Provable Polylog Routing for Darknets

Stefanie Roos

Thorsten Strufe

TU Darmstadt, Germany
<lastname > @cs.tu-darmstadt.de

Abstract—Darknets, anonymous and membership-concealing
P2P networks, aim at providing censorship-resistance without
relying on a central authority. An efficient routing algorithm is
needed to create Darknets that offer an acceptable performance
to a large number of users. Designing such an algorithm is hard
due to the restricted topology of Darknets, which has not been
modelled adequately up to now. We present such a model of
Darknets by modifying Kleinberg’s small-world model [1] and
a new algorithm, NextBestOnce. It is shown analytically that
NextBestOnce takes O(logn) steps on our model, simulations
show that it performs better than existing Darknet routing
algorithms such as the one used in the dark Freenet [2], especially
with regard to the maximal path length which is bounded by
O(log? n) for NextBestOnce, but scales linearly in case of Freenet.

Index Terms—Darknets, P2P, Formal Models, Privacy

I. INTRODUCTION

Fully privacy preserving and censorship resistant social
networking, publication and communication, can be achieved
in Darknets: P2P overlays in which only devices of individuals
with a mutual trust relationship in the real world establish
connections. Adversaries with the ability to resolve network
addresses to the name and address of the individual using
it are capable of persecuting participation in conventional
overlays, which don’t conceal the participation of members.
Anonymization on lower layers, like for instance with onion
routing, is detected comparably simply, and connections to
known Tor nodes can be blocked easily. In Darknets, with
lack of the freedom to establish connections between arbitrary
nodes, routing topologies like in conventional P2P overlays
can not be created, and efficient routing hence can not simply
be achieved.

Several prior approaches have been proposed to implement
Darknets or similar anonymous communication systems. Tur-
tle [3] floods messages, MCON [4] reconstructs a routing
topology by establishing tunnels between neighboring nodes
in the identifier space, yet requires a globally trusted authority
for joining, the existence of which may not be a realistic
assumption. X-Vine [5] is a similar system, not relying on
a trusted global authority, but as in case of MCON tunnels
through trusted links, need to be rebuild in case of churn. The
overhead of this in a real-world scenario is unclear, but is likely
to be high and significantly reduce the performance. Various
routing schemes have been deployed in Ad-hoc networks,
e.g. Face routing [6], but an analytical analysis is missing.
OneSwarm [7], finally, combines flooding with probabilistic
routing to enhance anonymity and relaxes the requirement
of full membership concealment by relying on links between
devices of users without mutual trust. The amount of messages

increases at least linearly with the system size for all those
approaches. The only prior work attempting to fully meet
Darknet requirements and achieve efficient routing is the dark
Freenet [2]. While the actual number of Freenet users is
unknown due to its membership-concealing nature, a report [8]
has rated it the most popular and secure anti-censorship system
in China. In particular it seems to be used more frequently than
Tor.

Freenet attempts to recreate a ring as a routing topology
by applying a Metropolis-Hastings algorithm to adapt node
identifiers. The goal is to approximate a network topology
that resembles Kleinberg’s small world model, on which
greedy routing is shown to converge within O(log®n) steps.
However, the model assumes that every node is connected to
its predecessor and successor on the ring, which cannot be
achieved under Darknet constraints. Greedy routing hence is
exchanged for a distance-directed depth first search, which, in
this context, is not formally analyzed.

In this paper we generalize Kleinberg’s model by relaxing
the connections with direct neighbors in the identifier space
to connections to nodes within a given distance C' in the
neighborhood, making the model more realistic for modeling
Darknets. We then propose a class of routing algorithms,
NextBestK, parametrized by k, which restrict the number
of times the algorithm is allowed to increase the distance
to the destination. The case & = 1, called NextBestOnce,
is analyzed on the generalized model. We show analytically
that the number of routing steps is in O(log? n). Simulations
confirm this result and show that NextBestOnce performs
better than Freenet routing with regard to the average and
maximal number of steps.

Section II provides some background on Kleinberg’s model
and search algorithms. Section III introduces NextBestK,
followed by a theoretical analysis of NextBestOnce in Section
IV. Simulations, which compare various routing algorithms on
the generalized Kleinberg model, are presented in Section V,
before concluding in Section VI.

II. BACKGROUND

In this Section a formal definition of a routing problem is
given. Furthermore Kleinberg’s small world model [1] and its
application to Darknet routing is discussed.

