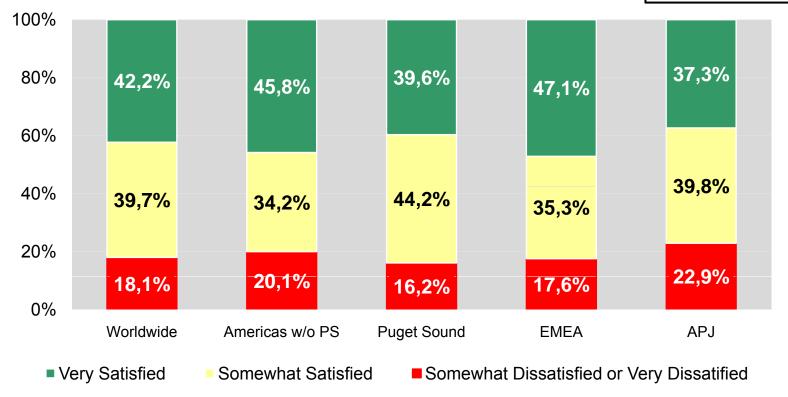


Are we there Yet? Self-Managing Wireless Networks

Victor Bahl Microsoft Corporation


SIGCOMM MobiArch 2007, August 2007

Source: Victoria Poncini, MS IT

MS IT Wireless Satisfaction Survey Wireless networks perceived to be "flaky", less secure

~7,000 Access Points ~65,000 XP & Vista Clients ~40,000 connections/day

~35,000 handheld devices

December 2006

User Complaints & IT Headaches

Microsoft's IT Dept. logs several hundred complaints / month

- 70% calls are about client connectivity issues (e.g. ping-ponging between APs)
- 30% (and growing) are about performance problems due to interference

End-users complain about

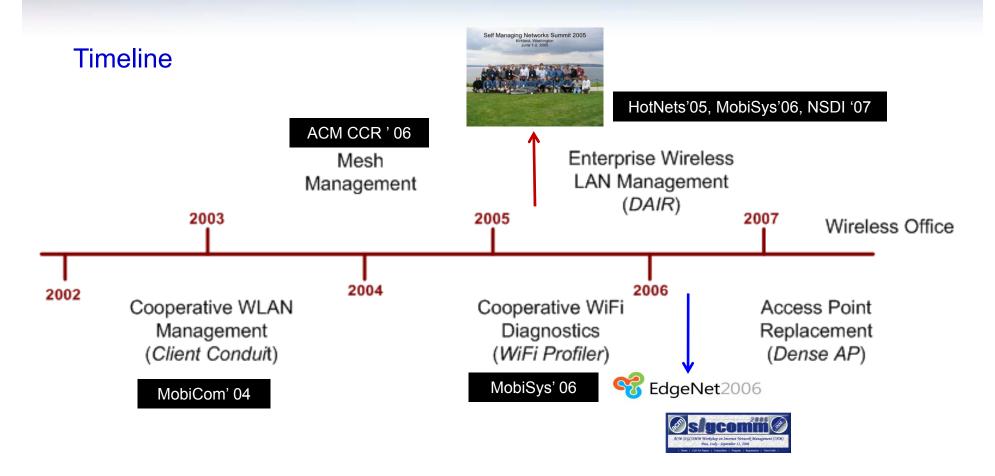
- Lack of RF coverage, performance & reliability
- Connectivity & authentication problems

Network administrators worry about

- Providing adequate coverage, performance
- Security and unauthorized access

Corporations spend lots of \$\$ on WLAN infrastructure

- WLAN hardware business to reach \$2.6 billion in 2007. (Forester 2006)
- Heavy VC funding in this area (e.g. AirTight \$36M in the last 16 months)


The Business World Systems & Management

Example: Microsoft IT FY05 \$ Expenses

Functional View	FY(Bre)5 akdown	Cost Element View	72%
Applications		60%	People Data & Voice	16%
App Development (29%)			Hardware	5%
App Support (31%)				
	823 823		Facilities	5%
Infrastructure		40%	Software*	2%
Network (14%)			* 5% If MS softw	are were included
Data Center (7%)				
Employee Services (5%)				
Voice (5%)		30%		
Helpdesk (5%)		New		
Security (3%)	E SI	Capabi	lity 30%	
	C_{2n0}	70%	Now	
		Sustai	ning &70%	
		Runnir	- Waintenance	
		Existin	g	
		Capab		
			EAIOCING	
			Capabil	Microsoft
5	\ /: _ 1	har Dahl		Research
	VIC	tor Bahl		

Our March Towards Self Managing Networks

Network Management is Hard!

Heterogeneous world

- Multiple technologies: 802.11 /.15 /.16 /.20 / .22, GPRS, 3G, 1xRTT, EvDO, 4G,...
- Multiple layers: Transport, IP, Ethernet...
- Multiple equipment vendors: Cisco, Juniper, Extreme, Symbol, Aruba,...

Problems can occur anywhere

Applications, services, first/last hop link, AP, proxy, server, application, switch...

