CogNet An Architectural Foundation for Experimental Cognitive Radio

Dipankar Raychaudhuri
Narayan B. Mandayam
WINLAB
Rutgers University
{ray,narayan}@
winlab.rutgers.edu

Joseph B. Evans
Benjamin J. Ewy
ITTC
University of Kansas
{evans,bewy}@ku.edu

Networks within the Future Internet

Srinivasan Seshan
Peter Steenkiste
ECE & CS
Carnegie Mellon Univ.
{srini,prs}@cs.cmu.edu

Wireless Networking Challenges

Why is wireless networking hard?

- Mobility is inherent with untethered
- Resources are constrained
 - Spectrum "scarcity" → bandwidth & delay issues
- Environment changes
 - Mobility → different surroundings (indoor, urban, rural)
- Varying physical properties
 - Wireless communication path changes over time

Cognitive Networking

Cognitive (from Wikipedia) – applying the experience gathered in one place by one being to actions by another being elsewhere

- Developing experimental protocol stack for cognitive networks, not just cognitive radios
- Scalable autoconfiguration & network management
- Dynamic network layer supporting tailored functionality (IP, group messaging, rich queries, etc.)
- Builds on the foundation of cognitive radios (e.g., Rutgers & GNU Radio, KU Agile Radio), but extends it further up the protocol stack, and explores across stack

CogNet in Perspective

- GENI (Global Environment for Network Innovations)
 - Global experimental facility that will foster exploration and evaluation of new networking architectures (at scale) under realistic conditions
 - Major infrastructure, expected to be \$367 million
- FIND (Future Internet Network Design)
 - Requirements for global network of fifteen years from now - what should that network look like and do?
 - How would we re-conceive tomorrow's global network today, if we could design it from scratch?
 - Innovative ideas in broad area of network architecture, principles, and design
 - Research projects expected to be funded at \$20 million per year in progressive phases
 - Provides experiments and architectures that will be pursued on the GENI infrastructure

Cognitive / Agile Radio Platforms

- Flexible in RF carrier frequency
- Flexible in bandwidth
- Flexible in waveform
 - A/D and D/A driven
 - Generated/processed by programmable DSP and/or FPGAs
- Dials to observe
 - Traffic characteristics measured at network layer
 - Error rate & characteristics (BER and distribution)
 - MAC layer per packet error information
 - Network and transport layer per flow correlations
 - Receive characteristics
 - Physical layer signal strength, interfering signals, background noise
 - MAC layer transmit power, antenna in use

- Knobs to influence
 - Physical layer
 - Frequency & bandwidth
 - Transmit power
 - Beam width & direction
 - Data rate, code, & chipping rate
 - MAC protocol
 - FEC strength
 - Retransmit scheme
 - MTU size
 - Encryption & parameters
 - Network layer
 - Routing protocol
 - Addressing plan(s)
 - ACLs
- Interface framework with a flexible, usable set of scalable parameters
- Adapt to resource constraints, environment, varying physical conditions, application
- Capability to learn

Cognitive Radio Network Capabilities

- Spectrum agility and fast spectrum scanning over multiple frequency bands, providing local awareness of radio interference and the ability to change frequency bands on a per-packet basis
- Fast PHY adaptation, or the ability to change physicallayer waveforms on a per-packet basis and PHY collaboration modes such as network coding
- Spectrum etiquette protocol and dynamic spectrum policy implementation on a per-session basis
- Fully programmable MAC layer, with the option of dynamic adaptation to meet service needs
- Cross-layer protocol implementation capabilities based on integrated PHY, MAC, network algorithms
- Ad hoc cluster formation, involving multi-hop packet forwarding among peer groups of radio nodes

CogNet Vision

The Global Control Plane and Architecture Internetworking

Autoconfiguration and Bootstrapping Protocols

Build Architectural Foundations

- A Global Control Plane (GCP) implemented as a cross layer network management overlay that can interface with the network layer and can provide aggregated representations of the cognitive subnetwork state to the future Internet
- An API for PHY layer adaptation (e.g., agility, change of modulation waveform), and support for collaborative PHY via network coding
- Spectrum coordination protocols that facilitate dynamic sharing among radio nodes using mechanisms such as etiquette policies or spectrum server
- Autoconfiguration (e.g., bootstrapping and topology discovery)
 protocols that can be used to establish network connectivity after a
 cognitive radio device is turned on or enters a new service area
- Flexible MAC framework that permits programmable functionality capable of dynamic selection of channel sharing modes based on observed network conditions and traffic demands
- Network layer protocols that support service discovery, naming, addressing and routing in ad hoc wireless constellations, including features that provide economic incentives for collaboration

