
A Policy Management Framework for Flow Distribution on
Multihomed End Nodes

Koshiro Mitsuya
Keio University, Japan

mitsuya@sfc.wide.ad.jp

Romain Kuntz
Louis Pasteur University,

France
kuntz@lsiit.u-strasbg.fr

Shinta Sugimoto
Keio University, Japan
shinta@sfc.wide.ad.jp

Ryuji Wakikawa
Keio University, Japan
ryuji@sfc.wide.ad.jp

Jun Murai
Keio University, Japan

jun@wide.ad.jp

ABSTRACT

A multihomed node has several paths with its correspondent, main-
tained by several multihoming protocols. The decision to route a
packet over a specific path relies on filter rules, which result from
the comparison between the path’s characteristics and the user pol-
icy. Multihoming protocols or their implementations provide var-
ious user interfaces to configure the filter rules. However, there is
currently no method to describe user policy in terms of cost, band-
width, delay and other network characteristics, and to compare this
policy with the path characteristics. We thus propose in this paper a
new framework for policy management for flow distribution, which
offers a user interface to define policies and generates filter rules
for each multihoming protocol. We first sort out the requirements
for users in the multihomed environment. By reviewing some of
the most important multihoming protocols and implementations,
we show that they do not match all those requirements. We then
propose a new policy management framework that fits those very
requirements.

1. INTRODUCTION
Thanks to the recent outstanding development of various wire-

less access technologies, a node is likely to be equipped with mul-
tiple network interfaces. This is especially true for mobile nodes,
which often embeds multiple wireless technologies such as GPRS,
3G, IEEE802.11 and Bluetooth. In order to improve the user’s ex-
perience, recent research has focused on how such a multihomed
node could switch between or simultaneously use these accesses.
Hence, many enhancements to TCP/IP have been proposed to ad-
dress this issue, in both mobile and non-mobile environments: Mul-
tiple Care-of Addresses (MCoA) registration [17] for Mobile IPv6
(MIPv6) [4], the Host Identity Protocol (HIP) [9], Site Multihom-
ing by IPv6 Intermediation (SHIM6) [10], and the Stream Control
Transmission Protocol (SCTP) [14].

In the near future, we can imagine that a node will run several
multihoming protocols, as each of them has its own benefits and
none of them can cover all situations. For example, a fixed node

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobiArch’07, August 27–31, 2007, Kyoto, Japan.
Copyright 2007 ACM 978-1-59593-784-8/07/0008 ...$5.00.

may run the MCoA protocol in order to communicate with a multi-
homed Mobile Node, as well as the SCTP protocol in order to use
efficiently its multiple addresses to communicate with other peers
in the Internet.

The user or application that would like to perform, for example,
load sharing among the available paths has to configure the flow
distribution mechanism available on the node according to its de-
sires. A packet to be sent to a peer is then processed by this flow
distribution mechanism, and according to its decision, transmitted
via one of the multiple available paths.

However, in order to perform flow distribution, current multi-
homing protocols or their implementations usually provide a filter-
ing mechanism that is dependent from the protocol specification. If
the user wants to specify to which path a flow should be routed, this
usually translates in a protocol-specific rule processed by the filter-
ing mechanism. Multihomed nodes are lacking a method for policy
management on top of the multihoming protocols to describe user
policy in terms of desired cost, bandwidth, delay, or jitter, to be in-
dependent from the protocol used on that node. This policy would
then be compared with the available path characteristics, and the
filtering mechanism configured according to the result of that com-
parison.

In this paper, we thus propose a new policy management frame-
work for flow distribution, which offers a user interface to define
policies and generates filter rules for each multihoming protocol.
we first explain the assumed multihomed environment and then
sort out the requirements for applications or users that would like
to benefit from this environment. By reviewing some of the most
important multihoming protocols and implementations, we show
that a gap exists with those requirements. We thus propose the
policy management framework that would fill the existing gap be-
tween specifications, implementations, and the previously defined
requirements.