Routing Problem Definition

Routing on a graph G = (V, E) is defined as the problem
of finding a graph traversal from some node s € V' to another
node ¢ € V, or simply to determine a route from s to ¢. On

arbitrary graphs any routing algorithm has complexity O(|V|+
|E|). Identifier assignment can be leveraged to design specific
classes of graphs, e.g. small-world graphs with a low diameter,
for which efficient routing algorithms can be provided. Such
algorithms need to locally and recursively choose the next
hop for the routes, to achieve membership-concealment and
anonymity as required in Darknets.

Given a class of graphs K (V') with node set V' and edges
chosen according to a random variable X, equipped with a
distance function dist : V x V — [0, 00), we want to find an
algorithm A with minimal expected cost over all instances in
K(V), ie., find A, so that

max E(Ra(s, 1)) (1
is minimized, where R4 (s,t) is the number of steps needed to
find ¢ from s. The quantity in Equation 1 is called the greedy
diameter of A with respect to K (V).

Routing in Small Worlds

The dark Freenet [2] is based on Kleinberg’s small world
model [1], in which K(n,d) nodes are arranged in a d-
dimensional lattice of side length n. Nodes are identified by an
integer vector v € Z¢ representing their position on the lattice.
The distance between two nodes v and w is the Manhattan
distance with wrap-around:

d
dist(v,w) = Zminﬂvi—wi\,n—i—vi—wi,n—i—wi—vi})
i=1
Each node v is given a long-range neighbor Ir” with
1 1

Pr® = w) = K dist(w,v)? ®)
where
1

is a normalization constant.

Besides these long-range links each node is connected to
all nodes within distance 1. This condition is essential for
Kleinberg’s proof that a standard greedy algorithm needs
(9(10g2 n) steps. In the following, standard greedy refers to
an algorithm that always chooses the neighbor closest to
the destination given that is closer than the current node.
Otherwise the algorithm terminates.

Kleinberg’s model is indeed a small-world model, having
a logarithmic diameter[9]. While the original model uses
maximally three directed links, it can extended to power-law
degree distributions and undirected long-rang links [?], [10].
Hence three characteristics of social networks- small-world,
power-law degree distribution and clustering achieved by the
distance distribution in the long-range link selection - can be
incorporated into Kleinberg’s model. The only problem with
regard to Darknets is the presence of links between nodes
that are closest in the ID space, which can in general not
be guaranteed by an embedding into an euclidean space of

bounded dimension. Both Sandberg [11] and Vasserman et al.
[4] used graphs generated as in Kleinberg’s model for their
evaluation.

Sandberg [11] designed a Markov Chain algorithm for
assigning IDs uniformly distributed between 0 and 1 to nodes
such that the distribution of the distances between neighbors
converges towards Equation 3. Standard greedy requires find-
ing a hamiltonian cycle to work in a one-dimensional space,
so it does not work for general graphs when choosing one-
dimensional identifiers.

Sandberg considered two alternatives: Backtracking for-
wards the message to the predecessor of the current node, if no
unvisited neighbor closer to the destination can be found. The
algorithm terminates if either the destination is reached or the
source has contacted all neighbors closer to the destination.
The algorithm is more likely to succeed for an arbitrary pair
of nodes, but it still needs a hamiltonian cycle (in case of a
one-dimensional ID space) to succeed in case of nodes that
are neighbors or close in distance. The second possibility is
a distance-directed depth first search, where the neighbors
are contacted in the inverse order of their distance to the
destination. This is guaranteed to work on all connected graphs
and is actually implemented in the dark Freenet [2], so we will
simply refer to it as Freenet routing. Note, that neighbors far
from the destination might be contacted. This makes it hard
to analyze Freenet routing since the process made up to that
point is annihilated.

III. NEXTBESTK

We propose a class of algorithms, parametrized by k € N,
which are a compromise between backtracking and Freenet. A
node applying NextBestK choses up to k neighbors in higher
distance to the target than itself as next hops. A node v keeps
track of the neighbors W, it has already contacted and the
predeccessor p,. v is 'marked’ in case it has contacted k
nodes at a greater distance, meaning it should not be contacted
anymore. Each node can determine if its neighbors are already
marked. This can be realized by including a Bloom filter in the
message, containing the identifiers of all 'marked’ nodes. Note,
that this is in agreement with Darknet constraints, since Bloom
filter allow to check if a known identifier is contained in the
Bloom filter, but do not allow to retrieve unknown identifiers.