No standard monitoring technique

• What to monitor? Flood of low quality information; Scalability? Cryptic Analyses

Users have very limited understanding & control

- Increased support calls are NOT the answer
- Don't want to have to call anyone, just want the problem fixed and/or told when it will be fixed

Complexity = expense & slow progress

WLAN Management is Harder

Unpredictable RF Propagation

Many tunable Parameters & Parameter Sensitivity is High

• Frequency band, channel-width, power, rate, multiple radios,

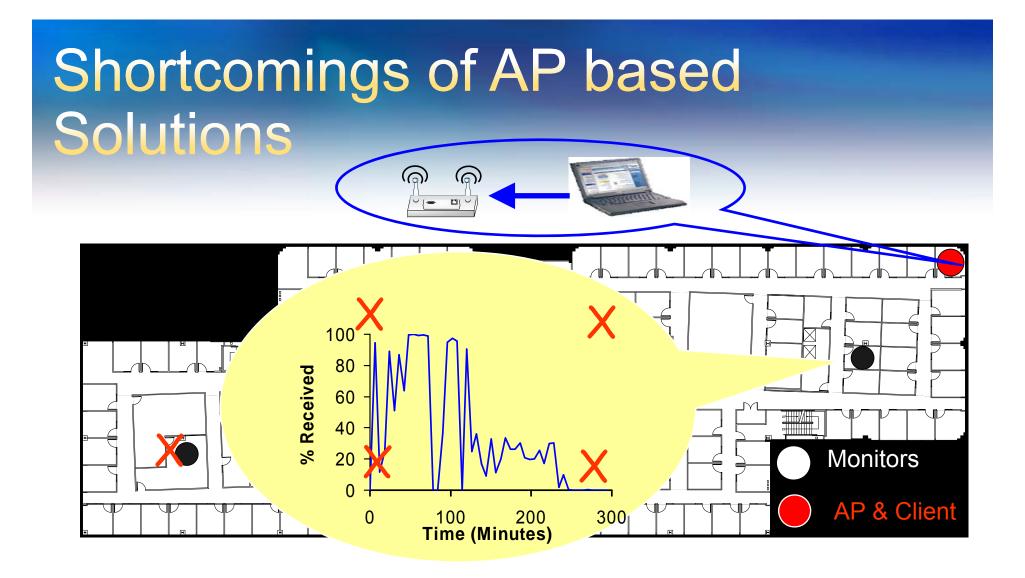
Cross-Industry Cooperation is Difficult to Achieve

- Some of them (e.g. cordless phones, baby monitors) may not follow channel discipline
- Some devices such as microwave ovens are incapable of following
- No built in incentive

Topology Discovery is Hard

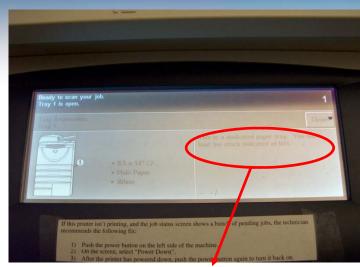
Who is affecting my transmission - hidden terminals, mobility, interference,...

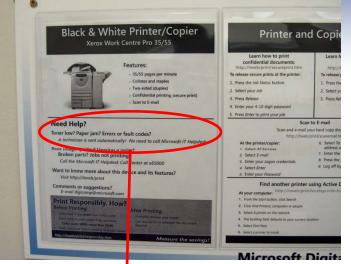
Self-interference is rampant


• Multiple host interfaces, multi-hop networks

Root Cause Analysis Techniques are in Their Infancy

Signature-based techniques do not work - what is normal behavior?


No Standard Metrics for Noise, Power Level etc



Giving Users Greater Control

This is a dedicated paper tray. You must load the stock indicated at left

Need Help?

Toner Low? Paper jam? Errors or fault codes? A technician is sent automatically! No need to call Microsoft IT Helpdesk

Reduce number of support calls

- Help the user/app/network help itself
- Locate the correct party to contact if not

Reduce the time spent on support calls that do occur

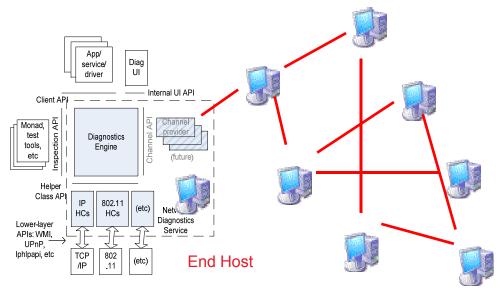
 Tension between control & automation

 Control
 Automation

Victor Bahl

NetHealth

NetHealth is an end-node based framework for the management of enterprise networks.


Framework

- Integrate end-node view of the network with network services & applications
 - share network experience across end points
 - draw inferences based on automatic correlation
 - automate what expert users do manually
- Integrate peer cooperation
- Compliment existing technologies

Goals

Proactively and reactively:

- Detect, alert, diagnose & repair problems
- Detect, alert & contain security compromises
- Perform root cause analysis of performance problems
- Allow what-if analysis for better resource management

End Host Cooperation

NetHealth (Wireless) Projects

Tools to Help Users Help Themselves

- Cooperation between end-nodes for Network Diagnosis & Recovery
 - VirtualWiFi, Client Conduit, WiFiProfiler, SoftRepeater Projects

System & Tools for Managing Enterprise Wireless LAN

- Cooperation between end-nodes and infrastructure servers
 - The DAIR WiFi Network Management Project