2. FUTURE MULTIHOMED ENVIRONMENT
In this section, we explain the multihomed environment that we

envision to deploy in the near future, and define roles of a flow
distribution mechanism in such an environment.

2.1 Terminology
We first define the following terms used in this paper:

Requester A requester is a local or remote user or application that
solicits the node’s flow distribution mechanism with a set of
policies.

Flow A flow is an unidirectional traffic stream defined by a set of
selectors (for example, the IP source and destination address,
the source and destination port, etc.).

Policy A policy associates flows with the desired path’s character-
istics. This represents the user’s will for each flow.

Policy Rule A Policy Rule associates policies with a set of con-
ditions. This represents what policies must be applied when
the conditions are fulfilled.

Filter Rule A filter rule associates a flow to an action (the output
path to choose, drop the flow, etc.). This is typically the out-
put from the policy management mechanism once the user’s
policies have been processed.

2.2 Flow distribution on multihomed end nodes
The overview of the envisioned multihomed environment is shown

in Fig. 1. Various multihoming protocols (further described in
Sec. 4) have been or are being standardized, each of them address-
ing different multihoming scenario and targeting specific goals: for
example, MCoA provides multiple path to a Mobile IPv6 node for
ubiquity purposes while SHIM6 tends to solve site-multihoming
especially for end-system fixed nodes. The figure represents a node
running several of those multihoming protocols and establishing
multiple paths with several correspondents.

reque
ster

reque
ster

reque
ster

flow
dist.

mpro

mpro

mpro

flow
dist.

mpro

flow
dist.

mpro

mpro

mutihomed node

anchor node

correspondent

reque
ster

mpro = multihoming protocol stack

policypolicy policy policyfilterrule filterrule filterrulepaths with different
 characteristics

step-1

step-2

step-3

node

Legend:

functional
entity flow dist. = flow distribution mechanism

Figure 1: Future multihomed environment

A node can get many benefits from being multihomed: fault tol-
erance, ubiquitous access and load-sharing are usually the advan-
tages pointed up by multihoming solutions. The last one is of most
interest in this paper as this can be achieved through flow distribu-
tion. Each path maintained on a node by its multihoming proto-
col(s) would have different characteristics in terms of cost, band-
width, delay and jitter. The requester will try to distribute its flows
among these available paths by submitting a set of policies (Fig. 1
step-1) to the policy management framework. This one processes it
(step-2), resulting in the filter rules (step-3). Those filter rules are
then used as an input to the requester’s OS-specific filtering frame-
work (socket API, packet filtering framework, etc.) that will take
care of the packet routing through the correct output interface. Fil-
ter rules may also be exchanged between peers, in order for each
node involved in the communication to tell its preferences to each
of its correspondents.

In essence, flow distribution is achieved by comparing the re-
quester’s policy and the characteristics of each available paths: flow
distribution is a succession of actions that implements such a Qual-
ity of Service (QoS). The key notions of a QoS mechanism are
flows, service contracts, and flow management [1]. Flows charac-
terize the production, transmission and eventual consumption of a
flow associated QoS. Service contracts are binding agreements of
QoS levels between users and providers of the QoS. Flow manage-

ment provides the monitoring and preservation of the contracted
QoS levels.

A flow distribution mechanism would comply with these notions.
Thus, our approach to implement a policy management framework
for flow distribution on multihomed end nodes is detailed as fol-
lows:

• Similarly use the concept of flow because it is widely ac-
cepted among multihoming protocols moreover Internet Traf-
fic Engineering. This corresponds to the Flows.

• Provide a user interface to submit user’s policy into the flow
distribution system. As further detailed in Sec. 4, none of
current multihoming protocols provide that. This corresponds
to the service contracts.

• Make the system generating filter rules that meet user’s pol-
icy, thus requesters do not need to mind about the kind of
flow management being used on the node. This also corre-
sponds to the service contracts.

• Use the filtering frameworks provided by implementations
of multihoming protocols. These protocols are lying on a
number of layers and planes thus it is hard to provide a sin-
gle generic filtering framework. This corresponds to the flow

management.

