

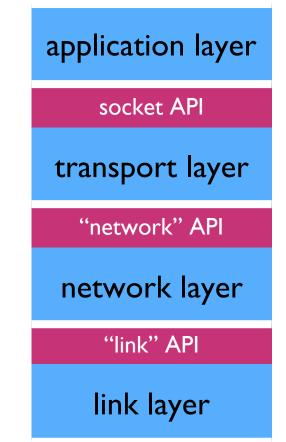
Towards More Expressive Transport-Layer Interfaces

Lars Eggert (NEC) & Wesley Eddy (Verizon/NASA GRC)

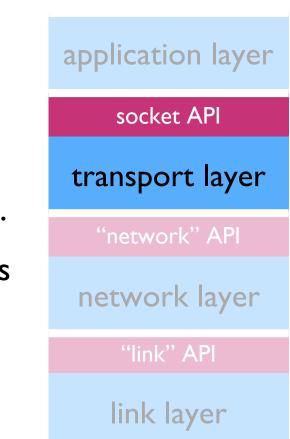
> ACM/IEEE MobiArch 2007 Friday, December 1, 2006

Motivation

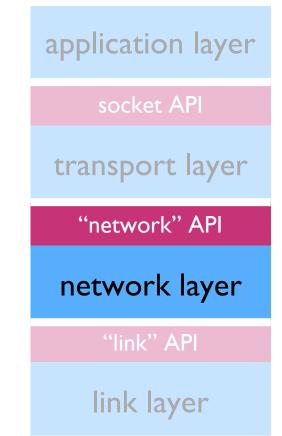
- Internet transport protocols can operate inefficiently or even fail
- in many scenarios that are becoming common
 - mobile and multi-homed nodes and networks
 - links and paths with quickly changing characteristics
 - nomadic use


Why?

- network evolution
- Internet is becoming much more dynamic and heterogeneous than when its protocols were designed
- claim: the original abstractions have started to limit performance and operation of the Internet


Abstractions

- layers in the network stack can be seen as virtual machines
- expose well-defined set of operations & information through an API
- hide intricacies of a layer
 (& layers below) to its users


Example: Transport Layer

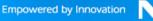
- abstraction offers operations to manage and use communication channels with various characteristics
 - TCP, UDP, SCTP, DCCP, etc.
- hides other functionality, such as
 - flow control
 - congestion control
 - reliability

Example: Network Layer

- abstraction is something like
 - will deliver your packets in some order
 - may deliver multiple copies of some packets
 - may not deliver some others
- hides other functionality, such as
 - fragmentation/reassembly
 - route computation and forwarding

But in Practice

- users of the network-layer abstraction have made additional assumptions about it
 - and in the past, they have been true
- these assumptions are the basis of many key transport-layer mechanisms, such as
 - congestion control
 - flow control
 - reliability mechanisms



Some Assumptions

- hosts remain at the network port identified by an IP address for long times
- packets between the same source and destination addresses mostly follow the same path
- paths change on time scales that are orders of magnitude greater than the RTT
- path characteristics change on similarly large time scales
- connectivity along a path is very rarely disrupted

Reality Check

- many of these assumptions are no longer generally true
- especially with recent/proposed network layer extensions
 - MIP, HIP, SHIM6, NEMO, MANET, etc.
- but also simply because recent link technologies are different
 - link-level mobility
 - link-layer retransmissions
 - non-congestion packet loss

Consequence

- traditional transport mechanisms are not performing well in these scenarios
- this is not news: gazillion of "optimize transport protocol X for scenario Y" research papers
 - where X is mostly TCP
 - and Y = satellites, 802.11, GSM, 3G, ad hoc net, high bit-error links, etc.
- but vast majority of these are band aids
 - specific fixes for limited scenarios
 - not appropriate for a general-purpose Internet

Why Not Appropriate?

- we don't want transport protocol flavors optimized for different MANET routing protocols, link technologies, IP mobility management schemes, etc.
 - if a MANET node talks across the Internet to a host on UMTS - what TCP flavor do I use?
- transport protocols are end-to-end!

What Is Appropriate?

- extend the "virtual machine" abstraction that the network layer provides
- but do it in a way that is generic
 - independent of network-layer extensions
 - independent of specific link technologies

Strawman Design

- provide additional pieces of information or notifications about network-layer events
 - should be advisory and optional: transports shouldn't depend on them
- 2. design transport-layer response mechanisms that act on (1) to improve transport operation and performance

Not a New Idea

- other proposals are already enhancing the networklayer "virtual machine" abstraction in this way
 - ECN ("I'm about to start dropping these packets")
 - Quick-Start ("you may send me packets at rate n")
 - TRIGTRAN/ALIAS (but this is arguably broader)
 - IEEE 802.21 (similar idea one layer down easier?)
- and don't forget about ancient stuff like ICMP
 - unreachables: "this host/network is not here"
 - original source quench: "stop sending so fast"

Why Is This Hard?

- it's easy to optimize for one particular lower layer ("TCP over 802.11" hacks)
- it's hard to identify a small (minimal?) set of generic pieces of information or signals that:
 - can be provided by different underlying technologies (in different ways)
 - are expressive enough to allow significant performance improvements for many uses
- security if the source of the information isn't local, how do you know you can trust it?

The Plea

- further incremental improvements to point solutions are of little practical use
 - we don't need yet another "TCP over 802.11" proposal or similar optimizations
 - the potential benefits of cross-layer schemes are well documented already
- when designing network-layer mechanisms, think about what will run on top of them
 - great PDR doesn't mean great TCP performance

The Pitch

- a cross-layer approach that is generally useful in many scenarios, so it can improve people's Internet experience
 - notify transports about lower-layer events, so they can act appropriately
 - in a technology-independent way
- this is not (yet) an engineering problem there is some research left to be done