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ABSTRACT 
In Computer-Communication Networks, addressing and routing 
have been fundamental issues that have challenged researchers – 
resulting in myriads of addressing and routing protocols. In recent 
times, self-configuration of nodes has become a necessity due to 
large number of networked devices and pervasive use of 
networks. Emergence of autonomic networks based on wireless 
mesh or ad hoc approach underline the need for self-
configuration. Besides, success in sensor technology resulting in 
proliferation of wireless sensor networks is rapidly pushing the 
frontiers of self-configuration in large scale. The solutions 
reported hitherto in literature, has an interesting underlying 
similarity – Addressing, Routing and Mobility (A.R.M.) issues 
have been tackled separately. 

In this work, we propose Protocol for Evolutionary Addressing 
(PEA) Framework, pronounced as “P”, which solves the problem 
of addressing and routing in unison - thereby eliminating the need 
for separate routing algorithm. In PEA Framework, nodes assume 
addresses and self-configure the forwarding tables to reflect the 
changes in the network topology. Besides, PEA Framework 
enables self-configuration of nodes in a network so that the 
network naturally evolves (or readjusts) as it grows (or changes). 

We describe the framework, protocol, and evolution of network in 
addition to analyzing the time and message complexity of the 
protocol.   

Categories and Subject Descriptors 
C.2.1 [Computer-Communication Networks]: Network 
Architecture and Design – Distributed Networks, Network 
Communications, Network Topology, Wireless Communication. 

General Terms 
Design, Performance. 

Keywords 
Self-Configuration, Next-Gen Network Architecture, Addressing. 

1. INTRODUCTION 
In networks, the emergence of new opportunities in speed of 
transmission, choice of technology, dynamism in topology and 
proliferation of devices, brings in new challenges. Perhaps, the 
need of the hour is to encourage a paradigm shift in the way we 
perceive the “address of a node” – from static to dynamic – that 
too dynamic and transient – we are in essence moving from the 
era of Assigning1 or Acquiring2 an address to an era of Assuming 
an address. 

In our work, we argue that the nodes in a network can assume an 
address with an associated context. When the context changes, 
the address also changes. Such an addressing scheme has three 
inherent benefits as given below: 

• The first and foremost benefit is the relative ease of 
associating addresses to nodes. By definition, the collision 
domain of addresses is localized. This results in scalable address 
management.  

• The second benefit is the ease in routing of packets in a 
network. As the address of a node contains the Point of 
Attachment by definition, packets can be routed by simply 
interpreting the address, obviating the need for an explicit routing 
algorithm.  We call this concept as Address Guided Forwarding 
(AGF).  

• The third benefit is the self-organization in the context of 
mobility. When nodes move, they leave their previous logical 
domain and join new ones. In the process, they assume new 
addresses and update the corresponding forwarding tables. 

All the three benefits mentioned above, traditionally required 
development of separate protocols. Departing from the tradition, 
we propose an integrated framework of definitions, axioms, and 
protocol to handle the A.R.M. issues in a consistent manner. 
Besides, inspired by the simplicity, robustness and scalability of 
natural systems (which are evolutionary in nature), we prove that 
the networks produced using the PEA Framework exhibit the 
characteristics of natural systems. 

                                                                 
 
1 Assigning refers to static IP addresses assigned to nodes in IP 

subnets. 
2 Acquiring refers to dynamic IP addresses acquired by nodes in 

DHCP environment. 
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2. PEA FRAMEWORK 
A framework is a system (or an extensible structure) of describing 
concepts, principles or methods that is used to build something 
[1]. PEA Framework comprises of a conceptual component 
(Definitions, Axioms, Information and Properties) and an 
operational component (PEA Protocol). The conceptual and 
operational components of PEA Framework are the guiding 
principles for self-configuration of nodes. In the PEA Framework, 
networks evolve based on a Policy of Evolution. Conceptual 
component of PEA is independent of the Policy of Evolution and 
the operational component, i.e. the PEA Protocol, is dependent on 
the Policy of Evolution. 

