Mobiarch 2007 - Kyoto, August 27th, 2007

Embedding Identity in Mobile Environments

Overview

- Motivation
- Architecture
 - Identity Referral and Bindings
 - Terminal and Network Support
 - Detailed Operations
 - Bootstrap and Handover
- Identity Based Mobility
- Privacy and Multiple Identities
- Benefits and Drawbacks
- Conclusion and Future Work

INSTITUIÇÕES ASSOCIADAS:

instituto de

telecomunicações

Motivation

- Next Generation Networks
 - Complexity
 - Multiple protocols and services
 - Mobility
 - Security
 - "talks of" User-Centric Architectures
 - But lack of user oriented approaches
- Identity has been....
 - a second class citizen (up until now)
 - but taking strong steroids by web 2.0
 - and thus facing growth problems (passwords, identity theft, etc.)

THIS IS NOT ENOUGH

NGN Identity-biased Architecture

- Several Administrative domains
- Different Access Technologies
 - WiFi, UMTS, DVB
- Mobility
 - MIPv6, HIP, SIP
- A4C
 - Restricted and controlled environments
- Bandwidth Brokers
 - Restricted QoS environments
- Identity Managers
 - Operator power and user driven identity
- Services
 - Multiple user oriented services: VoIP, Location, Multimedia, File, Mail...

Identity Referral – the Glue

- Identity Manager
 - Identity Information
 - User oriented policies
 - Identity Namespace
 - Identity Manager and different protocols
 - Bringing Identity to the network level
 - Implicit identity referral
 - Compatibility
- ID-Pointer

•

- 64 bit public Identifier
 - Realm the Identity Manager Domain
- Index information index on the Identity Manager Database
- Easily resolvable

NSTITUIÇÕES ASSOCIADAS:		
universidade de aveiro		instituto de telecomunicações
	5 Mobiarch '07 - Kyoto	

0 16 64 Realm Index

Identity Bindings (I)

- Implicit
 - Embedded ID-Pointer
 - Explicit
 - Identifier mapping to an ID-Pointer on a database
 - **Network Bindings**
 - Link Layer
 - 802.21 MN_ID or PANA ID
 - Network Layer
 - ID-Pointer in the IP Address
 - MIPv6 CoA
 - Transport Layer
 - ID-Pointer in the MIPv6 HoA
 - Application Layer
 - URI mapped to ID-Pointer

0	64 12	
	Network Prefix	ID-Pointer

instituto de

telecomunicações

Networks: Support

Identity Oriented Network Distributed Database

- **Distributed Information**
- Common access methods
 - ID-Pointer

- Common storage index
 - ID-Pointer

- Distributed User View
 - Sum of all distributed information bits
 - Reachable with an ID-Pointer and the right permission
 - Strong access control

Terminals: Support and features

Control Plane

•New Identity Management Layer

- Identity is a control plane task
- Identity aware applications
- Legacy interfaces

Data Plane

Preserved

Awara Applications	Legacy Applications			
Aware Applications	Legacy Interface			
Identity Management System				
Application Layer				
Transport Layer				
Mobility Layer				
Network Layer				
Link Layer				

INSTITUIÇÕES ASSOCIADAS:

Mobility

- •New paradigm for control
- Identity Layer
 - Point of decision
 - Intelligence
- Mobility Protocols
 - Signaling
- Common Mobility Interface
 - Triggers
 - APIs

Identity Layer						
Common Mobility Interface						
MIPv6	HIP	SIP				

Example: Bootstrap

Example: Handover

Results in:

Identity Based Mobility

- Consistent Approach across the network
 - Addresses change
 - ID-Pointer does not change
 - Update ONLY mobility tables
 - not everything else: triggers and referrals are consistent.
 - Modularized mobility
 - Control is in the identity layer
 - Identifiers are embedded in the protocols and remain constant
 - Pick your own protocol
- New paradigms
 - Addresses don't move, Entities do.
 - Can be decoupled from the terminal
 - Mobility between terminals
 - Multiple identities or users in the same terminal

IdBM Privacy and Multiple Identities

- Identifiers raise privacy issues
 - Identity related information in addressing structures
 - Resolvable pointers
 - Passive listeners can reach identity information
 - Strong security is required
 - Authentication for requesters
 - Non-public user information only allowed after the authentication
 - Multi-tier access control
- Cross Layer Identifiers raise linkability issues
 - More actions under the same identifiers
 - Higher probability of correlation
 - More security required
 - Per layer encryption hides upper layer identifiers

Benefits

- Cross-layer and cross-protocol integration
 - Distributed database model with consistent indexes
- Not bound by specific protocol Identifiers
 - Distributed meta-system
- Different addresses, same Identity
 - Simplification of network processes
- Simpler user profiles
 - Identity is not the profile
 - Different information exists in different places under the same identity

instituto de

telecomunicações

- Abstraction Layer enables access
 - Larger information set
 - Same access means
 - User-centric paradigms
- Better APIs
 - Abstraction layer
 - User-centric software
- Legacy support

INSTITUIÇÕES ASSOCIADAS:

Drawbacks

- Mandatory Identity Resolution
 - Resolution of the ID-Pointer at each network element
 - ID-Pointer to ID-Manager
 - Reverse DNS, Distributed Hash Tables
 - Minimized by caching
 - Optimized through deduction (e.g. if the A4C receives a preconfigured HoA it can safely infer the *Realm* by looking at the address).
 - Longer setup phases are unavoidable
 - But mobility can be as fast as before
- Strong Security is a <u>requirement</u> not an option
 - If you believe in "free networks", you have here a challenge
 - Per requester Access Control
 - Multi-tier access control

Conclusions

- Identity in the communication stack
 - Both as a 6th (presentation) layer AND a vertical control layer
- Greatly simplified network processes
 - Technology and protocol independent mobility
- Re-focus around the identity of the customer in all its actions
 - Open path to a decoupling of mobility management (user, device, session) from underlying technologies, smoothing network evolution and driving optimization aspects at all levels of the OSI stack.
- Necessary infrastructure enabling a distributed linkable database (somewhat implicit already in management systems)
- Modifications to resolution systems (to transverse these databases) and on the protocol stack on the equipments

Future (hum, hum... on-going) Work

- Mapping of this architecture in specific protocol instances
 - Including evolution path from current 3G networks
- Performance and scalability analysis
- Further study on mobility control common layer
 - Technology independence
 - Easier migration paths from current technologies and protocols
 - Implementation
- Mobility-aware and Identity-aware services.
- Cross-protocol identifiers and privacy

instituto de

telecomunicações

INSTITUIÇÕES ASSOCIADAS:

18 Mobiarch '07 - Kyoto