidates for P to establish random
cluster links.

D. Local Knowledge of a Peer

1) MaxV ector(P ): The MaxV ector(P ) is used for doc-
ument re-normalizing purposes and holds global statistics of
highest information content (calculated as concept frequency)
for each concept in the ontology, for entire data set distributed
in the network. This information is obtained gradually using
message passing mechanisms.

2) MyClusters(P )): This is the set of concept clusters in
which peer P categorizes itself as a member.

3) SemanticNeighborCache(P ): Semantic neighbor
cache keeps track of different concept clusters the peer has
discovered and regards as being semantically close to its
semantic interests. An entry in the semantic cache takes the
form < c, neighbors > where c is the concept cluster for
which the peer has established a connection with the given
neighbors.

4) RandomNeighborCache(P ): A peer also keeps a sec-
ond cache called random neighbor cache where it includes
pointers to peers, whose clusters are semantically far from the
clusters the peer belongs to. An entry in the random neighbor
cache takes the form < c, neighbors > where c is the concept
cluster with which the peer has established a connection with
the given neighbors.

Both caches are refreshed using Least Recently Used(LRU)
policy. The maximum number of entries allowed in each cache
including the maximum number of neighbors allowed per each
cluster entry are system specified parameters.

V. CLUSTER CONSTRUCTION AND MAINTENANCE

A. Cluster Construction

We assume that the initial network is a pure unstructured
power law network. At the configuration stage, each peer
constructs document concept vectors for each of its document
in the shared document collection. These document concept



vectors are used by peers to classify themselves into a set of
concept clusters to which they belong.

1) Neighbor Discovery: To establish inter-cluster connec-
tivity, it is crucial that each peer acquire cluster connections by
neighbor discovery. We propose two methods to acquire cluster
links: (i) a gossip based neighbor discovery which actively
discovers new semantic peers and (ii) a passive query traffic
based neighbor discovery algorithm.

(i)Gossip Based Neighbor Discovery: Gossip protocols are
highly scalable and resilient communication protocols that are
widely used to solve problems such as information dissemina-
tion, data aggregation etc. when the underlying network struc-
ture is inconvenient or extremely large. To implement gossip
based neighbor discovery in a P2P network, each peer at each
given fixed intervals of time, randomly chooses a peer from
its neighborhood to exchange information about the concept
clusters links they maintain to update their random neighbor
cache and semantic neighbor caches with new links learnt.
Due to the characteristics of gossip-based algorithms, it is
guaranteed that every peer could establish cluster connections
with every other concept cluster it is interested in with high
probability in logarithmic steps of the size of the network.

(ii)Query Traffic Based Neighbor Discovery: Alternative
to gossip based neighbor discovery, we propose a query
traffic (i.e. query messages and query response messages)
based neighbor discovery method. Here a peer’s local knowl-
edge is propagated along a query path by piggybacking its
MyClusters data structure and links maintained in its caches
in query traffic messages in a passive fashion.

B. Cluster Maintenance

1) Cluster Merging: A peer initially starts by creating a
concept cluster per each concept it belongs to by adding
itself as the only member in the cluster. Understandably, this
will create many clusters for the same concepts scattered in
the P2P network. Over time, when peers acquire knowledge
through gossiping or querying, they will also discover such
new clusters for the same concepts they belong to. When this
happens, the peer merges its cluster with the newly discovered
cluster to form a larger cluster. To achieve this, each peer
assigns a unique ID to its concept cluster at the configuration
stage generated by a consistent hash function. When a peer
merges its cluster with a new cluster, the lower ID of the two
is assigned to the merged cluster.

2) Peer Joins: When a peer joins the network for the
first time, it first connects to a random set of peers. The
peer first classifies itself to a set of clusters based on its
shared document collection and sends a join request to all
its neighbors, piggybacking the set of clusters it belongs to.
Upon receipt of a peer join request, an existing peer provides
its existing semantic and random cache links and the set of
clusters it belongs to, to the new peer. New peer then constructs
its initial random cache and semantic cache links by using this
information.

3) Peer Leaves and Failures: When leaving the network, a
peer provides its semantic and random cache link information

when it notifies its neighbors that it is leaving the network.
This information is utilized by a notification receiving peer
to update its semantic and random caches with appropriate
links, removing soft state maintained for the leaving neighbor
and also acquiring appropriate links from the links maintained
by the neighbor leaving the network. If a neighbor crashes,
peers eventually discover absence of the neighbor when query
routing to that neighbor fails and eventually updates its soft
state to remove that neighbor. Gossip and query traffic based
neighbor discovery eventually reestablishes lost links.