PEA Definitions 
Node – Node is any communication device that is used to 
form a network. We call it a PEA node. 
Address – A PEA node has two types of addresses - Local 
and Global.  
Cluster – A group of nodes that are in the vicinity of each 
other in terms of signal strength. 
Local Address (LA) – Local Address of a node is unique in 
its cluster.  
Global Address (GA) – Global Address of a node is unique 
in whole network. 
Family – A family is a collection of an L1 cluster with all of 
its descendant clusters, as illustrated in Figure 1. Each 
family has a unique family-id. 
Peer-to-Peer Join – Within a cluster, two nodes are 
connected through Peer-to-Peer (P-2-P) join. 
Parent-to-Child Join – Two nodes at consecutive levels are 
connected through Parent-to-Child (P-2-C) join. 
Cluster-to-Cluster Join – Two nodes at non-consecutive 
levels are connected through Cluster-to-Cluster (C-2-C) 
join. 
Cluster Head Node (CHN) – A node is said to be Cluster 
Head Node if it forms a P-2-C join with its upper level 
node. In Figure 2, gray color nodes that have LA 1 and 2 are 
CHNs. 
Gateway Node (GN) – A node is said to be Gateway Node if 
it forms a C-2-C join across families or networks. In Figure 
2, checked nodes are GNs. 

 
Figure 1. Fragment of a PEA network having 3 families, F1, 

F2, F3 and 3 levels, L1, L2, L3 

To manage addressing and routing in any network, we need to 
impose some structure on the network of nodes. In system design, 
hierarchy is often used to organize entities in a system, as it can 
deal with complexity and scalability [2]. By the same token, 
hierarchy becomes the natural choice for the organization of 
nodes in a network. In PEA Framework, hierarchy is the 
fundamental structure and PEA networks have different levels of 
clusters of nodes viz. L1, L2, L3 and so on, with L1 as the root. 
Fragment of such a PEA network with three levels is shown in 
Figure 1. 

PEA Axioms 
1. A node can have only one Local Address but it   can 

have more than one Global Addresses.  

2. Within a cluster, all nodes are at the same hierarchical 
level.  

3. At a time, there can be only one type of join between 
two nodes.  

4. At a time, a node can be in one cluster only. 

2.1 PEA Node and its Associated Information 
In PEA Framework, each node has following information that is 
needed for the operation of the PEA protocol.  

Neighborhood Information  
a. Peer Address Set (PAS): It is set of Local Addresses (LAs) 

of all the nodes in the same cluster. 

b. Cluster Head Address Set (CHAS): It is set of LAs of Cluster 
Head Nodes in the same cluster. 

CHAS ⊆ PAS 

c. Gateway Address Set (GAS): It is set of the LAs of all GNs 
with which a node establishes C-2-C join. 

d. Child Address Set (CAS): It is set of LAs of all the child 
nodes of a node. It will be non empty only if the node is a 
parent node with one or more child nodes. 

Hierarchy Information 
e. Hierarchical level (L): It is the level of the node in the PEA 

network hierarchy. 

f. Family Set (FS): It is set of all the family-ids of the families 
to which a node belongs. A node can be multi-homed to 
more than one family.  

Packet Routing Information 
g. Global Address Prefix Set (GAPS): It is set of prefixes of all 

the GAs of a node such that appending LA or φ (Null) to the 
prefix results in one of the GAs of the node. 

h. Intra-Cluster Forwarding Table (ICFT): It is set of ordered 
pairs of LAs. For example ICFT of a node x is as follows.  

ICFT (x) = {(4, 1), (1, 1), (3, 3), (5, 3), (x, *)} 

    In the ordered pair, the first element is LA of destination and 
the second element is LA of next hop that is used to reach 
the destination. The element (x, *) signifies that x is the LA 
of the node itself. We can establish relation between ICFT 



and PAS as follows.  

ICFT ⊂ (PAS X PAS) ∪ {(x, *)} 

i. Inter-Family Forwarding Table (IFFT): It is set of ordered 
pairs of family-id and LA. Example of IFFT of an L1 node is 
as follows. 

