HIP Location Privacy Framework

Alfredo Matos, Justino Santos, Susana Sargento and <u>Rui Aguiar</u> {alfredo.matos,jsantos}@av.it.pt, {ssargento,ruilaa}@det.ua.pt Institute of Telecommunications, Univ. Aveiro

João Girão and Marco Liebsch {joao.girao,marco.liebsch}@netlab.nec.de

Empowered by Innovation

NEC Europe

Overview

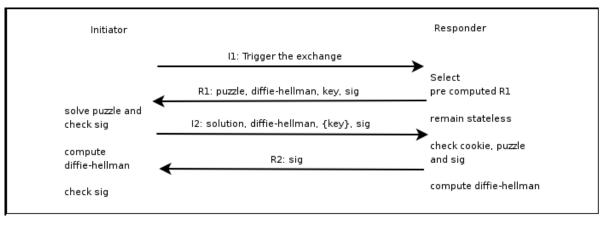
- Motivation
- Host Identity Protocol
- Location Privacy Architecture
- IPv6 Instantiation
- Conclusions

Motivation

- □ Location privacy is a growing requirement
 - Users don't wish to be tracked
- Current Internet architecture does not provide location privacy
 - A topological location can give an accurate geographical position
- Why Host Identity Protocol (HIP) as base for a location privacy framework?
 - HIP decouples identifier and locator
 - Separate layers provide more "space" for a location privacy solution

Host Identity Protocol (HIP)

□ 3.5 Protocol

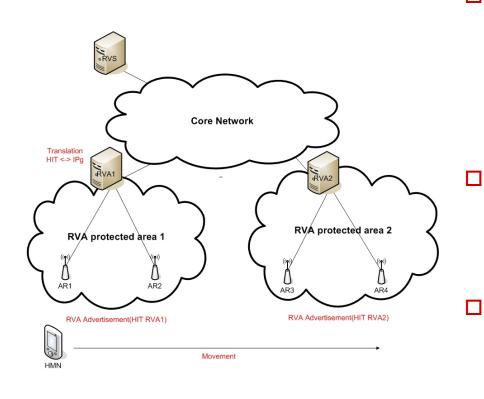

- Shim between Network and Transport Layers
- New cryptographic Namespace
 - Public/Private Key pairs
- Uses Host Identity Tags
 - Hash of 128 bits (same size as an IPV6)
 - No changes required in the applications
- Supports Mobility
 - Locator agility

Host Identity Protocol (II)

Base Exchange (BE)

- Cryptographic four-way handshake
- Exchanges Identities (Public Keys)
- Establishes bidirectional Security Associations
- Bound end to end tunnels

MobiArch '06 – San Francisco, USA



Location Privacy

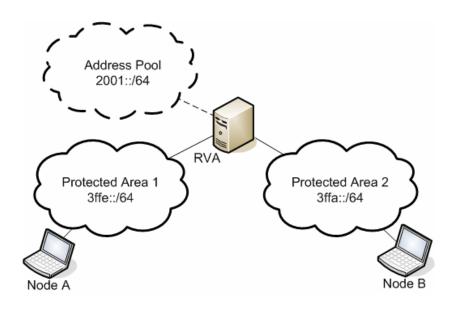
- "... location privacy is the capability of preventing other parties from learning one's past or current location ..."
- Current HIP architecture does not take into account location privacy
- □ HIP is an end to end protocol
 - Initiator/Responder learns the location of each other
- Loss of Location Privacy occurs every time a locator parameter is included in HIP procedures
 - □ Base exchange (R1 and I2 messages)
 - Mobility procedures

Location Privacy Architecture

- Rendezvous Agent (RVA)
 - HI to IP resolution
 - assigns globally routable IP addresses (IPg) to attendants
 - readdresses IPg's to HITs and vice-versa
 - handles local mobility
 - **RVA Protected Area**
 - no IPg are used inside these areas for routing
 - identity based routing (or IPv6)
 - RVA Advertisement System
 - Sustained by the AR
 - Announces the AR and RVA Identifiers

Location Privacy Gains

- Location hidden from end-points
 - Protects from willing and unwilling disclosure
- □ HMN Location only revealed to eavesdroppers in the AN
 - Layer 2 problem with a Layer 2 solution
- Limited information revealed
 - Global addresses
 - Size of RVA areas determines the amount of geographical information revealed
 - Impossible to see local mobility
 - Possible to see inter RVA movement
 - But just for core network eavesdroppers



IPv6 Instantiation

- IPv6 Access network
- Node acquires Local Address
- Responder sees Global Address
- Address Translation at the RVA
- Neighbor Discovery Protocol (ND) as advertisement system

Prototype Evaluation Scenario

- RVA performs translations for two protected areas
- Node a communicates with node B
- Evaluate Round Trip Time and Bandwidth
- Evaluate leakage of endpoint addresses

Results (I)

Networks	Node A	Node B
Area 1	3ffe::1	2001::6ada:1e65:93f3:ff00
Core	2001::ded8:ce89:6390:eb00	2001::6ada:1e65:93f3:ff00
Area 2	2001::ded8:ce89:6390:eb00	3ffa::1

- □ Location leakage analysis
 - Node A only sees B's global address
 - Node B only sees A's global address
 - Core network packets only have global addresses
 - Real attachment addresses only "visible" in local network

Results (II)

Average TCP Bandwidth (Mbps/s)		
Without RVA	With RVA	
6.43	6.44	

- Readdressing performed on all packets
 - Source and destination replacement
- RTT average is only slightly increased
 - Difference of 0.06 ms (on the averages)
 - TCP impact is negligible
 - Difference of 0.01 Mbps (on the averages)
- Translations have minimal impacts

Conclusions

- □ Framework conceals endpoints location
 - Local information contained in protected areas
 - Transport independent (within protected areas)
 - Architecturally supported
- Retains HIP Mobility support
 - But Local Mobility is hidden from peers
- Minimal performance impact
 - Negligible TCP impact
 - Minimum RTT increase (performance can be improved with the assistance of dedicated hardware)
- Requires both sides to implement the framework

Thank you

Questions ?

MobiArch '06 – San Francisco, USA