Systems & Tools for Managing Wireless Meshes

- Cooperation between end-nodes and infrastructure servers
 - Online simulation based root cause fault analysis
 - What-if Analysis (Time permitting)

Software Infrastructure

Instrumentation

Hooks to look

Naming

Problem identification

Alerting

Getting problem instance (message) to capable agent

Dependency

Learning relationships between distributed application, services & network components

Verifying

Quantifying the user's complaint

Learning & Improving

What is normal/abnormal within a class

Diagnosing & Repairing

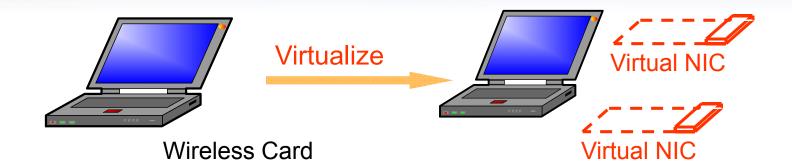
Handling faults until they are fixed

Network Visualization

Important:

Must be Complimentary to Existing Technologies

- Network Diagnostic Infrastructure
- SNMP
- Native WiFi
- MOM
- SMS / Event logger
- Operations Manager
- Systems Center Capacity Planner
- Active Directory & Group Policy


Tools to Help Users Help Themselves

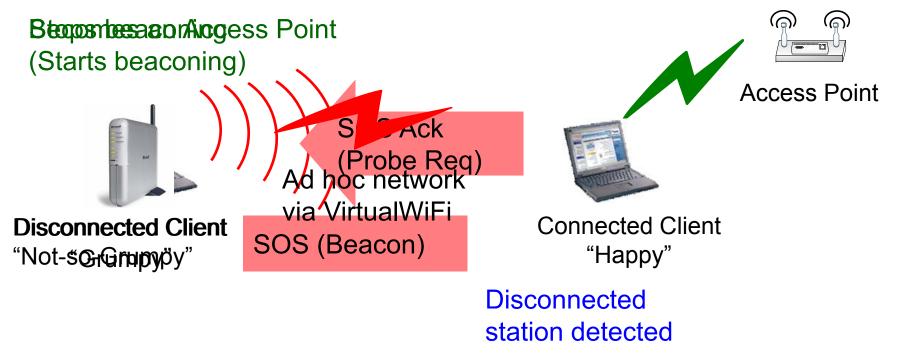
Cooperative Peer-to-Peer Network Diagnosis & Recovery

Automate network fault diagnosis and recovery Reduce user frustration and admin load

Use peer cooperation to improve network health

VirtualWiFi A single wireless NIC appears as multiple cards

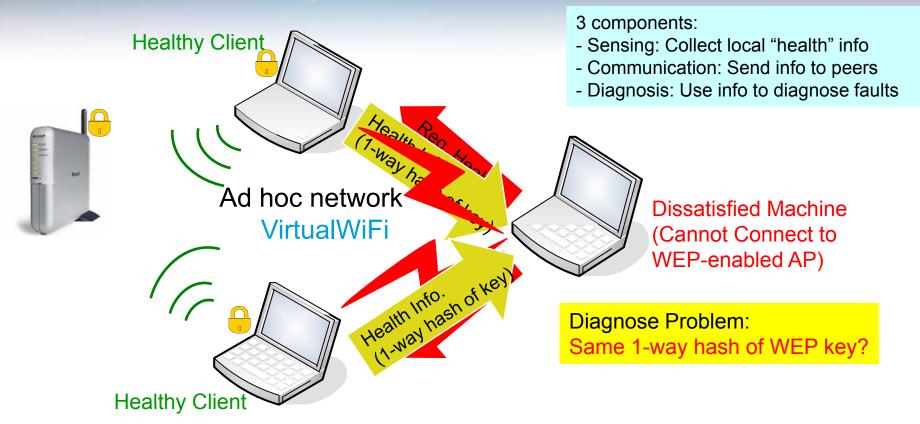
Virtual cards


- Appear as real network interfaces to upper layers
- Each virtual card can connect to any network

Helping Disconnected Clients

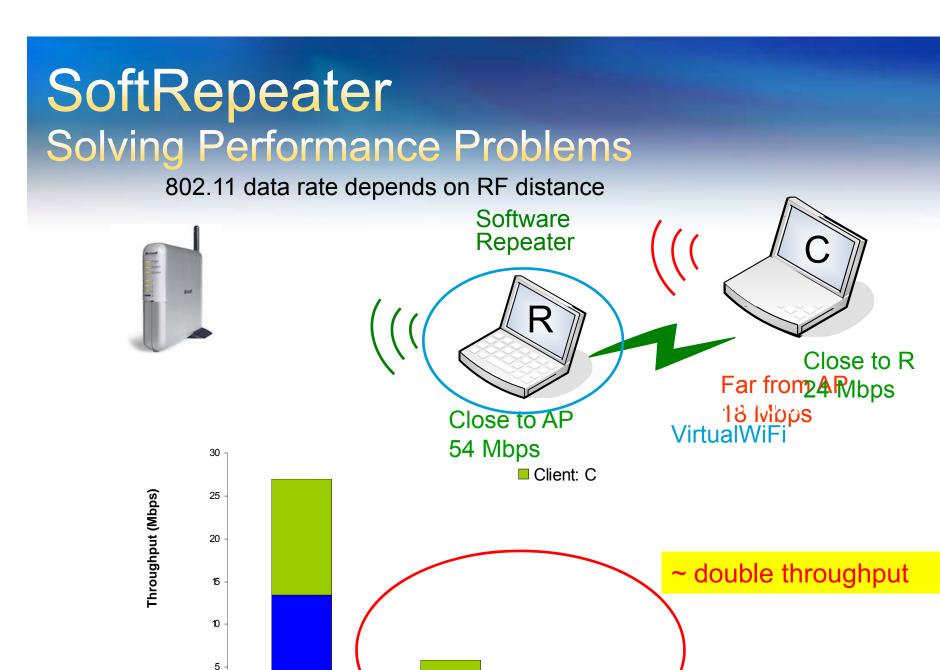
Possible causes of disconnection:

- Lack of coverage, e.g. In an RF Hole, just outside AP range, ...
- Authentication problem, e.g., stale certificates, ...
- Protocol problem, e.g., no DHCP address



When "Happy" donates only 20% of time; Bandwidth available for diagnosis > 400 Kbps

Details: MobiSys '06


WiFiProfiler Cooperative Diagnosis in WLANs

Diagnose range of problems across layers

- No association due to MAC filtering or driver incompatibility
- •No DHCP address due to bad WEP key or bad server
- Poor WAN Performance due to wireless or wired problems
- •No Internet connectivity due to incorrect proxy

Rate Anomaly Victor Bah Microsoft⁻

Research

0

R & C Near AP

SoftRepeater Solving Performance Problems

Using Network Coding to improve capacity

= 3 transmissions in the air

Zero network overhead implementation on Windows XP

no extra bytes in packet headers

19

Throughput (in Mbps)	w/o Network Coding	Network Coding
UDP (AP \rightarrow C, C \rightarrow AP)	11.02	18.13 <mark>(+64%)</mark>
TCP (AP \rightarrow C, C \rightarrow AP)	10.91	13.97 (+28%)
TCP (C →AP)	10.55	12.11 (+15%)

Summarizing Using Mobile Hosts for Management

The Good

- No infrastructure required
- Exploits <u>host-view</u> of network
- Provides quick and effective diagnosis
- Incurs low overhead for connected (healthy) clients
 - Use existing 802.11 messages: beacons & probes
- Lets users help themselves

The Bad

- Difficult to provide predictable coverage
- Dependent on battery & energy constraints

....what if we have infrastructure support

Tools for Managing Enterprise Wireless Networks

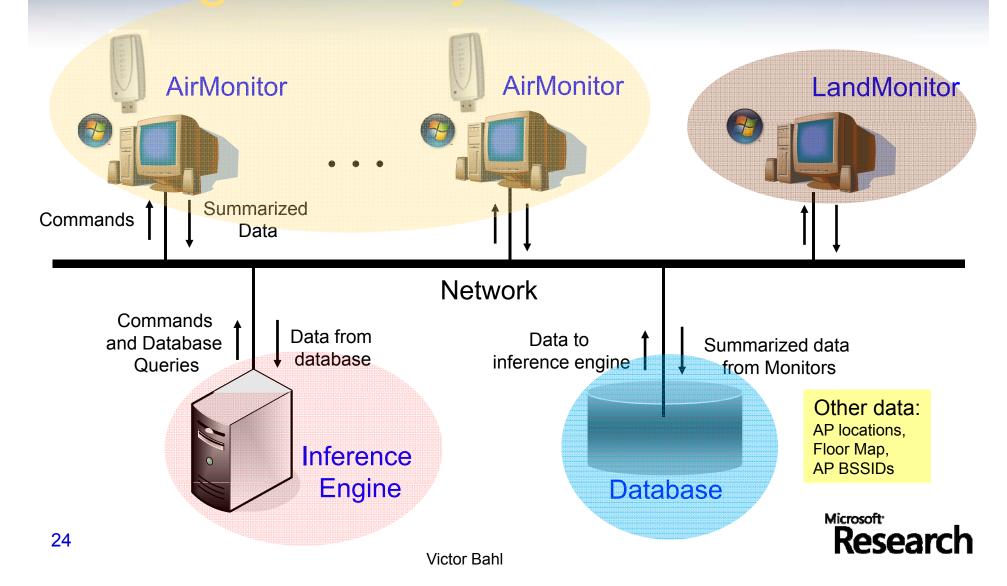
Cooperative Client-Server Network Diagnosis & Recovery

Automate network fault diagnosis and recovery Reduce user frustration and admin load