Requirements for policy management that results from this anal-
ysis are exposed in the next section.

3. REQUIREMENTS FOR A POLICY MAN-

AGEMENT MECHANISM
We split the approach explained in Sec. 2 into the following

functional requirements that such a policy management mechanism
(hereafter called “the system”) would have to fulfill:

R1 Policy description: the requester must be able to describe its
policy using a language or an interface defined by the system.
Such an interface must match the following requirements:

R1.1 The requester must be able to describe each flow or
group of flows and associate them with its desired path
characteristics.

R1.2 Description of the policy must be done in a multihom-
ing protocol-independent manner: it must not depend
on some of the multihoming protocol’s identifier or char-
acteristics.

R2 Multiple requesters: several concurrent requesters must be able
to submit their policies to the same system. As each requester
may be local or remote to the host on which the system op-
erates, a transport solution to exchange the policies must be
available.

R3 Policy resolution: each of the requester’s policy must be re-
solved by the system into at least one filter rule, or if need
arises into an error reported to the requester. The system may

also provide a default path for policies that do not match any
of the available path. It may also be able to resolve con-
flicts when contradictory policies arise, and remove dupli-
cated policies.

R4 Filter rule description: the filter rule produced by the system
must include all the necessary information to be used as an
input to the OS-specific frameworks (socket API, packet fil-
tering framework, etc.) that will take care of the packet rout-
ing through the correct output interface.

R5 Filter rules transport: as some of the filter rules may target a
peer host, a transport solution to exchange filter rules must
be available in the system.

R6 Multiple filter rules processing: the system must be able pro-
cess multiple filter rules, and if need arises, to report errors
to the source of the filter rule.

R7 Security: transport of policies and filter rules as mandated in
requirements 2 and 5 must be done in a secure manner, and
ensure host authentication, policy and filter rules encryption
and data integrity.

4. REVIEW OF MULTIHOMING PROTO-

COLS AND THEIR IMPLEMENTATIONS
We review in this section some of the most important multihom-

ing protocols and their implementations. We then confront them to
the previously defined requirements.

4.1 Mobile IPv6 based

Protocol Overview

Mobile IPv6 [4] and its extension NEMO Basic Support (NEMO
BS [2]) have been standardized by the IETF to allow a node or a
network to remain reachable at the same IPv6 address and prefix
while moving around in the Internet. In order to provide Multi-
homing features to the IPv6 mobility support, the Multiple Care-of
Addresses Registration (MCoA [17]) protocol is currently being
discussed by the IETF. It allows the mobile node to maintain multi-
ple concurrent paths with its correspondents, thus ensuring durable
and wide-area access to the Internet. A node using MCoA is al-
ways reachable at a unique permanent IPv6 address (the Home Ad-
dress, used as an identifier) while maintaining several temporary
addresses (the Care-of Addresses, used as locators), representing
the real location of the node in the Internet. As the locators can
change over the time, each path is identified with a Binding Unique
Identification (BID) number.

Several proposals at the IETF MONAMI6 Working Group define
how filter rules can be exchanged between two nodes (at least one
being mobile and multihomed): some are very specific to Mobile
IPv6 as they define the mechanism inside the Mobile IPv6 signal-
ing [13], some others try to be independent from the Mobile IPv6
specification, while using some of the MCoA features ([7] and [8]).
These proposals address all of the previously defined requirements
except R1.2, but as they are still a work in progress, they are subject
to change.