IFFT = {(1, 5), (2, 4), (4, 7), (3, *)} 

In the ordered pair, the first element is family-id of the 
destination family and the second element is the LA of GN 
that is used to reach the destination family. The element (3, 
*) signifies that 3 is the family-id of the node. 

 
Figure 2. Illustration of CHN, GN and GA of a node 

For an isolated node, the PAS, CHAS, GAS, CAS, FS, GAPS, 
ICFT and IFFT sets will be NULL. The value of L will be 0. As a 
node joins a network, there are appropriately updated by the PEA 
protocol. 

2.2 Properties of PEA Nodes 
The definitions, axioms and PEA node information described 
hitherto give rise to the following properties: 

P1. Family Set of an L1 node is always a singleton set. 

P2. For L1 nodes, Cluster Head Address Set (CHAS) is always an 
empty set. 

P3. Inter-Family Forwarding Table (IFFT) of non L1 nodes is 
always an empty set. 

2.3 Anatomy of Global Address (GA) 
The GA of a node consists of family-id, LAs of intermediary P-2-
C Join nodes, and the LA of the node itself. For example, the GA 
of the node shown in black color in Figure 2 is 3-62-41-5. Here 3 
is the family-id, 5 is the LA, and the middle part - 6, 2, 4 and 1 - is 
the LAs of the intermediate P-2-C join nodes (shown in gray color 
in Figure 3). These intermediate nodes – 6, 2, 4 and 1 – come into 
the picture while traversing path from L1 cluster to the node under 
discussion. Since there can be more than one path from L1 cluster 
to the node, it can potentially have more than one GA. Besides, 
forwarding of packets is guided by the GA of the destination. This 
results in a novel concept of Address Guided Forwarding (AGF) 
[3].  

If c is the number of bits in a LA,  f is the number of bits in 
family-id, l is the number of bits in hierarchical level, L, then the 
minimum and maximum length of Global Address (GA) of a node 
will be f + c and f + 2* c *(2l - 1) + c respectively. 

3. PEA PROTOCOL 
PEA protocol is designed for self-configuration of nodes’ address 
and the corresponding forwarding tables. PEA protocol consists 
of three sub-protocols called JDP (Join Decision Protocol), JEP 
(Join Establishment Protocol), and JTP (Join Termination 
Protocol). JEP and JTP handle join establishment and termination 
between two nodes. PEA has three types of joins: P-2-P, P-2-C 
and C-2-C. Using the Policy of Evolution, JDP decides the type of 
join to be established. One can visualize the role of the three joins 
as follows: P-2-P join fills a cluster, P-2-C join forms a hierarchy 
of clusters, and C-2-C join fuses all the hierarchies forming the 
PEA network. 

When a new node enters the PEA network, JDP decides the type 
of join to be established. JEP establishes this join, thus initializing 
the address and the forwarding tables of the node. When the node 
leaves, JTP terminates the existing join, and updates the 
forwarding tables of the remaining nodes. Mobility of a node is 
handled as JTP followed by JDP and then JEP, as the existing 
join has to be terminated before the establishment of a new join. 
In summary, new nodes are handled by JDP and JEP and mobility 
is handled by JTP, JDP, and JEP in a cycle. 

Since a node’s GA changes due to mobility, to avoid (or 
minimize) disruptions at upper (transport) layer, mechanisms 
similar to Extended TCP [4], MSOCKS [5], SCTP [6] etc. can be 
used. After assuming the new address, the node informs its peer 
communicating nodes and their cluster head nodes about the new 
address so that the communication continues without disruption. 
Upper bound on the time a node takes to assume a new address is 
presented in section 4. 

Network Evolution using HELLO Messages: PEA network 
evolves using HELLO messages broadcast by nodes as beacons. If 
a node is already in the network, then the beacon signifies that the 
node is alive and if the node is “new”, beacon signifies a join. The 
nodes then exchange messages based on Challenge – Response 
(C-R) protocol and JDP then takes over to decide the type of join. 
C-R based approach prevents circular transmission resulting in 
“infinite” join.  

