



### A Policy Management Framework for Flow Distribution on Multihomed End Nodes

Koshiro Mitsuya <<u>mitsuya@sfc.wide.ad.jp</u>> <u>Romain Kuntz <kuntz@lsiit.u-strasbg.fr</u>>

Shinta Sugimoto <<u>shinta@sfc.wide.ad.jp</u>> Ryuji Wakikawa <<u>ryuji@sfc.wide.ad.jp</u>> Jun Murai <<u>jun@wide.ad.jp</u>>

## Table of Contents

- Motivations
- Scenario
- Requirements
- Current Situation
- New Framework
- Conclusion

### Motivations

Contemplated multihomed environment

- Node equipped with multiple (wireless) network accesses
  - Especially true in **mobile environment**
  - multiple communication paths,
- Maintained by one or multiple multihoming protocols (MIP6/MCoA, SHIM6, SCTP, etc.)
  - Each has multiple goals and benefits,
  - Ubiquitous access, fault tolerance, load sharing, ...
- Flow Distribution: distribute flow via multiple available paths

### Motivations

How to achieve flow distribution

- User/Application creates its **desired policies**,
  - Described in term of cost, bandwidth, delay, jitter, etc.
- The policy management framework confronts them to the characteristics of each available path
  - Resulting the **filter rules**,
- Filter rules used as input to the OS-specific **filtering framework**,
  - Filter rules **exchanged** among peer hosts.

### **Example Scenario**



### Requirements for the policy management framework

**RI: Policy description:** language definition

- RI.I Makes the relation between flow and path characteristics,
- RI.2 Multihoming protocol independent.
- R2: Multiple requesters (local or remote) management
- R3: Policy resolution to filter rules and error management
- **R4: Filter rules description**,
- **R5: Filter rules transport,**
- **R6:** Multiple filter rules processing,
- **R7: Transport security**

## **Current Situation**

#### Summary of existing specifications

|                                       | Multihoming protocol<br>principles                                   | Multihoming Protocol<br>specifications                          | Flow distribution in<br>implementations |
|---------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------|
| Mobile-IPv6<br>based<br>(MIPv6, NEMO) | Multiple CoA binded to<br>a single HoA                               | MCoA, Flow Binding,<br>Flow distribution                        | Ipfilter, PF, Netfilter                 |
| SHIM6 based                           | Upper Layer ID (ULID)<br>mapped to one or<br>more locators           | Policy DB in the SHIM6<br>IP sub-layer, Multihoming<br>SHIM API | SHIM6 API, Netfilter                    |
| HIP based                             | Host ID (HI, public key)<br>mapped to one or<br>several IP addresses | Multihoming SHIM API                                            | impossible                              |
| SCTP based                            | Transport layer<br>protocol                                          | SCTP socket API                                                 | Socket API, library                     |

## **Current Situation**

#### Main Principles

- Identifier/locator separation concept,
- Flow Distribution achieved by **choosing proper** locator,
- Locator set by **configuring filter rules** (via Socket API, OS-specific framework, etc.),

# **Current Situation**

#### Main Issues

 Usually associates the flow to a system or protocoloriented path ID (eg: BID for MCoA),

Protocol-dependent

• Usually **do not exchange filter rules** among hosts (HIP, SHIM6, SCTP).

Cannot specify e.g. round-trip path

- Flow distribution **tightly depends on the OS** on which the implementation is running
  - Hard to define a generic flow distribution architecture.

#### Main Principles

Unified Policy management framework on top of the various flow distribution mechanisms,

Using the **existing mechanisms** given by the OS.

#### Main Principles

#### Policy Data Set:

 Describes flow in terms of costs, bandwidth, delay, jitter, etc.

#### • Policy Management Framework:

- Confront the policy data set against the interfaces' characteristics,
- Produce filter rules,
- Install / send filter rules to peer hosts.

The Policy Data Set

- Generic language to define a common policy data set whatever the multihoming protocol or OS is running on the node (RI.2),
- Set of **Policy Rules:** 
  - Tells which policy (flow + action) to apply when some **conditions** are met **(RI.I)**.

#### The Policy Data Set



**Policy Management Framework** 

- Processes the Policy Data Sets from multiple sources (R2),
- Confront the user policies with the actual path's characteristics to produce filter rules (R3, R4),
- Uses the existing filtering framework to install the rules on local host **(R6)**,
- Send the filter rules for remote host (R5, R7)



### Conclusion

- Defined requirements for a policy management framework,
- Draft framework working on top of several multihoming protocols,
- Next steps:
  - Grammar definition for the Policy Data Set,
    - draft-mitsuya-monami6-flow-distribution-policy
  - Framework implementation and evaluation.





# Thank you, Any questions?

Romain Kuntz <<u>kuntz@lsiit.u-strasbg.fr</u>>