Implementation Overview

SHISA, a MIPv6/NEMO Basic Support implementation for BSD [12],
supports MCoA for NEMO Basic Support. In order to maintain
multiple paths on a mobile node, each path is represented by an
operating-system specific mtun tunnel interface. Each mtun in-
terface is bound to a physical interface. By default, all traffic is

sent to one of the mtun interfaces (for example, mtun0), but
the user can specify some filter rules thanks to one of the Oper-
ating System’s packet filtering mechanism (e.g IP Filter1 or PF2).
For example, the following PF rules send all the traffic from the
2001:db8:0:f011:: prefix (from 2001:db8:0:f011::/64 to any) via
the interface bound to mtun0 (route-to mtun0), except SSH traf-
fic (port 23) that is sent through the interface bound to mtun1
(route-to mtun1):

pass out route-to mtun0 inet6

from 2001:db8:0:f011::/64 to any

pass out route-to mtun1 inet6

from 2001:db8:0:f011::/64 to any port 23

NEPL3, a NEMO Basic Support implementation for Linux, has
been extended to support MCoA4. Policy routing is achieved with
the packet marking capability of the netfilter framework5. In or-
der to send a flow via a specific path, packets are marked with the
BID of this path. No output interface names are ever used to define
routing policies, and another part of the system maintains the rela-
tionship between the mark and the path (the actual output interface)
to be used to send the matched packets.

For example, the following rule marks with the integer value 10
(-j MARK –set-mark 10) all the SSH traffic (-p 23) whose IPv6
source address matches the prefix
2001:db8:0:f011::/64 (–source 2001:db8:0:f011::1).

ip6tables -A PREROUTING -t mangle

-p 23

--source 2001:db8:0:f011::/64

-j MARK --set-mark 10

All packets matching this rule will then be routed via the path
bound to the BID 10. Further details about the MCoA for NEPL
implementation design can be read in [6].

With both of these implementations, the user cannot define poli-
cies and must deal directly with the OS-specific packet filtering tool
to configure the system’s flow distribution. Furthermore, the rules
installed by the user are very protocol-dependent, as the output in-
terface or the BID has to be specified.

4.2 SHIM6 based

Protocol Overview

SHIM6 [10] is a protocol which aims to provide multihoming sup-
port for IPv6, which is based on a concept of Identifier-Locator
split. The primary goal of SHIM6 is to provide locator agility to up-
per layer protocols without imposing any load on the global routing
infrastructure. The upper Layer Identifier (ULID) is an identifier
which is presented to upper layer protocols and thus used by appli-
cations to identify a communication endpoint. Inside the SHIM6 IP
sub-layer, ULID is mapped to one or more locators that are glob-
ally routable unicast addresses. The mapping is stored in a data
structure called SHIM6 context which can be established between
end-hosts by a 4-way handshake, and a context can be uniquely
identified by ULID pair. Once a context is established, a given flow
can be multiplexed or demultiplexed by the SHIM6 IP sub-layer.

How applications can leverage the multihoming support provided
by SHIM6 is outside the scope of the protocol specification. One

1http://coombs.anu.edu.au/˜avalon/
2http://www.openbsd.org/faq/pf/
3http://www.mobile-ipv6.org
4http://software.nautilus6.org/MCoA/
5http://www.netfilter.org

viable approach would be to introduce a kind of policy database
inside the SHIM6 IP sub-layer, which would store flow informa-
tion and its associated action. The policy database would be looked
up during the outbound packet processing to check if the IP packet
needs to be multiplexed by SHIM6. Additionally, an application
may set its preferences on locators for both local and remote node
by using the socket options defined in [5].

Thanks to the SHIM6 API, flow distribution can be performed
per socket, which allows specification of both local and remote pre-
ferred locators on a SHIM6 node. This addresses the requirements
R1.1 and R5.

Implementation Overview

The UCL SHIM6 implementation6 for the GNU/Linux Operating
System is still a work in progress and does not offer yet any mech-
anism to control the shim. However, it plans to support the SHIM6
API [5] in the future.

Another implementation [11] for the GNU/Linux OS uses a dif-
ferent approach using the queue handler for IPv6 that allows pack-
ets to be queued in userspace for further processing with the Linux
Netfilter framework. Netfilter rules takes care of adding the SHIM6
extension header and swapping the source and destination addresses
with their ULID.

Those implementations do not support the SHIM6 API yet, and
one relies on the OS-specific packet filtering tool and the SHIM6
ULID to configure the flow distribution.