Illustration of PEA Protocol Operation: Evolution of a PEA 
network begins when two isolated PEA nodes come in the 
vicinity of each other and forms an L1 cluster. Using P-2-P joins 
the cluster fills up to the maximum cluster size. Once the cluster 
is full, next level of clusters and other L1 clusters are formed 
using P-2-C and C-2-C joins respectively. The order in which P-
2-C and C-2-C joins are established is decided by policy of 
evolution. Thus, hierarchy of clusters and fusion of these 
hierarchies occur as per policy of evolution. In Figure 3, a 
fragment of an already evolved PEA network is shown. Here, we 
illustrate the instances of the three joins: P-2-P, P-2-C and C-2-C. 

In order to appreciate the operational simplicity of PEA protocol, 
one should understand the three join operations and the context in 
which they happen. It is important to note that when a P-2-P join 
is used (between two nodes in a cluster), the information 
associated with all the nodes in the cluster is updated. 



   
Figure 3. Illustration of PEA Protocol working  

Similarly, when a P-2-C join is used, the information associated 
with all the nodes that are descendant to P-2-C join is updated. 
Extending the same logic, when a C-2-C join is used, the 
information associated with all the L1 nodes is updated. These 
three operations are illustrated in the sequel using appropriate 
annotations in Figure 3. 

Table 1. Impact Matrix of PEA Protocol 
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Table 1 summarizes the PEA node information that is updated 
when a P-2-P, P-2-C or C-2-C join occurs. The updates in the 
neighborhood and hierarchy information is minor (used for book 
keeping purpose only) and they occur only in the nodes directly 
involved in the join. Therefore, we focus on routing information 
(shown in gray color) of PEA nodes while illustrating the three 
types of join updates.   

A P-2-P join (shown in Figure 3 as single zigzag line) is updated 
between node 4 and 3 at L3. Before and after the establishment of 
the P-2-P join, the ICFT of cluster nodes is shown in Table 2. The 
updated entries are shown in bold face. 

Table 2. Illustration of ICFT updates in the cluster 

Node ICFT (Before Join) ICFT (After Join) 
1 (1, *), (2, 2), (3, 3) (1, *), (2, 2), (3, 3), (4, 3) 
2 (1, 1), (2, *), (3, 1) (1, 1), (2, *), (3, 1), (4, 1) 
3 (1, 1), (2, 1), (3, *) (1, 1), (2, 1), (3, *), (4, 4) 
4 --- (1, 3), (2, 3), (3, 3), (4, *) 

A P-2-C join (shown in Figure 3 as double zigzag line) is updated 
between node 2 of L1 and node 4 of L2. Before and after the 
establishment of P-2-C join, the GAPS of nodes of L3 cluster (the 
one with 4 nodes and blue color arrows) is as follows. The 
updated entry is shown in bold face. 

GAPS (Before Join) = {2-43-12, 1-31-33} 
GAPS (After Join) = {2-43-12, 1-31-33, 1-24-12} 

A C-2-C join (shown in Figure 3 as triple zigzag line) between 
node 1 and 2 is updated. Before and after the establishment of the 
C-2-C join, the IFFT of L1 nodes (with family-id 1) is shown in 
Table 3. The updated entry is shown in bold face. 

Table 3. Illustration of IFFT updates in L1 clusters 

Node IFFT (Before Join) IFFT (After Join) 
1 (1, *), (2, 4), (3, 1*) (1, *), (2, 4), (3, 1*), (4, 4) 
2 (1, *), (2, 4), (3, 1) (1, *), (2, 4), (3, 1), (4, 4) 
3 (1, *), (2, 4), (3, 1) (1, *), (2, 4), (3, 1), (4, 4) 
4 (1, *), (2, 3*), (3, 1) (1, *), (2, 3*), (3, 1), (4, 3*) 

JDP is based on a policy of evolution to decide the type of join to 
be established. In fact, the policy of evolution decides the 
structural and topological properties of PEA networks. It is 
therefore interesting to know the impact of the policy of evolution 
on the operational efficiency of the PEA protocol. 