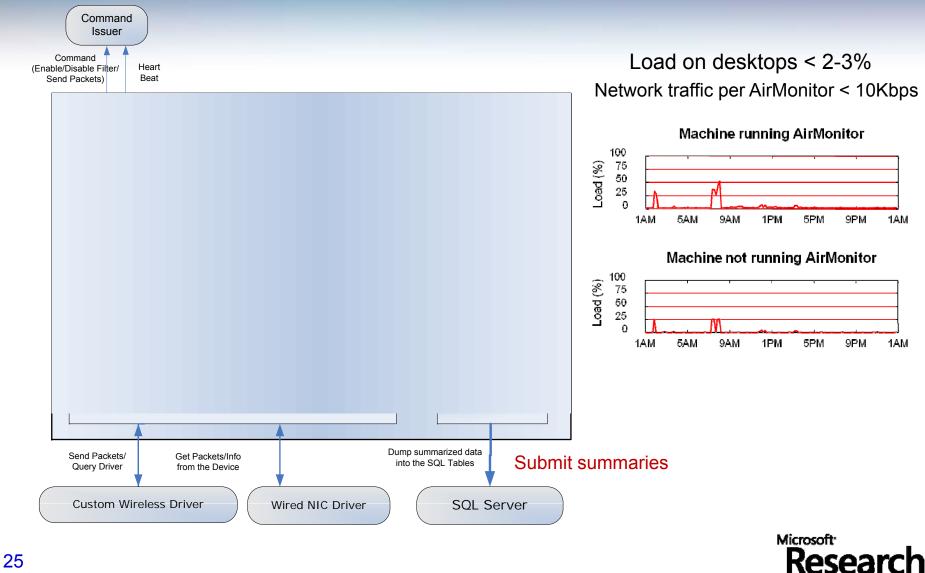
Wireless LAN Management System Requirements

- Must manage the effects of RF propagation
 - Provide comprehensive spatial coverage
- Must Integrate location into the management system
- Should determine performance problems & provide meaningful analysis
 - Reduce false positives & prioritize alerts
- Must locate and contain security breaches
- Should resolve problems automatically

Observations Details: HotNets'05, MobiSys'06, NSDI '07


 Desktop PC's with good wired connectivity are ubiquitous in enterprises

- Outfitting a desktop PC with 802.11 wireless is inexpensive
 - Wireless USB dongles are cheap
 - As low as \$6.99 at online retailers
 - PC motherboards are starting to appear with 802.11 radios built-in


Combine to create a dense deployment of wireless sensors DAIR: Dense Array of Inexpensive Radios

The DAIR Enterprise Wi-Fi Management System

Monitor Software Architecture

Sample Research Problems Solved

Details: HotNets'05, MobiSys'06, NSDI '07

Algorithmic Innovations:

- Self-configuring location determination system (DAIR)
- Detecting & attacking rogue wireless nets (DAIR)
- Detecting performance anomalies and RF holes (DAIR)
- Detecting & responding to DoS attacks (DAIR)
- Assigning channel & power; managing handoff (DenseAP)

Systems Innovations:

- Scaling to the size of an enterprise
- Bootstrapping the location system
- Limiting the impact of sensors on office PCs
- Introducing new techniques while remaining backward compatible

Status

60-node system operational for over 8 months, MS-IT & DELL deployment discussions (on-going)

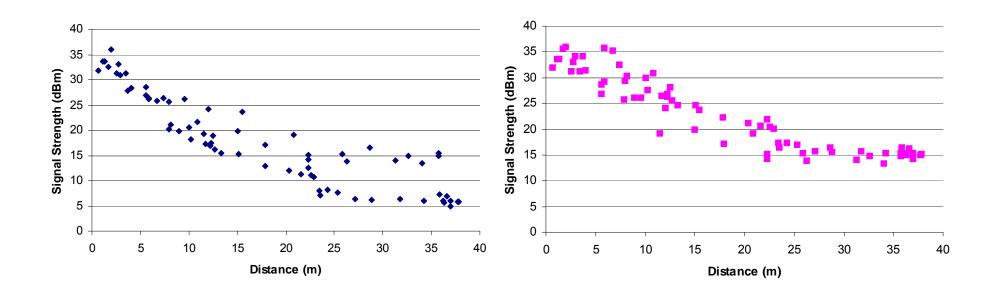
Self-Configuring Indoor Location System

Here's how :

- AirMonitors (AM) automatically determine their position
- AMs collectively profile the RF environment by measuring the signal propagation characteristics between one another
- Inference Engine (IE) uses the RF profiles and signal strength observations at multiple AMs to locate Wi-Fi transmitters

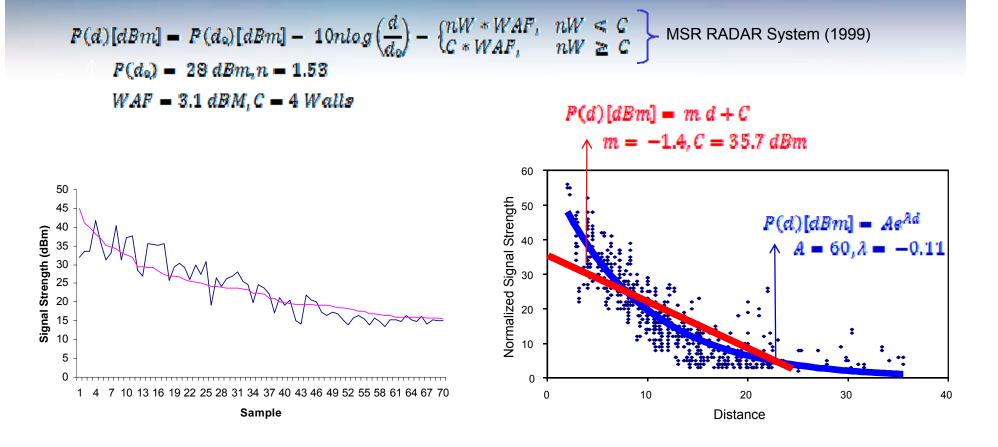
The DAIR system can locate any Wi-Fi transmitter (including noncooperative ones) to office-level accuracy