4.3 HIP based

Protocol Overview

Host Identity Protocol (HIP) [9] is a protocol designed based on a
concept of ID/Locator separation which aims to improve security,
mobility and multihoming capability of end hosts in the Internet.
In the HIP architecture, a new namespace is created for identifying
an endpoint of a communication. A Host Identifier (HI) is is used
by the upper layer protocols to identify communication endpoint,
which is a public key of the host. An IP address simply repre-
sents a location of the host and is used to route IP packets from the
source to the destination. In the HIP architecture, two communi-
cating peers establish a HIP context by running 4-way message ex-
change. Once a HIP context is established, data packets exchanged
by the peers are protected by Encapsulation Payload Protocol (ESP)
based on the shared secret. Each end can authenticate its peer by
using public key cryptography. Thanks to the IPsec, HIP provides
protection against Denial-of-Service attacks and supports data in-
tegrity and optionally data confidentiality. In HIP, an association
between a HI and one or more locators can be flexible, i.e., com-
munication endpoints remain available regardless of the changes
of locators. In this way, HIP provides capability of mobility and
multihoming to end hosts.

There is no framework defined for HIP to exchange policy and
filter rules between the communicating peers. A multihoming shim
API [5], however, defines a set of APIs for control of locator man-
agement and reachability protocol.

Implementation Overview

HIPL7 is a HIP implementation for Linux. HIPL provides an API to
configure the initial locator manually, but it does not yet provide an
interface to track locator updates: applications cannot know when

6http://gforge.info.ucl.ac.be/projects/shim6
7http://hipl.hiit.fi/hipl/

a locator changes, is added or removed. It is thus impossible to per-
form flow distribution with the current state of this implementation.

4.4 SCTP based

Protocol Overview

The Stream Control Transmission Protocol (SCTP [14]) is a new
transport layer protocol. The SCTP common header includes a Ver-
ification Tag field (whose value is chosen by each endpoint during
the association phase), and a 32 bit checksum field. Those values
are used to verify that the SCTP packet belongs to the current asso-
ciation and is not an old or stale packet from a previous one. Thanks
to this association, an SCTP multihomed host can be reached via
more than one IP address.

In order to associate an SCTP endpoint with multiple addresses,
sctp_bindx() is introduced in [15]. The addresses associated with
a socket are the eligible transport addresses for the endpoint to send
and receive data. The endpoint also presents those addresses to its
peers during the association process.

Thanks to the use of a socket API, SCTP fulfills the requirement
R1.1.

Implementation Overview

The LKSCTP (Linux Kernel SCTP) Project8 is an implementation
of SCTP and its associated protocols. It is now part of the main-
line Linux kernel code. It supports the sockets API extensions [15]
designed for applications that would like to benefit from the mul-
tiple paths offered by SCTP. A library function (not defined in this
API) may also help the application to pick a source and destination
address for the communication. Such a library function could thus
step in the path selection on an SCTP node.

4.5 Summary
All multihoming protocols surveyed in this section are based on

a identifier/locator separation concept with a shim that takes care
of multiplexing and demultiplexing. This is the minimum com-
mon feature of those multihoming protocols. All of the protocols
or implementations provide a filtering framework and let requesters
choose a locator by configuring filter rules. However, we have no-
ticed that two approaches to configure filter rules exist at different
layers. One, explicitly defined by the specification, is extending the
socket API. Another one, more specific to implementation, is using
the existing Operating System’s packet filtering mechanism such as
PF or NetFilter. More research is thus needed if we want to have
a common filtering framework for all the multihoming protocols.
However this topic out of the scope in this paper, and as we will
discuss in Sec. 5.2, we base our approach on the existing filtering
frameworks.

A socket is associated with the local and remote IP addresses and
ports. Similarly, the packet filtering mechanism allows to describe
flows with a set of selectors. Therefore, most of the protocols fulfill
requirement R1.1. However, those approaches usually associate the
flow to a system or protocol-oriented path identifier (for example,
the BID for MCoA). Thus none of the reviewed protocols fulfill the
requirement R1.2.