4. ANALYSIS OF PEA PROTOCOL 
In system design, from control theoretic perspective, 
Observability and Controllability are two important aspects to be 
considered during analysis. In the work reported in this paper, we 
concentrate mainly on the Observability of PEA Framework. 

An Approach to Analyze PEA Evolution: Since PEA protocol 
pre-supposes the existence of a policy of evolution, we begin the 
analysis of PEA protocol by considering policy of evolution.  

For different policies of evolution, different PEA networks 
evolve. Basically, a policy of evolution governs the size of core 
(L1 nodes) that has implications on time and message complexity 
of PEA protocol operation. One such policy of evolution is 
represented in the following relation.  

Lk (c / 2) + Lk+1 (c / 2) if k = 1 

Lk (1) 

Lk+1 (c) if k ≠ 1

Lk (c / 2) + Lk+1 (c / 2) if k = 1 

Lk (1)

Lk+1 (c) if k ≠ 1

Lk (c / 2) + Lk+1 (c / 2) if k = 1 

Lk (1) 

Lk+1 (c) if k ≠ 1

Lk (c / 2) + Lk+1 (c / 2) if k = 1 

Lk (1)

Lk+1 (c) if k ≠ 1

Lk (c / 2) + Lk+1 (c / 2) if k = 1 

Lk (1) 

Lk+1 (c) if k ≠ 1

Lk (c / 2) + Lk+1 (c / 2) if k = 1 

Lk (1)

Lk+1 (c) if k ≠ 1

Lk (c / 2) + Lk+1 (c / 2) if k = 1 

Lk (1) 
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Lk (c / 2) + Lk+1 (c / 2) if k = 1 

Lk (1)

Lk+1 (c) if k ≠ 1
 

Here c = maximum size of cluster and Lk (x) = x nodes at level k. 
Essentially, an L1 node gives rise to c/2 nodes of L1 level and c/2 
nodes of L2 level. But a non L1 node gives rise to c nodes of next 
level. We call this policy of evolution as L2L1… because at L1 
level, L2 and L1 levels evolve alternately.  

Intuitively speaking, use of such a policy of evolution ensures that 
there will be (always) enough number of L1 clusters when a 
network evolves. It is necessary to have enough L1 clusters as 
their role in PEA network operation is critical (explained in 
subsequent analysis).  

In our analysis, we explore the evolutionary pattern in terms of 
rounds of clusters. In first round, there is only one L1 cluster. As 
nodes come from all the directions, other rounds of clusters are 
formed. After filling the kth round, k+1th round starts. We call 
such a formation of rounds as the Ripple Round Model of PEA 
evolution. If we want to get regular distribution of load on the 
core of network, we need to control the evolution and foresee how 
far L1 nodes grow in PEA network evolution. Using a policy of 
evolution such as L2L1…, one can evaluate the maximum number 
of rounds in which the core (L1 nodes) of a PEA network is 
present.



(a) Small Core   (b) Medium Core    (c) Large Core 
Figure 4. Three PEA networks evolved using Policy of Evolution L2L1… 

For a given number of L1 clusters (Nf) and given cluster size (c), 
the extent, up to which the core of network is present, can be 
given as follows: 

Nf  =  1 + (c2 / 2) ((qk - 1)/ (q - 1)) where q = (c2 / 2) – 1 

This information can be used to estimate the upper bound on 
forwarding latency. 

The four parameters that control the performance of PEA 
networks are the arrival rate of nodes, the arrival direction of 
nodes, the cluster size and the policy of evolution. Arrival rate of 
nodes governs the rate at which PEA network evolves. If the 
nodes arrive at increased rate, the PEA network will evolve 
quicker than otherwise. Cluster size governs the rate at which next 
levels of clusters are formed. As cluster size increases, the rate at 
which newer levels are formed slows down. But the trend in time 
and message complexity does not change. Therefore, in our 
simulation experiments, we concentrate on the policy of evolution 
in conjunction with arrival direction of nodes.  