Algorithm 1 describes one recursive step of the algorithm.
The algorithm takes as input the predecessor of the current
node, the target node, and the current node. In each non-
terminal step of the algorithm, there are basically two possi-
bilities: The node always contacts the neighbor closest to the
destination, but if that neighbor is not closer than itself, the
node is marked and will only be contacted by nodes to whom
it forwarded the message. Besides the fact that a maximum
of k neighbors in higher distance to the target can be chosen
for each node, the algorithm has one fundamental difference
to Freenet routing: nodes are not marked the first time they
are contacted, and thus might have more than one predecessor
(termination is still guaranteed, since in each step at least one
edge is added to some set W, and infinite loops are hence

avoided). The possibility to choose edges multiple times is
essential for the complexity analysis, since it guarantees that
in each step a maximal regression is not exceeded. Note, that
in case k = 1, v does not need to keep track of W, since it is
not contacted anymore afterwards. In this case, the overhead
is identical to that of Freenet routing: one has to keep state
only of the 'marked’ nodes. In each step all neighbors are
considered in both algorithm, NextBestOnce only needs an
additionally comparison of the own distance to the destination
to that of the closest unmarked neighbor. So the overhead of a
step in NextBestOnce is barely higher than in Freenet routing.
Backtracking in fact is the special case of NextBest0.

Algorithm 1 NextBestK(Node p, Node t, Node v)
INPUT: p predecessor, t target, v current node
N,: neighbors of v
W, contacted neighbors u with dist(u,t) > dist(v,t)

if v ==t then
routing successful; terminate
end if
if v.predecessor == null then
v.predecessor = p;
end if
S ={u € N, lumarked AND u ¢ W,}
if S NOT EMPTY then
nextNode = argmin,ecgdist(u,t)
if dist(nextNode,t) > dist(v,t) then
W,.add(nextNode)
if |W,| > k then
v.marked = true
end if
end if
else
v.marked = true
nextNode = v.predecessor;
end if
if nextNode != null then
NextBestK(v, t,nextNode)
else
routing failed; terminate
end if

IV. ANALYSIS OF NEXTBESTONCE

In the context of the generalized Kleinberg K(n, d, C), we
analyze NextBestOnce, i.e., NextBestK for k& = 1. I@(n, d,C)
relaxes the Kleinberg’s requirement for local edges. While
Kleinberg’s proof requires that every node is connected to all
nodes within distance 1, in K(n,d, C') nodes have neighbors
within distance C' > 1 in all directions. Due to space con-
straints and for clarity, we decided to use the simpler case of
a directed graph with one outgoing long-range link per node.
All the proofs presented in this Section work analogously for
undirected graphs with a scale-free degree sequence, as is
shown in [10]. This Section first introduces our Darknet model,
then states our main result about NextBestOnce. In the context

of that model routing with NextBestOnce from an arbitrary
source node s to any destination node ¢ requires O(log® n)
steps in expectation, the expectation is taken over all connected
g € K(n,d,C). The second part of this Section is dedicated to
the proof of this result, which is split in two phases. The first
phase treats the case when two nodes are at a distance that
exceeds K *log® n for some constant K > 0. It is very similar
to Kleinberg’s original proof, with the additional difficulty that
an improvement towards the destination is not guaranteed in
every step. The idea is this step is to show that with a high
probability the algorithm does not reach a vertex at twice the
distance of the vertex closest to the destination. Hence the
current distance does maximally have to be quartered to reach
a node at half the distance of the closest node to the destination
found up to that point. The second phase consists of covering
the remaining distance in /(log® \) steps. This is done by first
showing that between any two nodes within distance C' path
of maximally length /(log® \) exist with high probability, and
then showing that NextBestOnce actually finds those paths.

Modelling Darknets

A graph G € K(n,d, C) is created as follows:

We chose the node set V' like Kleinberg with a distance
function dist as in Equation 2 and one long-range link per
node randomly chosen as in Equation 3.