Some work on flow distribution for multihomed mobile nodes
(especially using Mobile IPv6) has already been achieved in the
IETF MONAMI6 Working Group. Our proposition presented in
this paper has started within MONAMI6 to be later extended to
any multihomed system. As a result, Mobile IPv6 enhancements
can in theory fulfill the requirements from R2 to R7. There has not

8http://lksctp.sourceforge.net

been much work done in other protocols than Mobile IPv6 for the
support of flow distribution. Therefore, they hardly fulfill any of the
requirements set; socket APIs for locator management are defined
for HIP and SHIM6, however, there is no common framework for
describing the filter rules and further exchanging those information
over network between communicating peers. In SCTP, there is also
a rich API for path maintenance and address management for mul-
tihoming environment, however, it is outside the scope of the API
or the protocol how peers exchange filter rules.

When using various multihoming protocols at different layers at
the same time, it is necessary to consider how the flow can be prop-
erly multiplexed by a given shim layer (the order and the protocol
to be applied) during the outbound or inbound packet processing
at the end-system. Because the design totally depends on the OS
architecture, we can hardly define a generic flow distribution archi-
tecture. We thus propose in the next section a policy management
framework that allows users to describe their demands in terms of
the needed network characteristics. This mechanism is not going to
modify the existing shim layer, but is running on top of the given
shim layers by using the flow filtering mechanism specific to the
Operating System or the multihoming protocol. Such a framework
would fill the gaps of each current protocol and implementations,
to process the user’s policy and distribute flows among the multi-
ple available paths. This new framework could be applied to the
current protocols as well as being used as a guideline for the future
ones.

5. A NEW POLICY MANAGEMENT FRAME-

WORK FOR FLOW DISTRIBUTION

5.1 Policy data set
The first goal of this new framework is to provide to the requester

a generic language to define a common policy data set whatever the
protocol or operating system is running on the node.

The data structure of the policy data set is shown in Fig. 2. It is
defined as an aggregation of policy rules. Each policy rule is made
up of a set of conditions associated to one or several policies. A
policy rule specifies what policies must be applied when a set of
associated conditions are met [16].

policy data set

policy rule

policy rule

conditions

conditions = expected network characteristics
policy = selector + action

target host

policy
policy
policy

target host

policypolicy

policy rule

policypolicy

target host

policy
policy
policy

target host

policy
policy
policy target host

conditions

conditions

Figure 2: Data structure of the policy data set

The conditions refer to the characteristics wished by the requester.
If the conditions match the current characteristics on the node, the
policies associated to these conditions are elected. These charac-
teristics are expressed in terms of bandwidth, cost, delay, jitter etc.

Multihoming protocols usually uses protocol-specific identifier to
define the paths they maintain. Thus, when multiple protocols are
running on a single system, common identifiers could be used for
simplicity and transparency to the requester. Network characteris-
tics are thus interesting descriptors, as they can be used to describe
any kind of path whatever the underlaying protocol is used.

Policies associated to the conditions can be defined for several
target hosts. The target host could be the local host, or its peers,
identified with their permanent IP address. Each policy associates
some selectors (for example the source and destination address, the
source and destination ports, the protocol number, etc.) with an
action and a lifetime. The action refers to the desired characteristics
of a path that should be used to send the flow.

The exact definition of such selectors and path characteristics
are still to be defined, but it should be as detailed as possible to
describe with accuracy a flow and all the characteristics of a path.
Although the actual language to define this data set is a future work,
the requirement R1 would be fulfilled by this data set.