AirMonitors Locate Themselves


- Monitor machine activity to determine primary user
- Look up Directory Services (e.g. Active Directory) to determine office number
- Parse office map to determine coordinates of the office
 - Assume AMs to be located at the center of the office
- Improve estimates by verifying & adjusting coordinates by observing which AMs are nearby

RF Signal (Environment) Profiling

Idea -


- Model the RF environment as a function of the signal strength and distance
- Locate the Wi-Fi transmitter by plugging in the observed signal strength at the AM into the model to estimate the transmitter's distance

Signal Propagation Measurements

RF Propagation Modeling

Good News: Don't need sophisticated RF Propagation Models

Each AM determines it's own profile

Details: INFOCOM '99

Locating the Wi-Fi Transmitter

Observed RSSI: 50

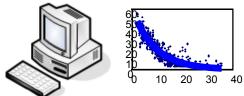
Distance: 3, Estimated RSSI: 54 Distance: 1.3, Estimated RSSI: 51

Observed RSSI: 45

 $P(d)[dBm] = Ae^{\lambda d}$

Details: NSDI '07

Distance: 7.2, Estimated RSSI: 35 Distance: 6.0, Expected RSSI: 41


Observed RSSI: 52

Distance: 0, Estimated RSSI: 56

Distance: 1.1, Estimated RSSI: 52

Observed RSSI: 44

Distance: 6.5, Estimated RSSI: 38 Distance: 6.2, Estimated RSSI: 47

Deployment

98 meters x 32 meters 150 offices and conference rooms. Typical office size: 3 meters x 3 meters Full-height walls. Solid wood doors

59 AirMonitors.

DAIR Infrastructure Applications

Performance Management

Isolate performance problems

- Help disconnected clients
- **Detect & fix RF Holes**
- Detect mis-configuration •

Reliability

Management

33

- Recover from malfunctioning APs
- Compensate for poor association policies

Monitoring

- Site planning: AP placement, •
- frequency / channel selection
- Load balancing

Detect rogue wireless nets Infrastructure and ad-hoc Detect DoS attacks Spoofing disassociation Large NAV values

Security Management

Contain Attackers

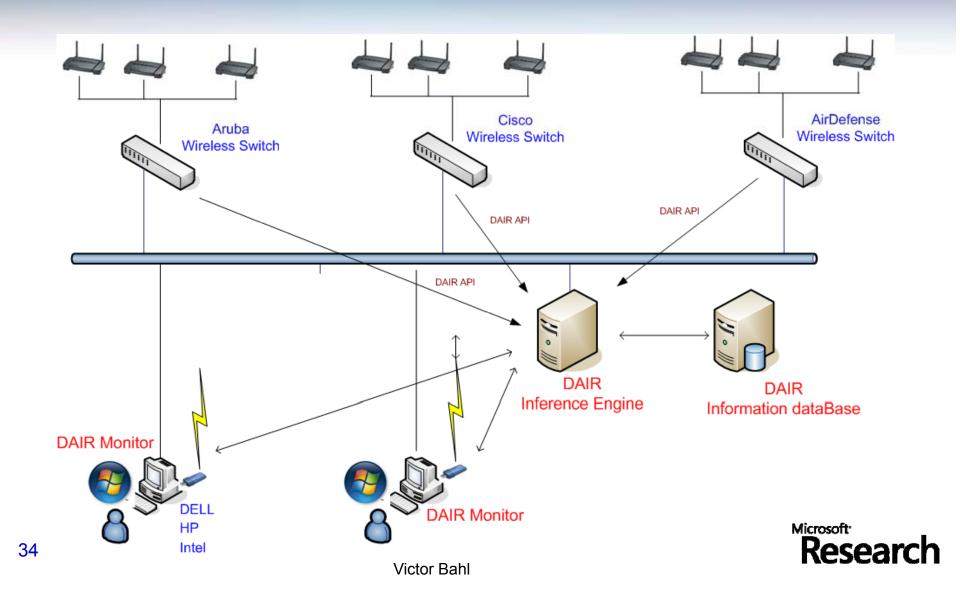
Jamming

Attack the attackers

Management

DenseAP project

Access Point Replacement

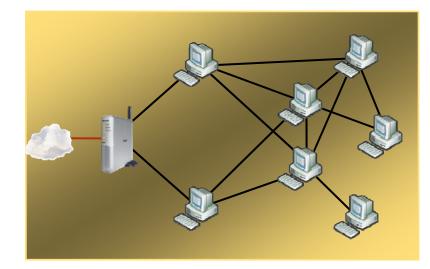

- Self configuring deployment
- Better spatial reuse

Layer 7 Applications & Services

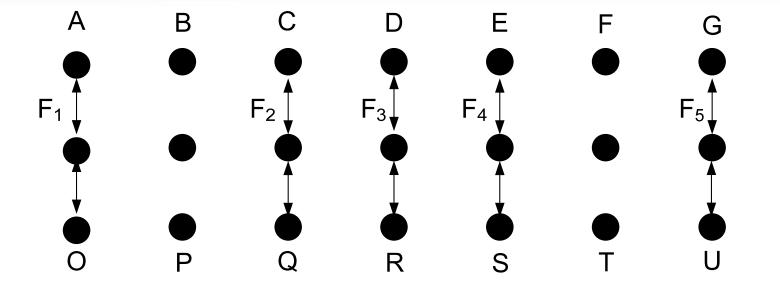
- Indoor GPS •
- Seamless Roaming
- Guest Access