Each node v = (v1,...,v4) is given local links to neigh-
bors above and below in terms of the identifier space:

ay,...,ag, by, ..., by,. Here af is chosen from the set

AY = {u=(uy,....,uq) €V :u; =v; for i # j,
1 < min{u; —vj,n+u; —v;} <C}

where C' > 1 is a constant independent of n. Analogously b?
is chosen from

B} = {u=(u1,....;uq) €V :u; = v; for i # j,
— Uj} < C}

For the proof we assume that the neighbors are chosen
uniformly at random from AY, respectively B, but this is only
to minimize the number of variables for a clearer presentation.
It works analogously if each element in the set is chosen with
an arbitrary non-zero probability.

Local edges are considered undirected, while long-range
links are directed as in the original model.

1< min{vj —Uj, N+ V;

Main result

In the subsequent paragraphs we prove the following the-
orem using the above model for d = 1, which can easily be
extended to any dimension d.

Theorem IV.1. Let R(s,t) be the number of steps that the
algorithm NextBestOnce needs to find a path from s to t. For
a connected graph G = (V,E) € K(n,1,C), C > 1 and
arbitrary s,t € V:

max B(R(s,t)) = O(log” n))

We begin by showing two basic facts about NextBestOnce.
The proof of the routing performance is then divided in 2
phases. In the first phase one considers the case when the
distance between the source s and the destination ¢ exceeds
O(log? n), the second phase deals with the remaining distance
of O(log”n). The number of steps needed to complete the
first phase is denoted by R;(s,t), the number of steps of the
second phase Ry(s,t).

Properties of NextBestOnce

The following observation is an essential property of
NextBestOnce, that distinguishes it from Freenet routing and
is the key to the theoretical analysis.

Observation IV.2. For the algorithm NextBestOnce, the max-
imal increase of the distance to the destination is C for any

graph G € I@(n, 1,0).

Obviously each node u has a local link to a node v, so that
the dist(u,t) < dist(v,t) < dist(u,t) + C. Since the local
links are considered undirected, v is not yet marked, because
a node is only marked after all neighbors that are closer to
the destination, which includes u, have been marked. Hence
NextBestOnce can always choose a successor within distance
C.

Lemma IV.3. NextBestOnce terminates in O(Cn) steps for an
arbitrary graph assuming that the distance to the destination
increases by maximally C' in each step.

Proof: Assume the algorithm produces a circle of length [.
Then at least 1/C x [nodes on the circle are declared marked.
To see this, consider that the distance can only increase if
a node is declared marked. If the sum of the total increase
of a path equals the total decrease, one needs to increase the
distance in at least 1/C of all steps, since the minimal decrease
is 1 and the maximal increase is C. The algorithm ends after
every node has been declared marked. The maximal number
of steps decreasing the distance is less or equal to C' times the
number of increasing steps additional to the maximal distance
of two nodes. So the total number of steps is bounded by
2n 4+ Cn = O(n) steps. [|

In case that the maximal increase to the destination is
restricted by a parameter C, independent of n, the maximal
number of steps is linear in the network size. For arbitrary
graphs, the algorithm terminates after O(n?) steps by the
above Lemma.

Phase 1

The following Lemma is essential for showing that the
message gets within distance O(log”>n) of t in O(log®n)
steps. It is used to determine the expected improvement in
each step.

Lemma IV4. Let u,v € V be arbitrary with dist(u,v) =
Q(log?n). Then:

(dzst(lr) < ‘”Sti)) —0 (hén) .

Proof: For the first part, recall that there are dist(u,v)/2
nodes within distance dist(u,v)/4. The probablhty to have
a link to one of them is at least K m
@(m) since K = ©(logn) by Equation 4. Mul-
tiplying with the number of nodes shows the claim. []

In the following consider two random processes X1, Xo, ...,
the distance to the destination of the i-th node on the route,
and Y1,Ys, ... with ¥; = min{ X4, ..., X;}.

Lemma IV.5. Let s,t € V. Then the expected number of steps

NextBestOnce needs to reach a node within distance O(log® n)
of t is E(Ry(s,t)) = O(log® n).

Proof: The idea of the proof is to show that in expectation
it takes O(logn) steps to half the distance to the destination.
Then, to get within distance O(log®n) the distance needs to
be halved O(log n) times. Combining the two gives the bound
O(log® n).