5.2 Policy management framework
The second goal of this framework is to process the policy data

set by using the existing filtering frameworks provided by the Op-
erating System or the multihoming protocol implementation. For
that purpose, this new framework defines several modules (Fig. 3):

A. path
maintainer

B. path
characteristics
examiner

C.
condition
decision

list of available
paths

list of
available network

resources

D.
path

decision

Set of
policies

filter rules
(flow ID,
path ID)

(path ID,
characteristics)

Policy
data set

Policy
data set

E. policy
exchanger

Policy
data set

Policy
data set

local

G.protocol-
dependent filtering

framework

remote
host

F. filter rule
encoder

F. filter rule encoder

local
filter
rules

filter rules
for remote host

e.g. PF
configuration file

e.g. Netfilter
configuration

file

X. filter rule exchanger

G.protocol-
dependent filtering

framework

Multihoming
Protocol

Multihoming
Protocol

G.protocol-
dependent filtering

framework

Multihoming
Protocol

G.protocol-
dependent filtering

framework

Multihoming
Protocol

X. filter rule
exchanger

Figure 3: The proposed policy management framework for

flow distribution

• The path maintainer (Fig. 3, A) is the multihoming protocol
that takes care of establishing and maintaining multiple paths
between the node and its peers: MCoA, SHIM6, SCTP etc.
The output of this module is a list of the available path, each
path being identified by a pair of a protocol identifier (to be
defined) and a protocol-specific path identifier (for example
the BID for MCoA).

• The path characteristics examiner (B) takes care of building
a list of characteristics proper to each path. It takes as an
input the list of the available path from the path maintainer
module. The path characteristics could be defined in terms

of available bandwidth, costs, average delay and jitter, or any
other information that qualifies the path. The exact definition
of such characteristics is still to be defined. The output of this
module is a list of characteristics for each path, associated
with their identifier.

• The condition decision module (C) and the path decision
module (D) take care of processing the policy data set pre-
viously defined. More precisely:

– The condition decision module (C) receives from the
requesters (local, or remote via the Policy Exchanger
(E)) a policy data set. It first merge them to fulfill the
requirement R2. Thanks to the list of available network
resources received from the path characteristics exam-
iner (B), the module then search for the matching con-
ditions, select the associated policies and transmit them
to the path decision module (D).

– The path decision module (D) makes the relation be-
tween the condition decision module (C) and the path
characteristics examiner (B). It takes as an input both
the set of policies from the former and the list of char-
acteristics/path identifier from the latter, and confront
them. For each policy, the path decision module selects
a path that matches the policy’s action. It thus provides
as an output a list of filter rules, that associates a path
identifier for each flow. By this way, R3 would be ful-
filled. Although definition of the language to describe
the output is a future work, R4 would be fulfilled. R6
must be considered during this processing.

• The filter rule exchanger (X) gets the filter rules from the path
decision module. Filter rules for the local host are translated
to the system-specific packet filtering framework by the fil-
ter rule encoder (F), and then installed on the system (G).
Filter rules can also be announced to the applications via an
API to help them to make their path decision. This modules
thus strongly relies on the tools provided by the multihom-
ing protocol and the operating system on which the protocol
is operated. Filter rules for remote hosts can be exchanged
with the peers using a secure protocol. By this method, R5
will be fulfilled. R7 must be considered when we design the
transport protocol.

The Policy Exchanger (E) and the Filter Rule Exchanger could
be implemented in the same way as described by the Common
Open Policy Service protocol (COPS [3]). The local host getting
policy data sets from the requesters would play the role of the Pol-
icy Decision Point (PDP) for a given communication, and the target
host installing the resulting filter rules would be the Policy Enforce-
ment Point (PEP).

Upon an event (for example, one path is not available anymore),
the information can be transmitted from the path maintainer up to
the path decision module that will process the policy data set again
and provide new filter rules adapted to the current path characteris-
tics.

6. CONCLUSION
In this paper, we introduced a scenario towards a policy man-

agement framework on top of several multihoming protocols, and
sorted out the 7 requirements that such framework has to meet in
order for applications or users to benefit from the multihomed en-
vironment. By reviewing the existing multihoming protocols and

their implementations, we show that a gap exists with these require-
ments. We then outlined a new policy management framework for
flow distribution and discussed how it fulfills the requirements. As
our next step, we would like to improve this draft framework and
evaluate it. For this purpose, we plan to implement it and confirm
that it matches our expectations and requirements.