Victor Bahl

The Wireless Management Ecosystem

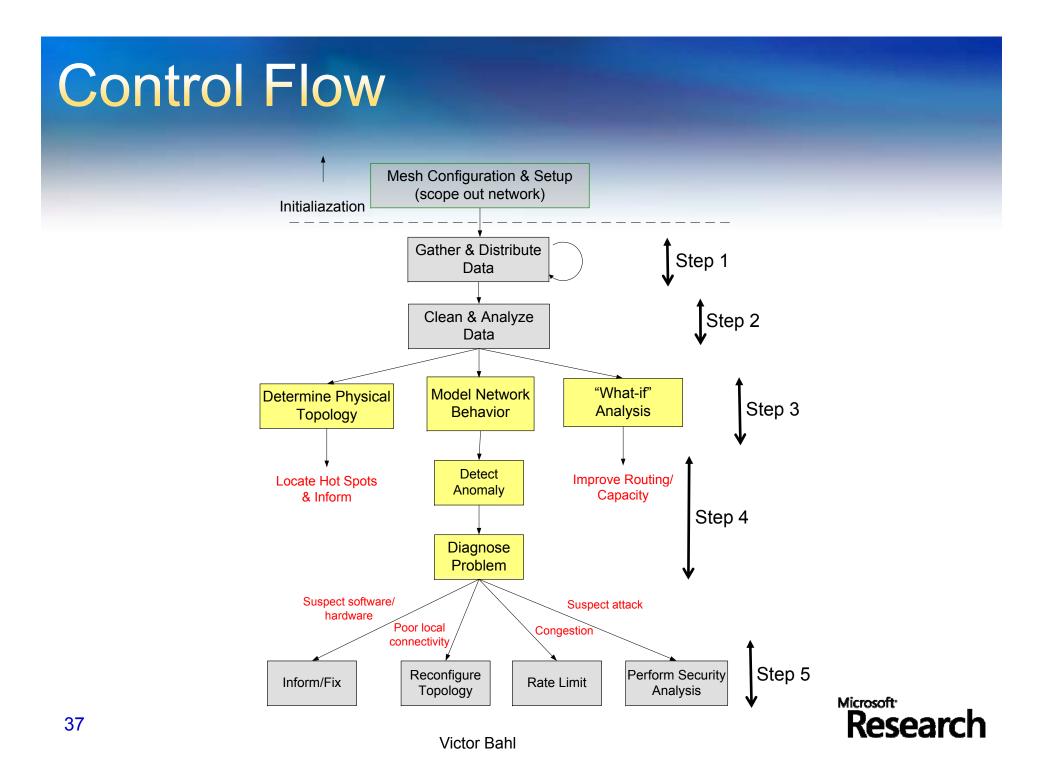


Managing Meshes


The least well understood area of research

Broadband Connectivity

- Rural & developing areas
- City-wide
- Neighborhoods / Communities
- Wireless Office



Is this Normal Behavior?

Flow ₁	Flow ₂	Flow ₃	Flow ₄	Flow ₅
2.5 Mbps	0.23 Mbps	2.09 Mbps	0.17 Mbps	2.55 Mbps

Step 1: Gather & Distribute Data

Monitoring: What should we collect?

- Link Info: Noise level, signal strength, loss rate to direct neighbor (packet retransmission count)
- Connectivity Info: Network topology / connectivity Info (Neighbor Table)
- Traffic Info: Load to direct neighbor
- e ...

Distribution: Minimize (overhead) bandwidth consumption

- Dynamic scoping
 - Each node takes a local view of the network
 - The coverage of the local view adapts to traffic patterns
- Adaptive monitoring
 - Minimize measurement overhead in normal case
 - Change update period
 - Push and pull
- Delta compression
- Multicast

Step 2: Clean & Analyze Data

Data may not be pristine. Why?

- Liars, malicious users
- Missing data
- Measurement errors

Clean the Data

- Detect Liars
 - Assumption: most nodes are honest
 - Approach:
 - Neighborhood Watch
 - Find the smallest number of lying nodes to explain inconsistency in traffic reports
- Smoothing & Interpolation

Details: CCR '06

Sample Performance Resiliency against Liars & Lossy Links

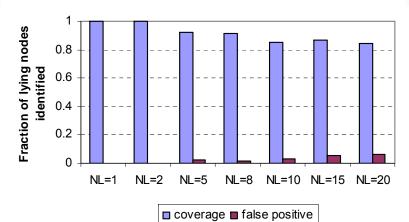
Problem

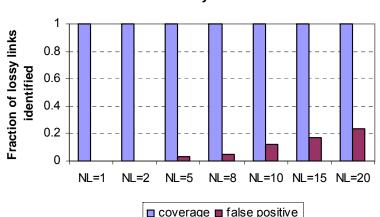
- Identify nodes that report incorrect information (liars)
- Detect lossy links