For the L2L1… policy of evolution, with controlled arrival 
direction, PEA network evolution is shown for three different 
scenarios in Figure 4. Here, evolution of PEA networks can be 
visualized as blooming flower starting from first L1 cluster. 
Basically these three scenarios of evolution differ in the size of 
core (L1 nodes). For small core, arrival direction is chosen such 
that new nodes go to fill non L1 clusters so that core evolution is 
restricted. For large core, arrival direction is chosen such that new 
nodes always fill L1 clusters so that the core evolves at a rapid 
rate. But if we release the constraint of controlled arrival direction 
and allow nodes to come from all directions uniformly, the 
medium core PEA network is evolved. In fact, we observed in all 
our simulation experiments that the medium core PEA network is 
the most probable in PEA evolution. It should be noted that the 
evolution of these three scenarios of PEA networks is done 
manually so that the arrival direction can be controlled to contain 
the core at desired size. 

We consider these three scenarios of evolution because large and 
small core PEA networks are two extreme cases of PEA evolution 
(even though they are extremely rare) while medium core PEA 
network is a realistic case of PEA evolution. In the sequel, we 
report on simulation experiments from the performance point of 
view. 

Comparison of the three scenarios of PEA Evolution: We 

compare the three scenarios of PEA evolution – large, medium 
and small core - with respect to the following two criteria: Join 
Establishment Time (JET) and Message overhead. 

In a PEA network, the amount of time a node takes to establish a 
join is called Join Establishment Time (JET). In case of node 
mobility, JET is equivalent to handover latency. Establishment of 
a join consists of associating an address to the node, initializing 
the forwarding tables of the node and updating the information of 
other corresponding nodes. 

 
Figure 5. – Cumulative Mean JET vs. Nodes 

Figure 5 shows how cumulative mean JET varies as the network 
evolves in the three scenarios. From the point of view of JET, 
large core network is the worst while small core network is the 
best. It happens because in large core most of the nodes are L1 
nodes and in small core L1 nodes are very few. As explained in 
section 3, when L1 nodes establish C-2-C joins, it results in update 
of all L1 nodes. In other words, a C-2-C join takes more time to 
establish than other types of join. Therefore, as core size (L1 
nodes) increases, JET also increases. This disfavors large core 
PEA evolution. 

When a join is established, a number of update messages are 
transmitted to disseminate information about the updated join. 
This Message overhead is shown for three different scenarios of 
PEA evolution in Figure 6. Again, from the point of view of 
message overhead, large core network is the worst while small 
core network is the best. The reason is that in large core most of 
the nodes are L1 nodes and establish C-2-C joins. And as 
explained earlier in section 3, each C-2-C join entails update of all 
the L1 nodes. Therefore, as the core size (L1 nodes) increases, 

 
  



message overhead also increases. Again, this disfavors large core 
PEA evolution. 

 
Figure 6. – Cumulative Mean Messages vs. Nodes 

From JET and Message overhead analysis, one can safely exclude 
large core PEA networks. And one may conclude that PEA 
network with small or medium core is desirable. But there is a 
tradeoff between time-message complexity and other performance 
criteria. Small core signifies lesser no. of L1 clusters which in turn 
implies lesser no. of GAs per node. This results in lesser no. of 
paths between any two nodes and overloads the small no. of L1 
nodes. Besides, small core PEA network is more prone to 
disconnectivity due to scarce L1 clusters. These results reinforce 
our intuition that medium core PEA network has desirable tradeoff 
between time-message complexity and other performance criteria 
such as no. of paths etc. Medium core PEA network that is natural 
and realistic, and perhaps the best scenario in PEA network 
evolution, from performance point of view.  

So far, we have seen that a given policy of evolution with 
controlled arrival direction results in PEA networks of varying 
core sizes and the resulting medium core PEA network is the most 
desirable and realistic scenario of PEA evolution. In the following 
section, we analyze performance of PEA networks evolved using 
various policies of evolution and identify the ideal policy of 
evolution. While analyzing different policies of evolution, it is 
worth noticing that the nodes come from all the directions with 
uniform distribution. 