Formally, let S(Y) be the number of steps needed to get
within distance Y;/2 of ¢ when at distance Y. We want to
show that E(S(Y;)) = O(logn) for Y; > C'log?n. This is
done by considering two cases, X; < 2xY; and X; > 2% Y,
ie.,

E(S(Y)) = E(S(Y)|X; < 2 Y))P(X; < 2%Y))
By Lemma IV4 E(S(Y;)|X; < 2x%Y;) = O(logn) and by

(5
Lemma IV.3 E(S(Y;)|X; > 2% Y;) = O(n). It remains to
show P(X; >2x*Y;) = O(1/n) to get:

E(S(Y;)) = O((1 —1/n)logn) + O(1/nxn) = O(logn)

Now if X; > 2 x Y], the distance has to increase at least
Y;/C times, since the maximal increase is C. By Lemma V.4
the probability that the distance is reduced to a fourth is at
least Qo+ gn) in each step. The probability that this does not

happen in Y;/C steps is O ((log E)Yi /C> Recall that Y; >

C*loan, and for 0 < p < 1, p* < pY if x > y. Then the
probability is bounded from above by:

_ 1 Clog2n/C _ —logn) _ l
0((1) —o (e =02

This completes the proof. []

Phase 2

For the second phase of the routing some notation is
needed. Let uy <> u,,+1 denote the fact that nodes ug and
Um+1 are connected by a path g, ..., U1 and dist(u;,v) is
monotone decreasing. We first determine the probability that
two randomly chosen nodes are connected in such a way by
a path of local links.

Lemma IV.6. I7 is u <> v with probability of at least 1/C for
arbitrary u,v € V.

Proof: The Lemma is shown by induction on the distance
dist(u,v). If dist(u,v) < C, u <> v holds with probability at
least 1/C. Otherwise assume the claim holds for all pairs u, v

with dist(u,v) < K. Let u and v’ have distance K + 1, where
K +1 is less than n/2. Then v’ is connected by a local link
to at least one node v with K +1—C < dist(u,v) < K. The
probability that u <+ v is 1/C. Hence the probability v’ <> u
is at least 1/C as well. The distance property is clear from
the construction. [|

For the second phase of the routing to be successful in a
polylogarithmic number of steps, we need to show that there
are short paths between nodes within a small distance.

Lemma IV.7. For one pair of nodes u, v with dist(u,v) < C
there is a node w,u <> w and w < v, so that dist(u,w) =
O(log" n) for any r > 1 with probability approximately 1 —
1/nlogr71 n/CZ'

Proof: For any node w the probability that u > w
and w < v is at least 1/C? by Lemma IV.6. Hence the
probability of the complement of u and v being connected to
one node within distance log” n is at most (1 — 1/02)10g S
eflogr n/C? _ nlogr_l n/C2_ u

This is the main component for showing that any nodes
within distance O(log”n) steps can be found in O(log?n)
steps.

Lemma IV.8. For arbitrary G = (V,E) € K(n,1,C), let
s,t € V be within distance O(log®n), then E(Ra(s,t)) =
O(log*n).

Proof: By following a path of length at most O(log® n)
one ends at some u with dist(u,t) < C. Applying Lemma
IV.7 with » = 2, wh.p. v and ¢ are connected via a path of
length O(log®n). So ¢ can be found by only routing on a
subgraph of size O(log®n). Note, that the maximal increase
to the destination is C. Hence, by Lemma IV.3, the worst-
case performance of NextBestOnce for the second phase is
O(Clog*n) = O(log?n) given that s and t are connected
by a path of of length O(log?n). If that is not the case the
worst-case performance is O(n), by Lemma IV.3. Hence:

E(Ra(s,t)) = Olog n) + 1/n' ¢ O(n) = O(log>n) .
The proof of Theorem IV.1 follows from combining the two
phases:

Proof: Let s,t € V be arbitrary. Let R;(s,t) denote the
number of steps needed to get within distance O(log®n) of t,
and Ry (s,t) be the number of steps needed to overcome the
remaining distance. By Lemma IV.5 and Lemma IV.8:

E(R(s,t)) = E(Ri(s,1)) + E(Ra(s, 1))
= O(log® n) + O(log® n) = O(log* n)
Since s,t are chosen arbitrarily, we also have
_ 2
max E(R(s,t)) = O(log”n). .
Note, that NextBestK would need k& local links in each

direction, so that a minimal increase of C' in the distance to the
destination can guaranteed. The proof then works analogously.