4) Precision Improvement Mechanism (MaxVector Learn-
ing): Each peer keeps track of most recently known highest
concept frequencies for each concept it specializes in, in
a data structure called MaxV ector. At configuration stage,
a peer initializes its MaxV ector using its local document
collection. Utilizing piggybacked MaxV ector information in
the message a peer receives over time, it discover and updates
its MaxV ector accordingly to reflect highest known concept
frequencies in the network so far. This in turn results in peers
re-normalizing its local document concept vectors making
their semantic representations more accurate, thus increasing
query precision over time.

VI. QUERY ROUTING STRATEGY

The goal of query routing strategy is to locate as many
relevant documents as possible. When a query contains a con-
junction of multiple concepts, the querying peer constructs a
sub-query per queried concept by including the same message
id as the original query. The basic idea is to propagate the
concept based sub-queries to relevant target clusters, where
the original query will be evaluated. The query is propagated
until a system specified TTL is reached. The results will
return in the reverse path of the query propagation. The
query originator then collects and returns the merged results
to the end user upon receipt of responses to all sub-queries.
Below we describe the inter-cluster routing mechanism that
propagates the query to the target cluster and the intra-cluster
routing mechanism which takes care of forwarding the sub-
query to all cluster neighbors with high probability.

A. Intra-cluster routing

When a peer receives a query targeted at a concept cluster
that a peer belongs to, the query enters the intra-cluster routing
mode. Here, the peer simply broadcasts the query through its
same cluster links to exhaustively propagate the query within
the concept cluster. If the peer does not have any same-cluster-
links established yet, it chooses a family-tree-link semantically
closest to the target concept cluster, preferably a parent link or
a child link to forward the query as those will have the highest
probability to maintain a direct link to the target concept
cluster

B. Inter-cluster routing

If one of the concept clusters the peer belongs to cannot
satisfy the query, peers then check if the target concept falls
within its family tree. For this to happen, the queried concept



should be a member of the family tree of the peer and the
peer must have a direct or semantically close family tree link
in its semantic cache for the target concept cluster. In this
case, the query will be forwarded to that concept cluster. If
the queried concept falls outside of its family tree, the peer
will dispatch the query to the random-cluster-link semantically
closest to queried concept. In situations where same-cluster
links or family-tree-links are not obtainable, the peer resorts to
random-cluster-links to forward a query to a randomly selected
cluster.

When the network eventually reaches a steady state, every
peer P will establish a minimum of one parent link and
child link per concept in Myclusters(P ). Therefore, these
parent links and child links provide a guaranteed path to
navigate from one concept cluster to another by mimicking
IS-A links in the ontology. Additional family tree links and
random cluster links allow faster location of the target cluster
regardless of its semantic proximity to the peer.

VII. EXPERIMENTS

A. Design of Experiments

In this section we present our experimental design param-
eters such as query generation, document generation, shared
ontology, and the state-of-the-art algorithms used for compar-
ison purposes.

1) Ontology: The Reuters21578 text classification corpus
[5] was used with the category Country as the basis for
constructing the semantic taxonomy. We then used the hyper-
nym/hyponym relations of Wordnet ontology to further extend
this classification by adding descendant sub trees of each
of these core concepts and also to create the core ontology
by adding all ancestor concepts of these core concepts in
all ancestor concept paths toward the root concept entity in
Wordnet ontology. The ontology built this way contains a total
of 235 concepts.

2) Data Generation: We used the documents from the
Reuters21578 dataset in our simulation experiments. There
were 21,578 newswire documents in the dataset and after text
processing and words-sense disambiguation, a total of 15,191
documents that produced non-zero length concept frequency
vectors were selected.

3) Network Generation: We implement our system on top
of Peersim simulator [8]. The initial network generated follows
the power law topology. The default network size was set to
1024 nodes. The initial average peer degree was set to 5. The
document distribution among peers follows a Zipf (α = 1.0)
distribution and each peer contained 100 documents on an
average in its local storage.The TTL varied from 2 to 4 and
the default was set to 2. The dynamic behaviour was simulated
by inserting online nodes to the network while removing active
nodes at varying frequencies. On an average, 80 nodes each are
added and removed from the network during each simulation
run.