7. REFERENCES
[1] A. Campbell, G. Coulson, F. Garcia, D. Hutchison, and

H. Leopold. Integrated Quality of Service for Multimedia
Communications. In IEEE INFOCOM, San Francisco, USA,
April 1993.

[2] V. Devarapalli, R. Wakikawa, A. Petrescu, and P. Thubert.
Network Mobility (NEMO) Basic Support Protocol. Request
For Comments 3963, IETF, January 2005.

[3] D. Durham, J. Boyle, R. Cohen, S. Herzog, R. Rajan, and
A. Sastry. The COPS (Common Open Policy Service)
Protocol. Request For Comments 2748, IETF, January 2000.

[4] D. B. Johnson, C. Perkins, and J. Arkko. Mobility Support in
IPv6. Request For Comments 3775, IETF, June 2004.

[5] M. Komu, M. Bagnulo, K. Slavov, and S. Sugimoto. Socket
Application Program Interface (API) for Multihoming Shim.
Internet Draft draft-ietf-shim6-multihome-shim-api-02.txt,
IETF, March 2007. Work in progress.

[6] R. Kuntz and J. Lorchat. Building Fault Tolerant Networks
using a multihomed Mobile Router: a Case Study. In Asian

Internet Engineering Conference (AINTEC) 2006, Bangkok,
Thailand, November 2006.

[7] C. Larsson, H. Levkowetz, H. Mahkonen, and T. Kauppinen.
Flow Bindings in Mobile IPv6 and Nemo Basic Support.
Internet Draft draft-larsson-monami6-filter-rules-02.txt,
March 2007. Work in progress.

[8] K. Mitsuya, K. Tasaka, R. Wakikawa, and R. Kuntz. A
Policy Data Set for Flow Distribution. Internet Draft
draft-mitsuya-monami6-flow-distribution-policy-03.txt,
February 2007. Work in progress.

[9] R. Moskowitz, P. Nikander, P. Jokela, and T. R. Henderson.
Host Identity Protocol. Internet Draft
draft-ietf-hip-base-07.txt, February 2007. Work in progress.

[10] E. Nordmark and M. Bagnulo. Level 3 multihoming shim
protocol. Internet Draft draft-ietf-shim6-proto-07.txt, IETF,
November 2006. Work in progress.

[11] K. Park, H. Cho, I. Jang, T. You, and S. Lee. Implementing
SHIM6 Protocol. Internet Draft
draft-park-shim6-implementation-00.txt, IETF, October
2006. Work in progress.

[12] K. Shima, K. Mitsuya, R. Wakikawa, T. Momose, and
K. Uehara. SHISA: The Mobile IPv6/NEMO BS Stack
Implementation Current Status. In Asia BSD Conference

(ASIABSDCON), Tokyo, Japan, March 2007.

[13] H. Soliman, N. Montavont, N. A. Fikouras, and
K. Kuladinithi. Flow Bindings in Mobile IPv6 and Nemo
Basic Support. Internet Draft
draft-soliman-monami6-flow-binding-04.txt, February 2007.
Work in progress.

[14] R. Stewart, Q. Xie, K. Morneault, C. Sharp, H. J.
Schwarzbauer, T. Taylor, I. Rytina, M. Kalla, L. Zhang, and
V. Paxson. Stream Control Transmission Protocol. Request
For Comments 2960, IETF, October 2000.

[15] R. Stewart, Q. Xie, L. M. H. Yarroll, K. Poon, and
M. Tuexen. Sockets API Extensions for Stream Control
Transmission Protocol (SCTP). Internet Draft

draft-ietf-tsvwg-sctpsocket-14.txt, IETF, December 2006.
Work in progress.

[16] G. Stone, B. Lundy, and G. Xie. Network policy languages: a
survey and a new approach. Netowrk, IEEE, 15(i):10–21,
2001.

[17] R. Wakikawa, T. Ernst, K. Nagami, and V. Devarapalli.
Multiple Care-of Addresses Registration. Internet Draft
draft-ietf-monami6-multiplecoa-02.txt, March 2007. Work in
progress.