V. SIMULATIONS

Several routing algorithms are simulated on synthetic friend-
ship graphs generated according to the model from Section IV
for various graph sizes and values for C. Success rate, average,
and maximum number of routing steps are measured. A high
success rate guarantees the user that his request are answered.
The average and maximal path length are important, since in
most scenarios, the time to wait for an answer is of relevance.
The average path length is more important in most cases,
however having a bound on the maximal path length gives
a guarantee on how long a user has to wait in the worst-case.

We concentrated our evaluation on synthetic graphs, since
any real world graphs require the use of an embedding, and the
routing would be depend on the properties of this embedding.

Setup

The model is implemented in GTNA [12]. First, a graph
G € I@(n, 1,C) for the desired n,C € N is constructed as
described in Section IV. Then the performance of a routing
algorithm A is tested as follows: Each node s is chosen as the
source for five distinct queries, i.e., the routing algorithm A is
applied to find a path from s to five randomly chosen targets
t € V'\ {s}. The success rate, average, and maximum number
of hops then are measured based on these 17" = 5 % n queries.
The metrics are defined as follows: Let Q 4 be the set of suc-
cessful queries for routing algorithm A and let L 4(g) denote
the number of steps needed for ¢ € @ 4. Then the success rate
(recall) of A is defined as S(A) = % the mean number of
steps as M(A) = 3_ o, La(q)/|Qa| and maximal number
of steps as Max(A) = maxgeq,{La(q)}. Knowledge about
the marked flags of nodes is assumed to be available to a node
without additional messaging. Incorporating Bloom filters into
each message that contain all nodes on the path is one possible
solution that adheres to the Darknet restrictions and provides
this information.

Eight routing algorithms are compared: Standard greedy,
Backtracking, Freenet and NextBestK for £ = 1,2, 3,10, co.
The parameter C is varied between 1,5 and 10. Graphs
between 1000 and 100,000 nodes are analyzed, starting with
1000, 10,000 and then increasing by steps of 10,000. Due to
space restrictions tables only show the values for 1000, 10,000
and 100,000. Averages are taken over 100 runs. Tables and
Figures display means and standard deviation.

Success Rate (Recall)

The success rate is evaluated both without TTL and - in
case of Freenet and NextBestOnce - for various TTLs in the
order of log2 n. Without TTL, Freenet and NextBestK are
expected to achieve a success rate of 100 % on our model.
The success rate of greedy routing is 100 % for C' = 1, but
expected to fall with rising C'. Backtracking should perform
better, but fail for queries between nodes that are close in
distance, since for those the probability that a path along which
the distance decreases in every step is lower. The success rate
of Backtracking is likely to be influenced by both C' and n.

As for the TTL, by the analysis in Section IV, NextBe-
stOnce should achieve a success rate close to 100 % for
C * log2n for some constant ¢ > 0, while Freenet routing
is expected to have a lower success rate for such a TTL.

Our measurements show that the success rate of standard
greedy is low, 41.5 to 43 % for C' = 10 and 64 to 65 % for
C = 5. The success rate of Backtracking is much higher, with
values from 98% for a graph with 1000 nodes and C' = 10 to
99.9% for a graph of 100,000 nodes with C' = 5.

0.995 b
1A A A A A A A A A A4

0.9998 |-
W 0.9996

09l | 0.9994
| T 0.9992 |

SEEEENN

Lo

NextBestOnce: TTL:Z\ogg n —4—
Freenet: TTL=2log" n

Success Rate
*
*
)

0985 -

—
L

0.98 - NextBestOnce: TTL=Iog§ n —k—
Freenet: TTL:Iog2 n
NextBestOnce: TTL::L.Zlog2 n -4
Freenet: TTL=l.2Iog2 n
NextBestOnce: TTL:l.SIog2 n--@--
F[eenet: TTL:l.Slog‘ n

20000 40000

0.975

I I I
60000 80000 100000

Graph Size

Fig. 1. Graph Size vs. Success Rate for various TTL

Freenet and NextBestK always terminate successfully when
using our model. Experimenting with various TTLs shows that
for a TTL of log® n over 98% of the queries are successful.
Figure 1 shows the success rate for graphs of size 1,000 to
10,000 with C' = 5 and TTL log®n, 1.2log*n, 1.5log®n
(main plot) and 2log® n (right). For a TTL of 1.5 1og2 n, both
algorithms achieve a success rate of nearly 100 %. Looking at
TTL =2 log2 n in the right of Figure 1 in more detail, one can
distinguish that NextBestOnce indeed has a success rate of 100
%, while Freenet fails for some queries. The variance drops
with the graph size, which can be explained by the fact that
T, the number of executed queries, increases linearly with n.
The difference in success between NextBestOnce and Freenet
is small, however, NextBestOnce outperforms Freenet for any
TTL in the order of log® n for all considered graphs.