Spectrum Coordination Approaches

Protocol & hardware complexity

Protocol Complexity (degree of

Unlicensed band + simple coord protocols Ad-hoc, Multi-hop Collaboration Internet Server-based **Spectrum** "Cognitive Radio" **Etiquette** schemes coordination) Radio-level Spectrum Unlicensed **Etiquette** Band **Protocol** with DCA (e.g. 802.11x) Agile Internet Wideband **Spectrum Radios** Leasing Reactive Rate/Power UWB, Control **Spread Spectrum** Static **Assignment Hardware Complexity**

The University of Kansas

CSCC for Spectrum Coordination

Common Spectrum Coordination Channel

Bootstrapping and Discovery

Establish network connectivity after a cognitive radio device is turned on or enters a new service area

Example Bootstrapping Beacon Format

1	8 1	16	24 3:
MSG Type	Payload	Length	Next Header
Source Identifier			
Time Stamp			
Center Frequency		Power	Modulation
		Level	/Coding
Bandwidth	Rate	Sub-Network Name	
	Level		
Available Services			

Global Control Plane

The University of Kansas

Network Management Architecture

Network Wide Cross Layer Interaction

Network Management
Information
Exposed Via
Management And
Service Discovery
Overlays

Network Management
Information
Exposed Via
Management And
Service Discovery
Overlays

- Provide overlay for inter-node transmission of control plane data (position, capabilities, errors, signal strength, etc.)
- Provide parts of local node control plane necessary to perform network layer research, primarily application and layer 3
- Performance analytically & experiment
 - Overlay overhead versus better data for cognitive decisions using local cross-layer and global cross-network information
 - Assertion make better cognitive decision knowing local node information and receiving node environments as well as details above any intermediate hops

Network Layer Overlays

- Overlay typically denotes an application layer network of semi-persistent links between participating nodes, that is used to forward messages between the distributed application elements
- Structured and unstructured P2P, DHT
- Services may map better to particular overlays – search, distributed file storage, load balancing, multicast messaging

Network Layer Overlay Issues

- Feasible to use overlays for Layer 3 forwarding, e.g.,
 Virtual Ring Routing? To provide new network layers?
- How would having tailored layer 3s, (IP, range-based overlays, multicast optimized overlays, etc.) may impact end-to-end network architecture for interoperating cognitive wireless subnets and the future Internet?
- How to use, position, and discover routers between the overlays themselves, and the Internet?
- How can applications decide which network layer to use?
 - Legacy approach manipulating resolver libraries
 - New approach by applications aware of the Global Control Plane (GCP)
- Explore performance tradeoffs (more overhead, etc. versus better utilization, etc.) in simulation and real cognitive radio network (KUAR or Rutgers/GNU Radio)

CogNet Protocol Stack Implementation

 USRP Software Radio Board

KU Agile Radio (KUAR)

CogNet Summary

- Developing experimental protocol stack for cognitive networks, not just cognitive radios
- Scalable autoconfiguration & network management
- Dynamic network layer supporting tailored functionality (IP, group messaging, rich queries, etc.)
- Building on foundation of cognitive radios (e.g., Rutgers & GNU Radio, KU Agile Radio), but extends it further up the protocol stack, and explores across stack

CogNet An Architectural Foundation for Experimental Cognitive Radio

Dipankar Raychaudhuri
Narayan B. Mandayam
WINLAB
Rutgers University
{ray,narayan}@
winlab.rutgers.edu

Joseph B. Evans
Benjamin J. Ewy
ITTC
University of Kansas
{evans,bewy}@ku.edu

Networks within the Future Internet

Srinivasan Seshan
Peter Steenkiste
ECE & CS
Carnegie Mellon Univ.
{srini,prs}@cs.cmu.edu