Assume

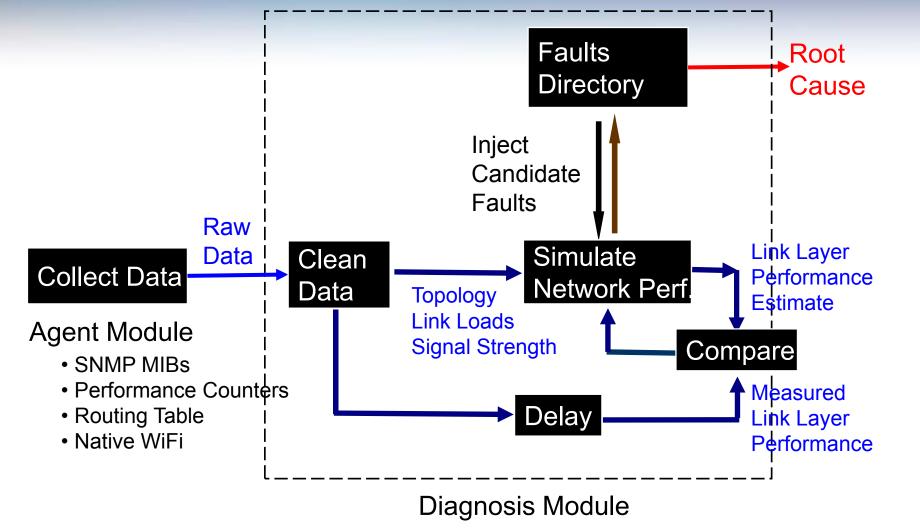
- Nodes monitor neighboring traffic, build traffic reports and periodically share info.
- Most nodes provide reliable information

Challenge


Wireless links are error prone and unstable


Approach

- Find the smallest number of lying nodes to explain inconsistency in traffic reports
- Use the consistent information to estimate link loss rates


Detect liars

Detect lossy links

Details: CCR '06 Step 3 & 4: Model Network & Perform Root Cause Analysis

Sample Performance

25 node random topology

Number of faults	4	6	8	10	12	14
Coverage	1	1	0.75	0.7	0.92	0.86
False Positive	0	0	0	0	0.25	0.29

Faults detected:

- Random packet dropping
- MAC misbehavior
- External noise

Details: CCR '06

Troubleshooting Framework

Challenges [in Online Simulation based Diagnostics]:

- Accurately reproduce the behavior of the network inside a simulator
- Build a fault diagnosis technique using the simulator as a diagnosis tool

Advantages

- Flexible & customizable for a large class of networks
- Captures complicated interactions within the network between the network & environment, and among multiple faults
- Extensible in its ability to detect new faults
- Allows what-if analysis

Step 5: Mitigation

Responding to troubled spots

- Re-route traffic
- Rate-limit
- Change topology via power control & directional antenna control
- Flag
 - environmental changes & problems
 - Malfunctioning hardware
- Launch DoS attacks against the possible attacker
- etc.

So where does all this leave us....

Think about what's coming?

- Micro-cellular architectures
- Multi-standard, multi-radio devices
- New technologies: WiMax, UWB, .11n, 4G, 60 GHz,...
- Cognitive networking
 - Reconfigurable adaptive stacks, SDRs, Agile radios
- Data networking in the TV Bands
- Time-sensitive applications
- Sensor Networking

Billions of Devices will have to be Managed

Management & Perfromance is Key!

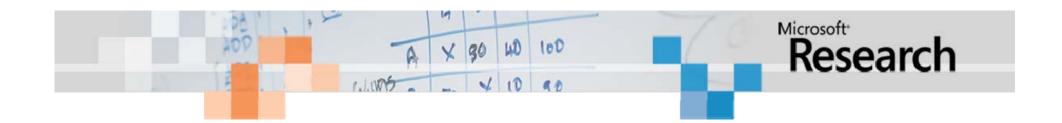
Wireless networks are complex & difficult to diagnose but diagnostics are critical to wireless deployments

Opportunity to conduct seminal research

- Make networks more deployable in IT-poor markets
- Reduce IT costs in the enterprise
 - Take advantage: infrastructure & end systems owned by same organization

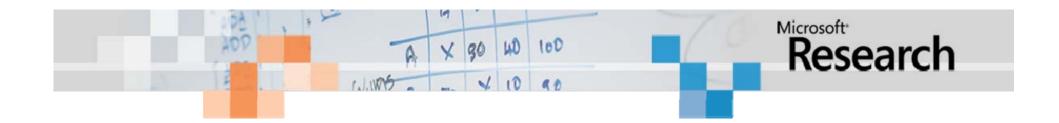
Host-centric approaches show great promise

Tradeoff between gains from management and loss because of overhead



Are we there yet?

Not yet.....


.....but surely getting there Self-aware, self-healing, easy-tomanage networks

Victor Bahl

http://research.microsoft.com/netres/nethealth/

Microsoft® Your potential. Our passion.™

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries. The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.