Performance of different Policies of Evolution: In PEA 
Framework, role of the policy of evolution is to determine the 
core size for the evolved network. Instead of L2L1… as policy of 
evolution, one can have some other policy of evolution such as 
L2L2L1… which means that L1 nodes form two L2 clusters then 
one L1 cluster alternately and like wise. We take following five 
policies of evolution in consideration: L2L2L2L1…, L2L2L1…, 
L2L1…, L2L1L1…, and L2L1L1L1…To compare these five 
policies, again we use the same two criteria: JET and Message 
overhead. The results reported in this section are obtained through 
simulation using MATLAB [7] with uniform arrival direction and 
cluster size 4. Due to uniform arrival direction, PEA networks 
with medium core evolve. 

From Figure 7 and 8, one can observe, as core size (L1 nodes) 
increases due to policy of evolution, JET and message overhead 
also increases. It happens for L2L1L1… and L2L1L1L1… because 
no. of L1 nodes and therefore C-2-C joins increases which are 
costly in terms of JET and message overhead. On the contrary, for 

L2L2L2L1…and L2L2L1…, number of L1 nodes are lesser and 
therefore JET and message overhead is also lesser. 

 
Figure 7. – Cumulative Mean JET vs. Nodes 

 
Figure 8. – Cumulative Mean Messages vs. Nodes 

The next logical step is to identify (construct) the ideal policy of 
evolution? From the above analysis, one can conclude that policy 
of evolution has direct impact on performance of evolved 
network. One should choose a policy of evolution such that the 
core size is neither too large nor too small. Considering the 
tradeoff between time-message complexity and other performance 
criteria such as no. of paths etc., our choice of the policy of 
evolution L2L1… satisfies this criterion because it produces L1 
and non L1 nodes alternately. 

4.1 Asymptotic Analysis 
To understand the upper and lower bounds on time and message 
complexity of PEA protocol, we perform the asymptotic analysis 
of the PEA protocol. It is worth noticing that asymptotic analysis 
is independent of policy of evolution. Since PEA protocol 
consists of three sub-protocols, we investigate each of the sub-
protocol for analysis. 

4.1.1 Time Complexity 
The Time Complexity of an algorithm is a measure of time it 
takes in execution of algorithm. Here, we compute time taken by 
PEA Protocol (i.e. JDP, JEP and JTP). Time complexity of JDP is 
always Θ(1) because in each case, JDP decides the type of join in 
constant time.  

The time complexity of JEP and JTP depends on Update-ICFT( ), 
Update-GAPS( ) and Update-IFFT( ) procedures that are invoked 
due to update in P-2-P, P-2-C and C-2-C joins respectively.  Since 



Update-ICFT messages are transmitted in one cluster only as 
shown in Figure 3, the time complexity of Update-ICFT( ) 
procedure is Θ(c), where c is the cluster size. The time 
complexity of Update-GAPS( ) depends on which P-2-C join is 
updated. In case of establishment of a P-2-C join with an isolated 
node, the time complexity is always Θ(1). If a P-2-C join is 
updated between two non isolated nodes, the time complexity 
depends on the level at which P-2-C join is updated as shown in 
Figure 3. Suppose, there are l levels below the updated P-2-C 
join, the time complexity will be Θ(c*l). Update-IFFT( ) 
procedure updates the IFFT of all the L1 level nodes, as shown in 
Figure 3. In the best case, L1 nodes of only one cluster are 
updated – thus resulting in time complexity as Θ(c).  In the worst 
case, when L1 nodes are spread throughout the network, the time 
complexity of Update-IFFT( ) procedure will be Θ(r), where r is 
the radius of the evolved network. In Table 4, these time 
complexities are tabulated. 

Table 4. Time Complexity of PEA Protocol 

Action Algorithm Best Case Worst Case 

P-2-P Update-ICFT( ) Θ (1) Θ (c) 

P-2-C Update-GAPS( ) Θ (1) Θ (c*l) 

C-2-C Update-IFFT( ) Θ (c) Θ (r) 

4.1.2 Message Complexity 
Message complexity of an algorithm is a measure of number of 
messages that are passed during the execution of algorithm. While 
calculating message complexity of PEA protocol, we do not 
include HELLO Messages because they are transmitted 
periodically. 