4) Query Generation: We generated 100 random queries
each for single and two concept queries from the concepts in
the ontology. On average, every peer issues 50 queries during

its lifetime randomly selected from generated queries.
In addition to this, the maximum entries allowed per random
cluster cache and semantic cluster cache are set to 5 and 100
respectively. The maximum number of neighbors allowed per
cluster entry is 5,5 and 10 respectively for random cluster
links, familytree cluster links and same cluster links. A com-
bination of gossip and query-traffic based neighbor discovery
is used for neighbor discovery mechanism.

5) Comparison Algorithms: We compare the performance
of our algorithm with the state-of-the-art algorithm BF-SKIP
[10] and Gnutella [1] based search.

a) BF-SKIP: Authors of [10] introduce BF-SKIP, a se-
mantic clustering algorithm based on the VSM model. Given
a query, BF-SKIP first relies on biased walks through random
links to locate a relevant semantic group, then uses flooding
within this group through semantic links to retrieve relevant
documents in only one hop. Once in the target cluster, the
number of flooded messages in query is iteratively reduced at
each hop to reduce unnecessary message production. We set
the maximum links to 8 and relevance threshold to 0.7. The
iteration depth k is set from 1 to TTL.

b) Gnutella: Gnutella flooding [1] is the most funda-
mental blind search mechanism where a querying peer floods
a query within a TTL hop radius.

B. Performance Metrics

For our evaluation we rely on three major retrieval perfor-
mance measures:

1) Recall: Recall is the ratio of the number of relevant
results obtained against the total number of relevant results in
the entire P2P network.

2) Precision: Precision is the fraction of documents among
those retrieved that are relevant to a search query.

3) Message Cost: This is the average number of bytes
transferred per search query.

C. Results and Analysis

In this section, we discuss our results for the above P2P
environment. We measured performance of the search al-
gorithms for various network sizes, and results show that
performance of SAS is scalable regardless of the network
size. Experiments were carried out for both single concept
queries and two concept conjunction queries. The results
were averaged over simulation of five network seeds. Due
to space limitation, we report only partial results. Results
are reported after network convergence based on clustering
protocol. Our simulations also show that our SAS algorithm
improves recall and precision significantly over BF-SKIP as
well as Gnutella flooding counterparts at much lower message
cost and produces high quality clusters compared to BF-SKIP.

1) Query Efficiency: Fig. 2(a) illustrates the relationship
between the query recall and the TTL. The experiments were
conducted on a default 1024 nodes network while varying the
TTL from 1 to 3. According to Fig. 2(a), SAS achieves a
high recall rate with small TTL. While our SAS protocol



1 1.5 2 2.5 3

0

20

40

60

TTL

R
ec

al
l(

%
)

Gnutella
BF-SKIP

SAS

(a) Recall Vs TTL

1 1.5 2 2.5 3

0.2

0.4

0.6

TTL

Pr
ec

is
io

n

Gnutella
BF-SKIP

SAS

(b) Precision Vs TTL

Fig. 2. Search Efficiency: (a) the recall and (b) the precision

29 210 211 212 213

50

100

150

Network size

Se
ar

ch
C

os
t

Gnutella
BF-SKIP

SAS

(a) Search Cost Vs Network Size
SAS GNUTELLA BF-SKIP

0

0.5

1

1.5

·105

M
ai

nt
en

an
ac

e
C

os
t

Neighbor Discovery
Maintenanace

Search

(b) Maintenance Cost

Fig. 3. Message Overhead

achieves 9.00%, 42.01% and 72.12% recall rates for TTL
values 1, 2, and 3, respectively, BF-SKIP achieved only
1.64%, 13.58% and 55.77% recall and Gnutella achieved only
1.18%, 10.15% and 43.28% for the respective TTL values.
The reason behind this is that SAS can locate target clusters
much faster thereby resolving the query quickly. This indicates
that a greater portion of the number of hops travelled by a
query is spent within the target cluster flooding semantically
relevant nodes thus proving the effectiveness of our link
establishment strategy within clusters and between clusters.
Fig. 2(b) illustrates the relationship between precision and
TTL. The experiments were conducted on a default 1024 nodes
network and results were averaged over five networks. The
error margin reported was ± 0.05. According to figure 2(b),
SAS achieves high precision values compared to BF-SKIP and
Gnutella due to the MaxVector learning employed in SAS.