Routing Length

Routing Length Average and maximum number of hops
without TTL are evaluated for all simulated algorithms. Due
to space restrictions, results for the average number of steps
are presented for Freenet and NextBestK, the algorithms with
a success rate of 100 %. The maximum number of steps is
compared for Freenet and NextBestOnce. NextBestOnce is
expected to have lower average and maximum numbers of
steps, since per analysis above it is in (’)(log2 n). Freenet has
not been formally analyzed, since the regression in the distance
is unbounded, which complicates the analysis. NextBestK for
k > 1 has the same drawback in the considered model, since
only a single neighbor in higher distance to the target is

guaranteed to be a local neighbor. NextBestK additionally
allows using edges several times, in the worst case only
marking one edge in a circle, so the worst-case performance
is O(]E|n). For this reason NextBestK for k > 1 is expected
to perform worse than Freenet.

n_ | Mean Steps Max Steps
1000 23.34 £0.78 72.32 +6.99
10000 45.60 £ 0.67 | 153.44 +10.90
100000 | 76.33 =0.50 | 265.93 £ 13.05
TABLE I

STANDARD GREEDY ON KLEINBERG’S MODEL

n C Freenet NextBestOnce NextBest2
1000 5 17.93 £0.61 17.97 £0.62 18.79 £0.74
10 | 16.84 £0.44 17.20 £ 0.45 19.04 £ 0.54
10.000 5 38.05 +0.72 37.77 + 0.56 38.73+ 0.7
’ 10 | 36.05+0.72 35.98 + 0.66 38.39 + 0.68
100. 000 5 67.87 +1.37 | 65.94+0.51 67.2 £0.52
’ 10 | 65.56 +1.43 62.99 +0.44 | 66.35+ 0.53
NextBest3 NextBest10 NextBestAll
1000 5 18.94 £0.72 19.68 £0.78 19.73 £0.79
10 | 19.99 £+ 0.62 22.13 +0.67 22.28+0.7
10.000 5 39.55 +0.71 40.64 £ 0.7 40.89 + 0.78
’ 10 | 40.24 £0.69 44.71 +0.78 44.82 +0.77
100. 000 5 68.28 +0.48 70.59 + 0.57 70.57 + 0.57
’ 10 | 69.43 +0.56 77.47 +£0.50 77.56 & 0.55

TABLE 11

AVERAGE NUMBER OF STEPS

Note, that for C' = 1 all the considered algorithms perform
like greedy, because a node closer to the target is found in
each step. Hence it is only necessary to compute the metrics
for greedy. Table I displays the average and maximal number
of step for graphs of 1000, 10,000 and 100,000 nodes. Both
increase by a factor of less than 4 from 1000 to 10,000
nodes. The maximum is about three to four times the mean.
The performance of Freenet and NextBestK with regard to
the average number of steps complies with the expectations:
NextBestK for k£ > 1 performs worse than Freenet, the average
path length increasing with k. Table II shows that in case
of 1000 nodes Freenet has an average path length of 16.84
for C = 10, while NextBestAll, i.e., the case £k = oo,
needs 22.28 steps. For 100,000 nodes the respective values
are 65.65 and 77.56. An interesting difference is that in case
of Freenet, NextBestOnce, and to some extent NextBest2 the
number of steps decreases with C', while they increase for the
other algorithms. This can be explained since the decrease
of the distance when using a local link increases with C.
However, a higher value for C' means that the last phase of
the routing, finding the target using local links, lasts longer,
because closeness is not a good indicator to find the correct
route anymore. NextBestOnce and Freenet seem to be able to
deal with this problem rather well, while the other do not. This
is probably due to the fact that a lot of edges are used several
times, i.e., the routing path contains a lot of circles.