The messages complexity of JDP is always Θ(1) because in all 
the three scenarios of JDP, at most two messages are transmitted. 
The message complexity of JEP and JTP depends on Update-
ICFT( ), Update-GAPS( ), and Update-IFFT( ) procedures. Due to 
unique Message-Id, each node transmits update messages only 
once. Therefore, message complexity depends on the number of 
nodes involved in update. In case of update of a P-2-P join, nodes 
only within a cluster have to be updated. In case of update of a P-
2-C join, nodes of the cluster and the descendant clusters have to 
be updated. In case of update of a C-2-C join, all the L1 nodes 
have to be updated. We tabulate the best case and worst case 
message complexity for all three update procedures in Table 5 as 
follows: 

Table 5. Message Complexity of PEA Protocol 

Action Algorithm Best Case Worst Case 

P-2-P Update-ICFT( ) Θ (1) Θ (c) 

P-2-C Update-GAPS( ) Θ (1) Θ (c*n) 

C-2-C Update-IFFT( ) Θ (c) Θ (c*f) 

Here c = cluster size, n = number of clusters under the P-2-C join 
that is updated, and f = number of families or L1 clusters. 

The above mentioned time and message complexity helps in 
appreciating the upper and lower bounds on handover latency and 
message overhead irrespective of the choice of policy of 
evolution. 

5. RELATED WORKS 
The idea of hierarchical addressing [8] is as old as computer 
networks itself. Recent research related to wireless ad hoc 
networks has mandated the self-configuration of addresses in 
nodes. Besides, the Ad-hoc Network Auto configuration 
(autoconf) [9] working group of IETF aims at self-configuration 
of nodes in MANETs. The proposals addressing the concerns, 
(attempt to) solve just one piece of the general addressing 
problem [10]. For example, most of them use some variation of 
DAD [11, 12, 13] but either they do not guarantee unique 
addresses to nodes or they do auto-configuration but at link level 
only [14]. On the contrary, the PEA Framework does not impose 
any such restrictions and solves the problem in totality. There are 
also attempts [15] that make use of the fact that addressing affects 
routing; but they rely on a single source to control the address.  

The concept of Address Guided Forwarding (AGF) which is the 
foundation of PEA may appear similar to Self-Routing [16], but 
authors are not aware of any architecture or framework that 
allows the self-configuration of nodes with respect to addressing 
and also enable self-routing. The hierarchy built by PEA 
Framework may appear parallel to Landmark Hierarchy [17] and 
related works such as LANMAR [18]. While the landmark 
hierarchy based protocols assume that each node in the network 
has a unique identifier, PEA Framework does not make any such 
assumption. In fact such an assumption defeats the purpose of 
PEA Framework. 

6. CONCLUSIONS AND FUTURE WORK 
In this work, we proposed an addressing framework called 
Protocol for Evolutionary Addressing (PEA) that enables self-
configuration of nodes in an autonomic network. We introduced 
the concept of Address Guided Forwarding (AGF) obviating the 
need for separate routing algorithm. To understand the time and 
message complexity, we studied PEA networks with varying core 
sizes and with different policies of evolution. We understood that 
there is a tradeoff between time-message complexity and other 
performance criteria such as disconnectivity. Besides, we 
analyzed the PEA Protocol by calculating the asymptotic time and 
message complexity. The proposed framework can be used for 
contemporary Internet and autonomic networks such as hospital 
network, campus network and PANs etc. 

Being a nascent concept, there are many avenues yet to be 
explored in the PEA Framework. For given number of nodes and 
given routing latency, one can back calculate the core size. 
Authors are working on it. Further, we intend to extend PEA 
Framework so that it can handle the union of two separately 
evolved PEA networks. Naming issue (mapping from address to 
name and vice versa) needs to be handled before PEA Framework 
can be realized fully. The built-in hierarchy of PEA networks can 
be used to provide naming service and can also be studied for 
mobility management as in [19]. PEA Framework can also be 
extended to handle the automatic reorganization of the PEA 
network. Besides, the feasibility of PEA Framework can be 
shown by emulating the framework on top of the contemporary 
TCP/IP framework.  
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