2) Search and Maintenance Cost: Fig. 3(a) show that our
SAS protocol sends significantly fewer search messages than
Gnutella and BF-SKIP to resolve a query. This is because
when given a request, SAS can efficiently locate the target
cluster rapidly, so that the search space is reduced and queries
get more results with certain TTL. It also shows that our
algorithm clearly outperforms BF-SKIP and Gnutella even for
large network sizes. While a 70.23% average improvement of
search message cost was observed over BF-SKIP, a 99.44%
improvement was observed over Gnutella. Fig. 3(b) depicts
this message overhead for a network of size 1024 nodes
with search TTL set to 2. As shown in the figure, SAS
generates the least search cost for search queries and neighbor
discovery queries. The maintenance messages generated are
too few to be visible in the figure. The production of a
few neighbor discovery messages is a result of using the
combination of search query traffic and gossip messages for
neighbor discovery. Therefore greater portion of neighbors can

be discovered with zero cost just by utilizing search traffic
thus lowering the additional overhead of generating gossip
messages.

VIII. CONCLUSION

In this paper we presented an ontology-based clustering
and routing protocol that optimizes search performance of
unstructured P2P networks by ontology-aware topology con-
struction. Our scheme organizes the overlay structure based on
semantic concepts and their taxonomical links in the shared
ontology. In addition to these taxonomical links, a peer also
establishes other types of links to ensure faster location of
target clusters and proper dissemination of a query to only
relevant peers within a target cluster while querying. SAS em-
ploys a combination of search messages and gossip to discover
semantically relevant neighbors. In the future development of
the system, we plan to address more effective dynamic cluster
construction techniques, and use of richer ontologies which
include relationships beyond simple classification hierarchies.

REFERENCES

[1] Gnutella home page. http://gnutella.wego.com/.
[2] Mayank Bawa, Gurmeet Singh Manku, and Prabhakar Raghavan. Sets:

search enhanced by topic segmentation. In Proceedings of the 26th
annual international ACM SIGIR conference on Research and develop-
ment in informaion retrieval, SIGIR ’03, pages 306–313, New York,
NY, USA, 2003. ACM.

[3] Arturo Crespo and Hector Garcia-Molina. Semantic overlay networks
for p2p systems. In Proceedings of the Third international conference
on Agents and Peer-to-Peer Computing, AP2PC’04, pages 1–13, Berlin,
Heidelberg, 2005. Springer-Verlag.

[4] Rasanjalee Dissanayaka, S.B. Navathe, and Sushil K. Prasad. Osqr: A
framework for ontology-based semantic query routing in unstructured
p2p networks. In Proceedings of international IEEE HiPC conference
on High Performance Computing, HiPC ’12. IEEE, 2012.

[5] D. D Lewis. Reuters Dataset. http://trec.nist.gov/data/reuters/reuters.
html, 2004.

[6] Juan Li and Son Vuong. Ontsum: A semantic query routing scheme
in p2p networks based on concise ontology indexing. In Proceedings
of the 21st International Conference on Advanced Networking and
Applications, AINA ’07, pages 94–101, Washington, DC, USA, 2007.
IEEE Computer Society.

[7] Y. Li, Z.A. Bandar, and D. McLean. An approach for measuring
semantic similarity between words using multiple information sources.
Knowledge and Data Engineering, IEEE Transactions on, 15(4):871 –
882, july-aug. 2003.

[8] Alberto Montresor and Márk Jelasity. PeerSim: A scalable P2P sim-
ulator. In Proc. of the 9th Int. Conference on Peer-to-Peer (P2P’09),
2009.

[9] Hinrich Schütze and Craig Silverstein. Projections for efficient document
clustering. In Proceedings of the 20th annual international ACM SIGIR
conference on Research and development in information retrieval, SIGIR
’97, pages 74–81, New York, NY, USA, 1997. ACM.

[10] Wenwu Shen, Sen Su, Kai Shuang, Fangchun Yang, and Jingshu Xia.
An efficient search mechanism in unstructured p2p networks based on
semantic group. In Proceedings of the 2010 10th IEEE International
Conference on Computer and Information Technology, CIT ’10, pages
2982–2986, Washington, DC, USA, 2010. IEEE Computer Society.

[11] K. Sripanidkulchai, B. Maggs, and H. Zhang. Efficient content location
using interest-based locality in peer-to-peer systems. In INFOCOM
2003. Twenty-Second Annual Joint Conference of the IEEE Computer
and Communications. IEEE Societies, volume 3, pages 2166 – 2176
vol.3, march-3 april 2003.

[12] Yingwu Zhu and Yiming Hu. Enhancing search performance on
gnutella-like p2p systems. IEEE Trans. Parallel Distrib. Syst.,
17(12):1482–1495, December 2006.