Freenet and NextBestOnce perform very similar in graphs
of size 1000 and 10,000 (differences vary between 0.1 and
0.7 steps), NextBestOnce is slightly but clearly better for
100,000 nodes, needing only 63 steps in comparison to 65.6
in for C = 10. This, too, is in line with our expectation.
The comparison of the maximal number of steps in Table
III reveals that there are indeed some queries for which the
Freenet algorithm is unsuitable, needing as many steps as 1.5
times the graph size. In case of NextBestOnce the maximal
path length is about three to four times the average number
of steps, which is similar to the case of standard greedy with
C = 1. In case of Freenet routing the maximal path length
grows at least linearly with the network size.

n C Freenet NextBestOnce

1000 5 104.86 + 187.94 57.31 +5.27

10 158.24 + 299.78 62.71 4+ 6.55
10.000 5 4771.72 £ 7327.84 127.02 + 10.97

’ 10 5158.67 + 7253.70 127.55 +9.79
100. 000 5 158777.13 £ 65702.56 | 236.08 £ 14.28
’ 10 | 174578.83 £ 55740.99 | 225.66 + 13.43
TABLE III
MAXIMUM NUMBER OF STEPS
Summary

The simulations give four important insights: First, the
trivial result that standard greedy does only work in a relatively
low percentage of cases. Secondly, NextBestK is not suitable
for routing on graphs with less than £ local links in each
direction. Furthermore, the simulations of NextBestOnce agree
closely with the theoretical result from Section IV indicating
a polylogarithmic performance. Finally, with regard to the
maximal number of routing steps NextBestOnce outperforms
Freenet routing drastically.

VI. CONCLUSION

We have introduced NextBestK, a class of Darknet rout-
ing algorithms. Generalizing Kleinberg’s model to relaxed
neighborhood connectivity, which better represents graphs that
can be approximated in Darknets, we analyzed their perfor-
mance. NextBestOnce, an instance from this class, is shown
to converge in O(log?n) steps. Our simulations, comparing
NextBestK with the conventional Freenet routing, confirm
that both the average as well as the maximal path length
are polylogarithmical for NextBestOnce, while Freenet routing
exhibits linear growth in the network size.

In prior work we analyzed the topology approximation
of Freenet and have proposed a more resistant embedding
[13]. Combining the two we are expecting to be able to
provide a novel Darknet that is both efficient, and resistant
towards adversarial behavior. We applied more realistic degree
sequences to the extended model in [10] and we expect to be
able to use it for further analysis of Darknets, or similar Ad-
hoc net routing algorithms.

[2]

[3]

[4]
[5]
[6]
[7]
[8]
[9]

[10]
[11]

[12]

[13]

REFERENCES

Jon Kleinberg. The small-world phenomenon: An algorithmic perspec-
tive. In Symposium on Theory of Computing, 2000.

Ian Clarke et al. Private communication through a network of trusted
connections: The dark freenet. http:/freenetproject.org/papers.html,10-
12-2010.

Bogdan C. Popescu, Bruno Crispo, and Andrew S. Tanenbaum. Safe and
private data sharing with turtle: Friends team-up and beat the system.
In Workshop on Security Protocols, 2004.

Eugene Vasserman et al. Membership-concealing overlay networks. In
CCS, 20009.

Prateek Mittal, Matthew Caesar, and Nikita Borisov. X-vine: Secure and
pseudonymous routing using social networks. CoRR, 2011.

Brad Karp and H. T. Kung. Gpsr: greedy perimeter stateless routing for
wireless networks. MobiCom *00.

Tomas Isdal et al. Privacy-preserving p2p data sharing with oneswarm.
In SIGCOMM, 2010.

Freedom House. Country report for end users in China. http://www.
freedomhouse.org/sites/default/files/LOtF_China.pdf.

Chip Martel. Analyzing Kleinberg’s (and other) small-world models.
In Proceedings of ACM Symp. on Princ. of Dist. Comp. (PODC, pages
179-188. ACM Press, 2004.

Stefanie Roos. Analysis of routing on sparse small-world topologies.
Master’s thesis, Technische Universitdt Darmstadt, 2011.

Oscar Sandberg. Distributed routing in small-world networks. Algorithm
Engineering and Experiments, 2006.

Benjamin Schiller, Dirk Bradler, Immanuel Schweizer, Max Miihlhéuser,
and Thorsten Strufe. GTNA: A Framework for the Graph-theoretic
Network Analysis. In Springsim, 2010.

Benjamin Schiller, Stefanie Roos, Andreas Hofer, and Thorsten Strufe.
Attack resistant network embeddings for darknets. In JEEE SRDS/WNR,
2011.

